Properties

Label 252.8.k.c.109.3
Level $252$
Weight $8$
Character 252.109
Analytic conductor $78.721$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,8,Mod(37,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.37"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,-249] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(78.7210264220\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 342 x^{8} + 2165 x^{7} + 113605 x^{6} + 319380 x^{5} + 1438128 x^{4} + 1705752 x^{3} + \cdots + 23619600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{8}\cdot 7^{5} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.3
Root \(10.0194 + 17.3541i\) of defining polynomial
Character \(\chi\) \(=\) 252.109
Dual form 252.8.k.c.37.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-58.1649 - 100.745i) q^{5} +(-276.518 + 864.338i) q^{7} +(-3407.25 + 5901.54i) q^{11} -11924.5 q^{13} +(3301.82 - 5718.92i) q^{17} +(7387.57 + 12795.6i) q^{19} +(-16134.9 - 27946.4i) q^{23} +(32296.2 - 55938.6i) q^{25} +126792. q^{29} +(-94753.8 + 164118. i) q^{31} +(103161. - 22416.5i) q^{35} +(76077.0 + 131769. i) q^{37} +355426. q^{41} -650136. q^{43} +(-50866.2 - 88102.8i) q^{47} +(-670618. - 478010. i) q^{49} +(1.02218e6 - 1.77047e6i) q^{53} +792730. q^{55} +(-100356. + 173822. i) q^{59} +(-453981. - 786317. i) q^{61} +(693586. + 1.20133e6i) q^{65} +(-1.11616e6 + 1.93324e6i) q^{67} -4.16441e6 q^{71} +(1.61704e6 - 2.80080e6i) q^{73} +(-4.15876e6 - 4.57690e6i) q^{77} +(684840. + 1.18618e6i) q^{79} +8.14674e6 q^{83} -768201. q^{85} +(-1.77793e6 - 3.07947e6i) q^{89} +(3.29733e6 - 1.03068e7i) q^{91} +(859394. - 1.48851e6i) q^{95} +1.48623e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 249 q^{5} + 332 q^{7} - 6399 q^{11} - 26988 q^{13} - 3609 q^{17} - 12403 q^{19} + 13959 q^{23} - 162364 q^{25} - 26148 q^{29} - 20181 q^{31} - 791715 q^{35} - 54763 q^{37} + 1824468 q^{41} - 1938424 q^{43}+ \cdots + 285580 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −58.1649 100.745i −0.208097 0.360435i 0.743018 0.669271i \(-0.233394\pi\)
−0.951115 + 0.308837i \(0.900060\pi\)
\(6\) 0 0
\(7\) −276.518 + 864.338i −0.304706 + 0.952447i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3407.25 + 5901.54i −0.771845 + 1.33687i 0.164706 + 0.986343i \(0.447332\pi\)
−0.936551 + 0.350532i \(0.886001\pi\)
\(12\) 0 0
\(13\) −11924.5 −1.50535 −0.752675 0.658392i \(-0.771237\pi\)
−0.752675 + 0.658392i \(0.771237\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3301.82 5718.92i 0.162998 0.282321i −0.772944 0.634474i \(-0.781217\pi\)
0.935943 + 0.352153i \(0.114550\pi\)
\(18\) 0 0
\(19\) 7387.57 + 12795.6i 0.247095 + 0.427981i 0.962719 0.270505i \(-0.0871907\pi\)
−0.715624 + 0.698486i \(0.753857\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −16134.9 27946.4i −0.276515 0.478938i 0.694001 0.719974i \(-0.255846\pi\)
−0.970516 + 0.241036i \(0.922513\pi\)
\(24\) 0 0
\(25\) 32296.2 55938.6i 0.413391 0.716015i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 126792. 0.965382 0.482691 0.875791i \(-0.339659\pi\)
0.482691 + 0.875791i \(0.339659\pi\)
\(30\) 0 0
\(31\) −94753.8 + 164118.i −0.571256 + 0.989444i 0.425182 + 0.905108i \(0.360210\pi\)
−0.996437 + 0.0843359i \(0.973123\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 103161. 22416.5i 0.406703 0.0883749i
\(36\) 0 0
\(37\) 76077.0 + 131769.i 0.246915 + 0.427669i 0.962668 0.270684i \(-0.0872499\pi\)
−0.715753 + 0.698353i \(0.753917\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 355426. 0.805389 0.402694 0.915334i \(-0.368074\pi\)
0.402694 + 0.915334i \(0.368074\pi\)
\(42\) 0 0
\(43\) −650136. −1.24699 −0.623497 0.781825i \(-0.714289\pi\)
−0.623497 + 0.781825i \(0.714289\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −50866.2 88102.8i −0.0714638 0.123779i 0.828079 0.560611i \(-0.189434\pi\)
−0.899543 + 0.436832i \(0.856100\pi\)
\(48\) 0 0
\(49\) −670618. 478010.i −0.814309 0.580432i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.02218e6 1.77047e6i 0.943111 1.63352i 0.183620 0.982997i \(-0.441218\pi\)
0.759490 0.650519i \(-0.225448\pi\)
\(54\) 0 0
\(55\) 792730. 0.642475
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −100356. + 173822.i −0.0636153 + 0.110185i −0.896079 0.443895i \(-0.853596\pi\)
0.832464 + 0.554080i \(0.186930\pi\)
\(60\) 0 0
\(61\) −453981. 786317.i −0.256084 0.443551i 0.709105 0.705103i \(-0.249099\pi\)
−0.965189 + 0.261552i \(0.915766\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 693586. + 1.20133e6i 0.313259 + 0.542580i
\(66\) 0 0
\(67\) −1.11616e6 + 1.93324e6i −0.453382 + 0.785280i −0.998594 0.0530181i \(-0.983116\pi\)
0.545212 + 0.838298i \(0.316449\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.16441e6 −1.38086 −0.690430 0.723399i \(-0.742579\pi\)
−0.690430 + 0.723399i \(0.742579\pi\)
\(72\) 0 0
