| L(s) = 1 | + (−0.5 − 0.866i)5-s + (−2.5 + 0.866i)7-s + (1 − 1.73i)11-s + (2 − 3.46i)17-s + (1 + 1.73i)19-s + (0.5 + 0.866i)23-s + (−0.499 + 0.866i)25-s − 9·29-s + (−2 + 3.46i)31-s + (2 + 1.73i)35-s + (−2 − 3.46i)37-s − 41-s + 9·43-s + (5.5 − 4.33i)49-s + (−5 + 8.66i)53-s + ⋯ |
| L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.944 + 0.327i)7-s + (0.301 − 0.522i)11-s + (0.485 − 0.840i)17-s + (0.229 + 0.397i)19-s + (0.104 + 0.180i)23-s + (−0.0999 + 0.173i)25-s − 1.67·29-s + (−0.359 + 0.622i)31-s + (0.338 + 0.292i)35-s + (−0.328 − 0.569i)37-s − 0.156·41-s + 1.37·43-s + (0.785 − 0.618i)49-s + (−0.686 + 1.18i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2520 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (2.5 - 0.866i)T \) |
| good | 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + (-2 + 3.46i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 - 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 9T + 29T^{2} \) |
| 31 | \( 1 + (2 - 3.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2 + 3.46i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + T + 41T^{2} \) |
| 43 | \( 1 - 9T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5 - 8.66i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5 - 8.66i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.5 + 7.79i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 - 4.33i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 14T + 71T^{2} \) |
| 73 | \( 1 + (6 - 10.3i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7 + 12.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 11T + 83T^{2} \) |
| 89 | \( 1 + (7.5 + 12.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 18T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.752274737890926125497851993785, −7.55727630841637006617590457473, −7.16093231125410410239474813055, −5.90357466586885373991968913980, −5.64244382343742914093823394506, −4.43775639183383527235852529363, −3.52618566246216846742119612974, −2.81375432723879144578048216799, −1.39525055705899082171957724430, 0,
1.60643583341045968904385440330, 2.85189617137491825838976769633, 3.67890974132752309277195455038, 4.37646315367087273935995257028, 5.59907544177181933826568686564, 6.26955698911630320483055034936, 7.12597671835263987113451307540, 7.58574843349104703752427644191, 8.600156195859458894142793687162