\(73\) 1.61704e6 2.80080e6i 0.486510 0.842660i −0.513370 0.858168i \(-0.671603\pi\)
0.999880 + 0.0155074i \(0.00493635\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.15876e6 4.57690e6i −1.03812 1.14249i
\(78\) 0 0
\(79\) 684840. + 1.18618e6i 0.156277 + 0.270679i 0.933523 0.358517i \(-0.116717\pi\)
−0.777246 + 0.629196i \(0.783384\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 8.14674e6 1.56391 0.781953 0.623337i \(-0.214224\pi\)
0.781953 + 0.623337i \(0.214224\pi\)
\(84\) 0 0
\(85\) −768201. −0.135678
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1.77793e6 3.07947e6i −0.267331 0.463031i 0.700840 0.713318i \(-0.252808\pi\)
−0.968172 + 0.250287i \(0.919475\pi\)
\(90\) 0 0
\(91\) 3.29733e6 1.03068e7i 0.458689 1.43377i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 859394. 1.48851e6i 0.102839 0.178123i
\(96\) 0 0
\(97\) 1.48623e7 1.65343 0.826715 0.562622i \(-0.190207\pi\)
0.826715 + 0.562622i \(0.190207\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.42329e6 2.46521e6i 0.137458 0.238084i −0.789076 0.614296i \(-0.789440\pi\)
0.926534 + 0.376212i \(0.122774\pi\)
\(102\) 0 0
\(103\) 297848. + 515888.i 0.0268574 + 0.0465184i 0.879142 0.476560i \(-0.158117\pi\)
−0.852284 + 0.523079i \(0.824783\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.93320e6 1.72048e7i −0.783873 1.35771i −0.929670 0.368393i \(-0.879908\pi\)
0.145797 0.989315i \(-0.453425\pi\)
\(108\) 0 0
\(109\) 3.92925e6 6.80565e6i 0.290614 0.503358i −0.683341 0.730099i \(-0.739474\pi\)
0.973955 + 0.226741i \(0.0728071\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.16317e7 0.758347 0.379174 0.925325i \(-0.376208\pi\)
0.379174 + 0.925325i \(0.376208\pi\)
\(114\) 0 0
\(115\) −1.87697e6 + 3.25100e6i −0.115084 + 0.199331i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.03007e6 + 4.43528e6i 0.219229 + 0.241272i
\(120\) 0 0
\(121\) −1.34752e7 2.33397e7i −0.691489 1.19769i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.66023e7 −0.760296
\(126\) 0 0
\(127\) 1.02118e6 0.0442372 0.0221186 0.999755i \(-0.492959\pi\)
0.0221186 + 0.999755i \(0.492959\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −2.41713e7 4.18660e7i −0.939401 1.62709i −0.766591 0.642135i \(-0.778049\pi\)
−0.172810 0.984955i \(-0.555285\pi\)
\(132\) 0 0
\(133\) −1.31026e7 + 2.84713e6i −0.482920 + 0.104937i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.23915e7 2.14626e7i 0.411719 0.713118i −0.583359 0.812214i \(-0.698262\pi\)
0.995078 + 0.0990967i \(0.0315953\pi\)
\(138\) 0 0
\(139\) −1.93687e7 −0.611713 −0.305857 0.952078i \(-0.598943\pi\)
−0.305857 + 0.952078i \(0.598943\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.06297e7 7.03727e7i 1.16190 2.01246i
\(144\) 0 0
\(145\) −7.37485e6 1.27736e7i −0.200893 0.347957i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.53357e6 + 1.47806e7i 0.211339 + 0.366049i 0.952134 0.305682i \(-0.0988844\pi\)
−0.740795 + 0.671731i \(0.765551\pi\)
\(150\) 0 0
\(151\) −1.31225e7 + 2.27288e7i −0.310167 + 0.537225i −0.978398 0.206728i \(-0.933718\pi\)
0.668231 + 0.743954i \(0.267052\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.20454e7 0.475507
\(156\) 0 0
\(157\) 2.04968e7 3.55016e7i 0.422706 0.732148i −0.573498 0.819207i \(-0.694414\pi\)
0.996203 + 0.0870598i \(0.0277471\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.86168e7 6.21830e6i 0.540418 0.117431i
\(162\) 0 0
\(163\) −2.61227e7 4.52458e7i −0.472455 0.818317i 0.527048 0.849836i \(-0.323299\pi\)
−0.999503 + 0.0315189i \(0.989966\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.67268e7 0.942498 0.471249 0.882000i \(-0.343803\pi\)
0.471249 + 0.882000i \(0.343803\pi\)
\(168\) 0 0
\(169\) 7.94446e7 1.26608
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −774366. 1.34124e6i −0.0113706 0.0196945i 0.860284 0.509815i \(-0.170286\pi\)
−0.871655 + 0.490120i \(0.836953\pi\)
\(174\) 0 0
\(175\) 3.94194e7 + 4.33829e7i 0.556003 + 0.611907i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.87023e7 3.23933e7i 0.243730 0.422153i −0.718044 0.695998i \(-0.754962\pi\)
0.961774 + 0.273845i \(0.0882955\pi\)
\(180\) 0 0
\(181\) −1.08072e8 −1.35469 −0.677343 0.735667i \(-0.736869\pi\)
−0.677343 + 0.735667i \(0.736869\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.85002e6 1.53287e7i 0.102765 0.177993i
\(186\) 0 0
\(187\) 2.25003e7 + 3.89716e7i 0.251618 + 0.435816i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.76760e7 9.98978e7i −0.598933 1.03738i −0.992979 0.118292i \(-0.962258\pi\)
0.394046 0.919091i \(-0.371075\pi\)
\(192\) 0 0
\(193\) 4.10645e7 7.11257e7i 0.411164 0.712158i −0.583853 0.811859i \(-0.698456\pi\)
0.995017 + 0.0997017i \(0.0317888\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.32327e8 −1.23315 −0.616576 0.787296i \(-0.711481\pi\)
−0.616576 + 0.787296i \(0.711481\pi\)
\(198\) 0 0
\(199\) −3.70915e7 + 6.42444e7i −0.333648 + 0.577896i −0.983224 0.182401i \(-0.941613\pi\)
0.649576 + 0.760297i \(0.274946\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.50603e7 + 1.09591e8i −0.294157 + 0.919475i
\(204\) 0 0
\(205\) −2.06733e7 3.58072e7i −0.167599 0.290290i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.00685e8 −0.762876
\(210\) 0 0
\(211\) 5.84260e7 0.428171 0.214086 0.976815i \(-0.431323\pi\)
0.214086 + 0.976815i \(0.431323\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.78151e7 + 6.54977e7i 0.259496 + 0.449460i
\(216\) 0 0
\(217\) −1.15653e8 1.27281e8i −0.768328 0.845580i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3.93725e7 + 6.81952e7i −0.245369 + 0.424992i
\(222\) 0 0
\(223\) 2.61801e8 1.58090 0.790449 0.612528i \(-0.209847\pi\)
0.790449 + 0.612528i \(0.209847\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.89678e7 + 5.01737e7i −0.164371 + 0.284699i −0.936432 0.350850i \(-0.885893\pi\)
0.772061 + 0.635549i \(0.219226\pi\)
\(228\) 0 0
\(229\) 8.34771e7 + 1.44587e8i 0.459349 + 0.795616i 0.998927 0.0463198i \(-0.0147493\pi\)
−0.539577 + 0.841936i \(0.681416\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.08941e8 + 1.88691e8i 0.564217 + 0.977252i 0.997122 + 0.0758125i \(0.0241550\pi\)
−0.432906 + 0.901439i \(0.642512\pi\)
\(234\) 0 0
\(235\) −5.91725e6 + 1.02490e7i −0.0297428 + 0.0515161i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.23970e8 −1.06120 −0.530600 0.847622i \(-0.678033\pi\)
−0.530600 + 0.847622i \(0.678033\pi\)
\(240\) 0 0
\(241\) −4.93506e7 + 8.54778e7i −0.227108 + 0.393363i −0.956950 0.290253i \(-0.906260\pi\)
0.729842 + 0.683616i \(0.239594\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.15049e6 + 9.53646e7i −0.0397524 + 0.414291i
\(246\) 0 0
\(247\) −8.80929e7 1.52581e8i −0.371964 0.644261i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.65751e8 1.06076 0.530379 0.847760i \(-0.322050\pi\)
0.530379 + 0.847760i \(0.322050\pi\)
\(252\) 0 0
\(253\) 2.19903e8 0.853706
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.52841e7 + 2.64728e7i 0.0561660 + 0.0972824i 0.892741 0.450570i \(-0.148779\pi\)
−0.836575 + 0.547852i \(0.815446\pi\)
\(258\) 0 0
\(259\) −1.34930e8 + 2.93197e7i −0.482568 + 0.104860i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.61770e6 + 6.26604e6i −0.0122627 + 0.0212397i −0.872092 0.489343i \(-0.837237\pi\)
0.859829 + 0.510582i \(0.170570\pi\)
\(264\) 0 0
\(265\) −2.37820e8 −0.785034
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.42076e7 5.92494e7i 0.107150 0.185588i −0.807465 0.589916i \(-0.799161\pi\)
0.914614 + 0.404327i \(0.132494\pi\)
\(270\) 0 0
\(271\) 4.88220e7 + 8.45622e7i 0.149013 + 0.258097i 0.930863 0.365369i \(-0.119057\pi\)
−0.781850 + 0.623466i \(0.785724\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.20083e8 + 3.81194e8i 0.638148 + 1.10530i
\(276\) 0 0
\(277\) −1.93980e8 + 3.35983e8i −0.548375 + 0.949814i 0.450011 + 0.893023i \(0.351420\pi\)
−0.998386 + 0.0567907i \(0.981913\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.44469e8 −1.19500 −0.597502 0.801868i \(-0.703840\pi\)
−0.597502 + 0.801868i \(0.703840\pi\)
\(282\) 0 0
\(283\) −3.11056e8 + 5.38765e8i −0.815805 + 1.41302i 0.0929429 + 0.995671i \(0.470373\pi\)
−0.908748 + 0.417345i \(0.862961\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −9.82817e7 + 3.07208e8i −0.245407 + 0.767090i
\(288\) 0 0
\(289\) 1.83365e8 + 3.17598e8i 0.446863 + 0.773990i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3.26197e8 0.757606 0.378803 0.925477i \(-0.376336\pi\)
0.378803 + 0.925477i \(0.376336\pi\)
\(294\) 0 0
\(295\) 2.33488e7 0.0529526
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.92400e8 + 3.33247e8i 0.416252 + 0.720969i
\(300\) 0 0
\(301\) 1.79774e8 5.61937e8i 0.379966 1.18770i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −5.28115e7 + 9.14721e7i −0.106581 + 0.184603i
\(306\) 0 0
\(307\) 2.17327e8 0.428675 0.214338 0.976760i \(-0.431241\pi\)
0.214338 + 0.976760i \(0.431241\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.26348e8 + 2.18842e8i −0.238182 + 0.412543i −0.960193 0.279339i \(-0.909885\pi\)
0.722011 + 0.691882i \(0.243218\pi\)
\(312\) 0 0
\(313\) −1.71496e8 2.97039e8i −0.316117 0.547531i 0.663557 0.748125i \(-0.269046\pi\)
−0.979674 + 0.200595i \(0.935713\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.70616e8 + 2.95516e8i 0.300824 + 0.521042i 0.976323 0.216319i \(-0.0694050\pi\)
−0.675499 + 0.737361i \(0.736072\pi\)
\(318\) 0 0
\(319\) −4.32013e8 + 7.48268e8i −0.745125 + 1.29059i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.75697e7 0.161104
\(324\) 0 0
\(325\) −3.85115e8 + 6.67039e8i −0.622299 + 1.07785i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 9.02160e7 1.96036e7i 0.139668 0.0303493i
\(330\) 0 0
\(331\) −2.70854e8 4.69133e8i −0.410523 0.711046i 0.584424 0.811448i \(-0.301320\pi\)
−0.994947 + 0.100402i \(0.967987\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.59685e8 0.377390
\(336\) 0 0
\(337\) 5.08120e7 0.0723205 0.0361602 0.999346i \(-0.488487\pi\)
0.0361602 + 0.999346i \(0.488487\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.45700e8 1.11839e9i −0.881842 1.52739i
\(342\) 0 0
\(343\) 5.98601e8 4.47463e8i 0.800955 0.598725i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.39930e8 + 5.88776e8i −0.436753 + 0.756479i −0.997437 0.0715511i \(-0.977205\pi\)
0.560684 + 0.828030i \(0.310538\pi\)
\(348\) 0 0
\(349\) −4.75862e8 −0.599228 −0.299614 0.954060i \(-0.596858\pi\)
−0.299614 + 0.954060i \(0.596858\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.08969e8 3.61945e8i 0.252855 0.437957i −0.711456 0.702731i \(-0.751964\pi\)
0.964311 + 0.264774i \(0.0852972\pi\)
\(354\) 0 0
\(355\) 2.42223e8 + 4.19542e8i 0.287353 + 0.497710i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.89840e8 + 3.28812e8i 0.216549 + 0.375074i 0.953751 0.300599i \(-0.0971865\pi\)
−0.737201 + 0.675673i \(0.763853\pi\)
\(360\) 0 0
\(361\) 3.37784e8 5.85058e8i 0.377888 0.654521i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.76221e8 −0.404965
\(366\) 0 0
\(367\) 2.24517e8 3.88875e8i 0.237093 0.410656i −0.722786 0.691072i \(-0.757139\pi\)
0.959879 + 0.280415i \(0.0904722\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.24763e9 + 1.37308e9i 1.26847 + 1.39600i
\(372\) 0 0
\(373\) −1.92208e8 3.32913e8i −0.191774 0.332162i 0.754064 0.656801i \(-0.228091\pi\)
−0.945838 + 0.324638i \(0.894757\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.51193e9 −1.45324
\(378\) 0 0
\(379\) 1.06012e9 1.00027 0.500137 0.865946i \(-0.333283\pi\)
0.500137 + 0.865946i \(0.333283\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −4.71522e8 8.16701e8i −0.428851 0.742792i 0.567920 0.823084i \(-0.307748\pi\)
−0.996771 + 0.0802915i \(0.974415\pi\)
\(384\) 0 0
\(385\) −2.19204e8 + 6.85187e8i −0.195766 + 0.611923i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.74414e8 4.75300e8i 0.236365 0.409396i −0.723303 0.690530i \(-0.757377\pi\)
0.959669 + 0.281134i \(0.0907106\pi\)
\(390\) 0 0
\(391\) −2.13098e8 −0.180286
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.96673e7 1.37988e8i 0.0650415 0.112655i
\(396\) 0 0
\(397\) 7.09112e8 + 1.22822e9i 0.568785 + 0.985164i 0.996687 + 0.0813387i \(0.0259196\pi\)
−0.427902 + 0.903825i \(0.640747\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.03119e8 8.71428e8i −0.389642 0.674880i 0.602759 0.797923i \(-0.294068\pi\)
−0.992401 + 0.123043i \(0.960735\pi\)
\(402\) 0 0
\(403\) 1.12989e9 1.95703e9i 0.859940 1.48946i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.03685e9 −0.762320
\(408\) 0 0
\(409\) 4.83763e8 8.37902e8i 0.349624 0.605566i −0.636559 0.771228i \(-0.719643\pi\)
0.986183 + 0.165662i \(0.0529761\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.22491e8 1.34806e8i −0.0855613 0.0941641i
\(414\) 0 0
\(415\) −4.73854e8 8.20740e8i −0.325444 0.563686i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.33931e9 0.889473 0.444736 0.895662i \(-0.353297\pi\)
0.444736 + 0.895662i \(0.353297\pi\)
\(420\) 0 0
\(421\) 4.59395e8 0.300054 0.150027 0.988682i \(-0.452064\pi\)
0.150027 + 0.988682i \(0.452064\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.13273e8 3.69399e8i −0.134764 0.233418i
\(426\) 0 0
\(427\) 8.05178e8 1.74962e8i 0.500489 0.108754i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.25854e9 2.17985e9i 0.757173 1.31146i −0.187114 0.982338i \(-0.559913\pi\)
0.944287 0.329123i \(-0.106753\pi\)
\(432\) 0 0
\(433\) −1.94780e9 −1.15302 −0.576511 0.817090i \(-0.695586\pi\)
−0.576511 + 0.817090i \(0.695586\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.38395e8 4.12913e8i 0.136651 0.236686i
\(438\) 0 0
\(439\) −6.98148e8 1.20923e9i −0.393842 0.682154i 0.599111 0.800666i \(-0.295521\pi\)
−0.992953 + 0.118512i \(0.962188\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −9.85364e8 1.70670e9i −0.538498 0.932705i −0.998985 0.0450392i \(-0.985659\pi\)
0.460488 0.887666i \(-0.347675\pi\)
\(444\) 0 0
\(445\) −2.06826e8 + 3.58234e8i −0.111262 + 0.192711i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −8.24242e8 −0.429727 −0.214864 0.976644i \(-0.568931\pi\)
−0.214864 + 0.976644i \(0.568931\pi\)
\(450\) 0 0
\(451\) −1.21103e9 + 2.09756e9i −0.621635 + 1.07670i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −1.23014e9 + 2.67304e8i −0.612231 + 0.133035i
\(456\) 0 0
\(457\) 3.05260e8 + 5.28726e8i 0.149611 + 0.259134i 0.931084 0.364806i \(-0.118865\pi\)
−0.781473 + 0.623939i \(0.785531\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.46019e9 0.694155 0.347078 0.937836i \(-0.387174\pi\)
0.347078 + 0.937836i \(0.387174\pi\)
\(462\) 0 0
\(463\) −6.99630e7 −0.0327593 −0.0163797 0.999866i \(-0.505214\pi\)
−0.0163797 + 0.999866i \(0.505214\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.79060e9 + 3.10141e9i 0.813559 + 1.40913i 0.910358 + 0.413822i \(0.135806\pi\)
−0.0967986 + 0.995304i \(0.530860\pi\)
\(468\) 0 0
\(469\) −1.36234e9 1.49932e9i −0.609790 0.671101i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.21518e9 3.83680e9i 0.962486 1.66708i
\(474\) 0 0
\(475\) 9.54361e8 0.408588
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.65832e7 1.67287e8i 0.0401539 0.0695485i −0.845250 0.534371i \(-0.820549\pi\)
0.885404 + 0.464822i \(0.153882\pi\)
\(480\) 0 0
\(481\) −9.07178e8 1.57128e9i −0.371693 0.643792i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.64465e8 1.49730e9i −0.344074 0.595953i
\(486\) 0 0
\(487\) 1.79836e8 3.11486e8i 0.0705547 0.122204i −0.828590 0.559856i \(-0.810856\pi\)
0.899145 + 0.437652i \(0.144190\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.79812e9 1.06680 0.533398 0.845865i \(-0.320915\pi\)
0.533398 + 0.845865i \(0.320915\pi\)
\(492\) 0 0
\(493\) 4.18645e8 7.25114e8i 0.157355 0.272548i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.15154e9 3.59946e9i 0.420756 1.31520i
\(498\) 0 0
\(499\) −1.02578e8 1.77670e8i −0.0369573 0.0640120i 0.846955 0.531664i \(-0.178433\pi\)
−0.883912 + 0.467652i \(0.845100\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 2.67473e9 0.937114 0.468557 0.883433i \(-0.344774\pi\)
0.468557 + 0.883433i \(0.344774\pi\)
\(504\) 0 0
\(505\) −3.31143e8 −0.114418
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.49115e9 4.31481e9i −0.837314 1.45027i −0.892132 0.451774i \(-0.850791\pi\)
0.0548181 0.998496i \(-0.482542\pi\)
\(510\) 0 0
\(511\) 1.97370e9 + 2.17215e9i 0.654346 + 0.720138i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.46486e7 6.00131e7i 0.0111779 0.0193607i
\(516\) 0 0
\(517\) 6.93255e8 0.220636
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.19617e8 + 1.59282e9i −0.284888 + 0.493441i −0.972582 0.232560i \(-0.925290\pi\)
0.687694 + 0.726001i \(0.258623\pi\)
\(522\) 0 0
\(523\) 2.73502e8 + 4.73720e8i 0.0835997 + 0.144799i 0.904794 0.425850i \(-0.140025\pi\)
−0.821194 + 0.570649i \(0.806692\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.25720e8 + 1.08378e9i 0.186227 + 0.322555i
\(528\) 0 0
\(529\) 1.18174e9 2.04684e9i 0.347079 0.601158i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.23827e9 −1.21239
\(534\) 0 0
\(535\) −1.15553e9 + 2.00143e9i −0.326243 + 0.565070i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.10596e9 2.32898e9i 1.40448 0.640626i
\(540\) 0 0
\(541\) −3.54288e9 6.13644e9i −0.961979 1.66620i −0.717522 0.696536i \(-0.754724\pi\)
−0.244457 0.969660i \(-0.578610\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −9.14177e8 −0.241904
\(546\) 0 0
\(547\) −6.74238e9 −1.76140 −0.880700 0.473675i \(-0.842927\pi\)
−0.880700 + 0.473675i \(0.842927\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 9.36685e8 + 1.62239e9i 0.238541 + 0.413165i
\(552\) 0 0
\(553\) −1.21463e9 + 2.63934e8i −0.305426 + 0.0663678i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.68771e9 + 6.38730e9i −0.904198 + 1.56612i −0.0822077 + 0.996615i \(0.526197\pi\)
−0.821990 + 0.569502i \(0.807136\pi\)
\(558\) 0 0
\(559\) 7.75253e9 1.87716
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.19279e9 + 5.53008e9i −0.754034 + 1.30603i 0.191818 + 0.981430i \(0.438562\pi\)
−0.945853 + 0.324596i \(0.894772\pi\)
\(564\) 0 0
\(565\) −6.76556e8 1.17183e9i −0.157810 0.273335i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −3.00015e9 5.19642e9i −0.682733 1.18253i −0.974144 0.225929i \(-0.927458\pi\)
0.291411 0.956598i \(-0.405875\pi\)
\(570\) 0 0
\(571\) −1.47621e9 + 2.55687e9i −0.331835 + 0.574755i −0.982872 0.184291i \(-0.941001\pi\)
0.651037 + 0.759046i \(0.274334\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.08438e9 −0.457235
\(576\) 0 0
\(577\) −4.88420e8 + 8.45969e8i −0.105847 + 0.183332i −0.914084 0.405525i \(-0.867089\pi\)
0.808237 + 0.588857i \(0.200422\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.25272e9 + 7.04154e9i −0.476531 + 1.48954i
\(582\) 0 0
\(583\) 6.96567e9 + 1.20649e10i 1.45587 + 2.52164i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.30141e9 −0.265572 −0.132786 0.991145i \(-0.542392\pi\)
−0.132786 + 0.991145i \(0.542392\pi\)
\(588\) 0 0
\(589\) −2.80000e9 −0.564618
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.46216e8 + 2.53254e8i 0.0287942 + 0.0498730i 0.880063 0.474856i \(-0.157500\pi\)
−0.851269 + 0.524729i \(0.824167\pi\)
\(594\) 0 0
\(595\) 2.12421e8 6.63985e8i 0.0413417 0.129226i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 6.08228e8 1.05348e9i 0.115631 0.200278i −0.802401 0.596785i \(-0.796444\pi\)
0.918032 + 0.396507i \(0.129778\pi\)
\(600\) 0 0
\(601\) 8.70073e9 1.63491 0.817457 0.575990i \(-0.195383\pi\)
0.817457 + 0.575990i \(0.195383\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.56756e9 + 2.71510e9i −0.287794 + 0.498473i
\(606\) 0 0
\(607\) −1.73761e9 3.00963e9i −0.315350 0.546202i 0.664162 0.747589i \(-0.268788\pi\)
−0.979512 + 0.201387i \(0.935455\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.06552e8 + 1.05058e9i 0.107578 + 0.186331i
\(612\) 0 0
\(613\) −9.58454e8 + 1.66009e9i −0.168058 + 0.291085i −0.937737 0.347346i \(-0.887083\pi\)
0.769679 + 0.638431i \(0.220416\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 9.94935e9 1.70528 0.852642 0.522496i \(-0.174999\pi\)
0.852642 + 0.522496i \(0.174999\pi\)
\(618\) 0 0
\(619\) 5.68330e9 9.84377e9i 0.963127 1.66818i 0.248562 0.968616i \(-0.420042\pi\)
0.714565 0.699569i \(-0.246625\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.15333e9 6.85206e8i 0.522470 0.113531i
\(624\) 0 0
\(625\) −1.55747e9 2.69762e9i −0.255176 0.441977i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.00477e9 0.160987
\(630\) 0 0
\(631\) 7.79638e9 1.23535 0.617676 0.786433i \(-0.288075\pi\)
0.617676 + 0.786433i \(0.288075\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.93966e7 1.02878e8i −0.00920563 0.0159446i
\(636\) 0 0
\(637\) 7.99677e9 + 5.70002e9i 1.22582 + 0.873753i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.82020e9 + 1.00809e10i −0.872841 + 1.51181i −0.0137961 + 0.999905i \(0.504392\pi\)
−0.859045 + 0.511900i \(0.828942\pi\)
\(642\) 0 0
\(643\) −9.21864e9 −1.36750 −0.683752 0.729714i \(-0.739653\pi\)
−0.683752 + 0.729714i \(0.739653\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −5.05598e9 + 8.75721e9i −0.733905 + 1.27116i 0.221297 + 0.975206i \(0.428971\pi\)
−0.955202 + 0.295955i \(0.904362\pi\)
\(648\) 0 0
\(649\) −6.83877e8 1.18451e9i −0.0982023 0.170091i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.45809e9 1.11857e10i −0.907629 1.57206i −0.817349 0.576142i \(-0.804557\pi\)
−0.0902794 0.995916i \(-0.528776\pi\)
\(654\) 0 0
\(655\) −2.81185e9 + 4.87026e9i −0.390973 + 0.677186i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.30898e9 0.178170 0.0890848 0.996024i \(-0.471606\pi\)
0.0890848 + 0.996024i \(0.471606\pi\)
\(660\) 0 0
\(661\) −5.09754e9 + 8.82919e9i −0.686523 + 1.18909i 0.286432 + 0.958100i \(0.407531\pi\)
−0.972956 + 0.230993i \(0.925803\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.04894e9 + 1.15441e9i 0.138317 + 0.152224i
\(666\) 0 0
\(667\) −2.04578e9 3.54339e9i −0.266943 0.462358i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 6.18731e9 0.790629
\(672\) 0 0
\(673\) −1.13920e10 −1.44061 −0.720305 0.693658i \(-0.755998\pi\)
−0.720305 + 0.693658i \(0.755998\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.89269e9 + 8.47439e9i 0.606021 + 1.04966i 0.991889 + 0.127105i \(0.0405686\pi\)
−0.385868 + 0.922554i \(0.626098\pi\)
\(678\) 0 0
\(679\) −4.10970e9 + 1.28461e10i −0.503809 + 1.57480i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.21469e9 5.56801e9i 0.386071 0.668694i −0.605847 0.795582i \(-0.707165\pi\)
0.991917 + 0.126888i \(0.0404988\pi\)
\(684\) 0 0
\(685\) −2.88299e9 −0.342710
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.21890e10 + 2.11119e10i −1.41971 + 2.45901i
\(690\) 0 0
\(691\) 8.28687e7 + 1.43533e8i 0.00955471 + 0.0165492i 0.870763 0.491703i \(-0.163625\pi\)
−0.861209 + 0.508252i \(0.830292\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.12658e9 + 1.95129e9i 0.127296 + 0.220483i
\(696\) 0 0
\(697\) 1.17355e9 2.03265e9i 0.131277 0.227378i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.81761e9 −0.308935 −0.154468 0.987998i \(-0.549366\pi\)
−0.154468 + 0.987998i \(0.549366\pi\)
\(702\) 0 0
\(703\) −1.12405e9 + 1.94691e9i −0.122023 + 0.211350i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.73721e9 + 1.91188e9i 0.184878 + 0.203467i
\(708\) 0 0
\(709\) −3.67090e9 6.35819e9i −0.386822 0.669995i 0.605198 0.796075i \(-0.293094\pi\)
−0.992020 + 0.126080i \(0.959761\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.11537e9 0.631843
\(714\) 0 0
\(715\) −9.45289e9 −0.967149
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.73646e8 1.68640e9i −0.0976899 0.169204i 0.813038 0.582210i \(-0.197812\pi\)
−0.910728 + 0.413006i \(0.864479\pi\)
\(720\) 0 0
\(721\) −5.28262e8 + 1.14789e8i −0.0524899 + 0.0114058i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 4.09490e9 7.09258e9i 0.399080 0.691228i
\(726\) 0 0
\(727\) 8.55516e9 0.825768 0.412884 0.910784i \(-0.364522\pi\)
0.412884 + 0.910784i \(0.364522\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.14663e9 + 3.71808e9i −0.203258 + 0.352053i
\(732\) 0 0
\(733\) 5.23062e9 + 9.05970e9i 0.490557 + 0.849669i 0.999941 0.0108699i \(-0.00346006\pi\)
−0.509384 + 0.860539i \(0.670127\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.60607e9 1.31741e10i −0.699881 1.21223i
\(738\) 0 0
\(739\) 6.64787e8 1.15144e9i 0.0605936 0.104951i −0.834137 0.551557i \(-0.814034\pi\)
0.894731 + 0.446606i \(0.147367\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.68408e9 0.150627 0.0753133 0.997160i \(-0.476004\pi\)
0.0753133 + 0.997160i \(0.476004\pi\)
\(744\) 0 0
\(745\) 9.92708e8 1.71942e9i 0.0879579 0.152348i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.76175e10 3.82820e9i 1.53199 0.332896i
\(750\) 0 0
\(751\) −2.22383e9 3.85178e9i −0.191585 0.331835i 0.754191 0.656655i \(-0.228029\pi\)
−0.945776 + 0.324821i \(0.894696\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.05307e9 0.258179
\(756\) 0 0
\(757\) −7.99647e9 −0.669981 −0.334991 0.942221i \(-0.608733\pi\)
−0.334991 + 0.942221i \(0.608733\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.22630e9 7.32016e9i −0.347627 0.602108i 0.638200 0.769870i \(-0.279679\pi\)
−0.985827 + 0.167762i \(0.946346\pi\)
\(762\) 0 0
\(763\) 4.79588e9 + 5.27808e9i 0.390870 + 0.430170i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.19669e9 2.07273e9i 0.0957633 0.165867i
\(768\) 0 0
\(769\) 4.93932e9 0.391674 0.195837 0.980636i \(-0.437258\pi\)
0.195837 + 0.980636i \(0.437258\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −2.76862e9 + 4.79539e9i −0.215593 + 0.373418i −0.953456 0.301532i \(-0.902502\pi\)
0.737863 + 0.674951i \(0.235835\pi\)
\(774\) 0 0
\(775\) 6.12037e9 + 1.06008e10i 0.472304 + 0.818055i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.62573e9 + 4.54790e9i 0.199008 + 0.344691i
\(780\) 0 0
\(781\) 1.41892e10 2.45764e10i 1.06581 1.84604i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −4.76879e9 −0.351855
\(786\) 0 0
\(787\) −2.39855e9 + 4.15440e9i −0.175403 + 0.303806i −0.940301 0.340345i \(-0.889456\pi\)
0.764898 + 0.644152i \(0.222789\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −3.21637e9 + 1.00537e10i −0.231073 + 0.722285i
\(792\) 0 0
\(793\) 5.41348e9 + 9.37642e9i 0.385496 + 0.667699i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.15558e9 −0.0808526 −0.0404263 0.999183i \(-0.512872\pi\)
−0.0404263 + 0.999183i \(0.512872\pi\)
\(798\) 0 0
\(799\) −6.71804e8 −0.0465939
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.10194e10 + 1.90861e10i 0.751021 + 1.30081i
\(804\) 0 0
\(805\) −2.29095e9 2.52130e9i −0.154786 0.170349i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.19483e10 2.06951e10i 0.793390 1.37419i −0.130467 0.991453i \(-0.541648\pi\)
0.923857 0.382739i \(-0.125019\pi\)
\(810\) 0 0
\(811\) −1.09421e10 −0.720326 −0.360163 0.932889i \(-0.617279\pi\)
−0.360163 + 0.932889i \(0.617279\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.03884e9 + 5.26343e9i −0.196633 + 0.340579i
\(816\) 0 0
\(817\) −4.80292e9 8.31891e9i −0.308126 0.533690i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.11318e10 1.92808e10i −0.702043 1.21597i −0.967748 0.251920i \(-0.918938\pi\)
0.265705 0.964054i \(-0.414395\pi\)
\(822\) 0 0
\(823\) 1.83529e9 3.17881e9i 0.114764 0.198777i −0.802921 0.596085i \(-0.796722\pi\)
0.917685 + 0.397308i \(0.130056\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.88318e9 −0.546134 −0.273067 0.961995i \(-0.588038\pi\)
−0.273067 + 0.961995i \(0.588038\pi\)
\(828\) 0 0
\(829\) −6.36202e9 + 1.10193e10i −0.387842 + 0.671761i −0.992159 0.124982i \(-0.960113\pi\)
0.604317 + 0.796744i \(0.293446\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −4.94797e9 + 2.25691e9i −0.296599 + 0.135287i
\(834\) 0 0
\(835\) −3.29951e9 5.71491e9i −0.196131 0.339709i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.40186e9 −0.140404 −0.0702022 0.997533i \(-0.522364\pi\)
−0.0702022 + 0.997533i \(0.522364\pi\)
\(840\) 0 0
\(841\) −1.17364e9 −0.0680375
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −4.62089e9 8.00361e9i −0.263467 0.456339i
\(846\) 0 0
\(847\) 2.38995e10 5.19326e9i 1.35144 0.293662i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.45499e9 4.25216e9i 0.136551 0.236514i
\(852\) 0 0
\(853\) 2.38086e10 1.31344 0.656722 0.754133i \(-0.271942\pi\)
0.656722 + 0.754133i \(0.271942\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9.45036e8 + 1.63685e9i −0.0512880 + 0.0888334i −0.890530 0.454925i \(-0.849666\pi\)
0.839242 + 0.543759i \(0.182999\pi\)
\(858\) 0 0
\(859\) −1.62617e10 2.81661e10i −0.875368 1.51618i −0.856371 0.516362i \(-0.827286\pi\)
−0.0189969 0.999820i \(-0.506047\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.57375e10 2.72581e10i −0.833483 1.44364i −0.895259 0.445545i \(-0.853010\pi\)
0.0617761 0.998090i \(-0.480324\pi\)
\(864\) 0 0
\(865\) −9.00818e7 + 1.56026e8i −0.00473239 + 0.00819675i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −9.33370e9 −0.482486
\(870\) 0 0
\(871\) 1.33096e10 2.30529e10i 0.682498 1.18212i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 4.59083e9 1.43500e10i 0.231666 0.724142i
\(876\) 0 0
\(877\) −4.66652e9 8.08264e9i −0.233612 0.404627i 0.725257 0.688479i \(-0.241721\pi\)
−0.958868 + 0.283851i \(0.908388\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.08746e10 1.02850 0.514248 0.857641i \(-0.328071\pi\)
0.514248 + 0.857641i \(0.328071\pi\)
\(882\) 0 0
\(883\) 2.12927e10 1.04080 0.520402 0.853922i \(-0.325782\pi\)
0.520402 + 0.853922i \(0.325782\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1.74469e10 3.02188e10i −0.839430 1.45394i −0.890372 0.455234i \(-0.849556\pi\)
0.0509420 0.998702i \(-0.483778\pi\)
\(888\) 0 0
\(889\) −2.82374e8 + 8.82642e8i −0.0134793 + 0.0421336i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.51554e8 1.30173e9i 0.0353167 0.0611703i
\(894\) 0 0
\(895\) −4.35127e9 −0.202878
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.20140e10 + 2.08089e10i −0.551480 + 0.955191i
\(900\) 0 0
\(901\) −6.75013e9 1.16916e10i −0.307450 0.532520i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 6.28601e9 + 1.08877e10i 0.281906 + 0.488276i
\(906\) 0 0
\(907\) 1.66490e9 2.88370e9i 0.0740907 0.128329i −0.826600 0.562790i \(-0.809728\pi\)
0.900691 + 0.434461i \(0.143061\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.05647e10 −1.77760 −0.888799 0.458297i \(-0.848460\pi\)
−0.888799 + 0.458297i \(0.848460\pi\)
\(912\) 0 0
\(913\) −2.77580e10 + 4.80783e10i −1.20709 + 2.09075i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.28702e10 9.31551e9i 1.83596 0.398946i
\(918\) 0 0
\(919\) −1.14032e10 1.97509e10i −0.484644 0.839428i 0.515200 0.857070i \(-0.327717\pi\)
−0.999844 + 0.0176418i \(0.994384\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 4.96585e10 2.07868
\(924\) 0 0
\(925\) 9.82798e9 0.408290
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.60242e10 2.77547e10i −0.655724 1.13575i −0.981712 0.190374i \(-0.939030\pi\)
0.325987 0.945374i \(-0.394303\pi\)
\(930\) 0 0
\(931\) 1.16221e9 1.21123e10i 0.0472021 0.491931i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.61745e9 4.53356e9i 0.104722 0.181384i
\(936\) 0 0
\(937\) 2.73774e10 1.08718 0.543592 0.839350i \(-0.317064\pi\)
0.543592 + 0.839350i \(0.317064\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.29951e9 + 7.44697e9i −0.168211 + 0.291350i −0.937791 0.347200i \(-0.887132\pi\)
0.769580 + 0.638551i \(0.220466\pi\)
\(942\) 0 0
\(943\) −5.73476e9 9.93289e9i −0.222702 0.385731i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.99474e10 3.45500e10i −0.763242 1.32197i −0.941171 0.337930i \(-0.890273\pi\)
0.177930 0.984043i \(-0.443060\pi\)
\(948\) 0 0
\(949\) −1.92824e10 + 3.33981e10i −0.732368 + 1.26850i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7.66469e9 0.286860 0.143430 0.989660i \(-0.454187\pi\)
0.143430 + 0.989660i \(0.454187\pi\)
\(954\) 0 0
\(955\) −6.70944e9 + 1.16211e10i −0.249272 + 0.431753i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.51245e10 + 1.66452e10i 0.553753 + 0.609431i
\(960\) 0 0
\(961\) −4.20025e9 7.27504e9i −0.152666 0.264426i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −9.55404e9 −0.342249
\(966\) 0 0
\(967\) −5.31576e10 −1.89048 −0.945241 0.326373i \(-0.894174\pi\)
−0.945241 + 0.326373i \(0.894174\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.20926e9 + 7.29066e9i 0.147550 + 0.255564i 0.930321 0.366745i \(-0.119528\pi\)
−0.782772 + 0.622309i \(0.786195\pi\)
\(972\) 0 0
\(973\) 5.35579e9 1.67411e10i 0.186393 0.582624i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 7.60872e9 1.31787e10i 0.261024 0.452107i −0.705490 0.708720i \(-0.749273\pi\)
0.966514 + 0.256613i \(0.0826065\pi\)
\(978\) 0 0
\(979\) 2.42314e10 0.825353
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.96526e10 3.40393e10i 0.659907 1.14299i −0.320733 0.947170i \(-0.603929\pi\)
0.980639 0.195822i \(-0.0627375\pi\)
\(984\) 0 0
\(985\) 7.69678e9 + 1.33312e10i 0.256615 + 0.444470i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.04899e10 + 1.81690e10i 0.344813 + 0.597233i
\(990\) 0 0
\(991\) 4.22919e9 7.32516e9i 0.138038 0.239089i −0.788716 0.614758i \(-0.789254\pi\)
0.926754 + 0.375669i \(0.122587\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.62970e9 0.277725
\(996\) 0 0
\(997\) −4.10207e8 + 7.10500e8i −0.0131090 + 0.0227055i −0.872505 0.488604i \(-0.837506\pi\)
0.859396 + 0.511310i \(0.170840\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.8.k.c.109.3 10
3.2 odd 2 28.8.e.a.25.1 yes 10
7.2 even 3 inner 252.8.k.c.37.3 10
12.11 even 2 112.8.i.d.81.5 10
21.2 odd 6 28.8.e.a.9.1 10
21.5 even 6 196.8.e.f.177.5 10
21.11 odd 6 196.8.a.d.1.5 5
21.17 even 6 196.8.a.e.1.1 5
21.20 even 2 196.8.e.f.165.5 10
84.23 even 6 112.8.i.d.65.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.e.a.9.1 10 21.2 odd 6
28.8.e.a.25.1 yes 10 3.2 odd 2
112.8.i.d.65.5 10 84.23 even 6
112.8.i.d.81.5 10 12.11 even 2
196.8.a.d.1.5 5 21.11 odd 6
196.8.a.e.1.1 5 21.17 even 6
196.8.e.f.165.5 10 21.20 even 2
196.8.e.f.177.5 10 21.5 even 6
252.8.k.c.37.3 10 7.2 even 3 inner
252.8.k.c.109.3 10 1.1 even 1 trivial