Properties

Label 112.8.i.d.65.5
Level $112$
Weight $8$
Character 112.65
Analytic conductor $34.987$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,8,Mod(65,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.65"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 112.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,-27] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.9871228542\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 342 x^{8} + 2165 x^{7} + 113605 x^{6} + 319380 x^{5} + 1438128 x^{4} + 1705752 x^{3} + \cdots + 23619600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{4}\cdot 7^{5} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 65.5
Root \(10.0194 - 17.3541i\) of defining polynomial
Character \(\chi\) \(=\) 112.65
Dual form 112.8.i.d.81.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(42.0490 + 72.8309i) q^{3} +(58.1649 - 100.745i) q^{5} +(276.518 + 864.338i) q^{7} +(-2442.73 + 4230.93i) q^{9} +(-3407.25 - 5901.54i) q^{11} -11924.5 q^{13} +9783.10 q^{15} +(-3301.82 - 5718.92i) q^{17} +(-7387.57 + 12795.6i) q^{19} +(-51323.3 + 56483.6i) q^{21} +(-16134.9 + 27946.4i) q^{23} +(32296.2 + 55938.6i) q^{25} -226935. q^{27} -126792. q^{29} +(94753.8 + 164118. i) q^{31} +(286543. - 496307. i) q^{33} +(103161. + 22416.5i) q^{35} +(76077.0 - 131769. i) q^{37} +(-501412. - 868471. i) q^{39} -355426. q^{41} +650136. q^{43} +(284162. + 492184. i) q^{45} +(-50866.2 + 88102.8i) q^{47} +(-670618. + 478010. i) q^{49} +(277676. - 480950. i) q^{51} +(-1.02218e6 - 1.77047e6i) q^{53} -792730. q^{55} -1.24256e6 q^{57} +(-100356. - 173822. i) q^{59} +(-453981. + 786317. i) q^{61} +(-4.33242e6 - 941416. i) q^{63} +(-693586. + 1.20133e6i) q^{65} +(1.11616e6 + 1.93324e6i) q^{67} -2.71382e6 q^{69} -4.16441e6 q^{71} +(1.61704e6 + 2.80080e6i) q^{73} +(-2.71604e6 + 4.70432e6i) q^{75} +(4.15876e6 - 4.57690e6i) q^{77} +(-684840. + 1.18618e6i) q^{79} +(-4.20013e6 - 7.27485e6i) q^{81} +8.14674e6 q^{83} -768201. q^{85} +(-5.33148e6 - 9.23439e6i) q^{87} +(1.77793e6 - 3.07947e6i) q^{89} +(-3.29733e6 - 1.03068e7i) q^{91} +(-7.96860e6 + 1.38020e7i) q^{93} +(859394. + 1.48851e6i) q^{95} +1.48623e7 q^{97} +3.32920e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 27 q^{3} + 249 q^{5} - 332 q^{7} - 5702 q^{9} - 6399 q^{11} - 26988 q^{13} - 19294 q^{15} + 3609 q^{17} + 12403 q^{19} + 16099 q^{21} + 13959 q^{23} - 162364 q^{25} - 161550 q^{27} + 26148 q^{29}+ \cdots + 119277812 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 42.0490 + 72.8309i 0.899148 + 1.55737i 0.828586 + 0.559862i \(0.189146\pi\)
0.0705614 + 0.997507i \(0.477521\pi\)
\(4\) 0 0
\(5\) 58.1649 100.745i 0.208097 0.360435i −0.743018 0.669271i \(-0.766606\pi\)
0.951115 + 0.308837i \(0.0999397\pi\)
\(6\) 0 0
\(7\) 276.518 + 864.338i 0.304706 + 0.952447i
\(8\) 0 0
\(9\) −2442.73 + 4230.93i −1.11693 + 1.93458i
\(10\) 0 0
\(11\) −3407.25 5901.54i −0.771845 1.33687i −0.936551 0.350532i \(-0.886001\pi\)
0.164706 0.986343i \(-0.447332\pi\)
\(12\) 0 0
\(13\) −11924.5 −1.50535 −0.752675 0.658392i \(-0.771237\pi\)
−0.752675 + 0.658392i \(0.771237\pi\)
\(14\) 0 0
\(15\) 9783.10 0.748440
\(16\) 0 0
\(17\) −3301.82 5718.92i −0.162998 0.282321i 0.772944 0.634474i \(-0.218783\pi\)
−0.935943 + 0.352153i \(0.885450\pi\)
\(18\) 0 0
\(19\) −7387.57 + 12795.6i −0.247095 + 0.427981i −0.962719 0.270505i \(-0.912809\pi\)
0.715624 + 0.698486i \(0.246143\pi\)
\(20\) 0 0
\(21\) −51323.3 + 56483.6i −1.20934 + 1.33093i
\(22\) 0 0
\(23\) −16134.9 + 27946.4i −0.276515 + 0.478938i −0.970516 0.241036i \(-0.922513\pi\)
0.694001 + 0.719974i \(0.255846\pi\)
\(24\) 0 0
\(25\) 32296.2 + 55938.6i 0.413391 + 0.716015i
\(26\) 0 0
\(27\) −226935. −2.21885
\(28\) 0 0
\(29\) −126792. −0.965382 −0.482691 0.875791i \(-0.660341\pi\)
−0.482691 + 0.875791i \(0.660341\pi\)
\(30\) 0 0
\(31\) 94753.8 + 164118.i 0.571256 + 0.989444i 0.996437 + 0.0843359i \(0.0268769\pi\)
−0.425182 + 0.905108i \(0.639790\pi\)
\(32\) 0 0
\(33\) 286543. 496307.i 1.38800 2.40409i
\(34\) 0 0
\(35\) 103161. + 22416.5i 0.406703 + 0.0883749i
\(36\) 0 0
\(37\) 76077.0 131769.i 0.246915 0.427669i −0.715753 0.698353i \(-0.753917\pi\)
0.962668 + 0.270684i \(0.0872499\pi\)
\(38\) 0 0
\(39\) −501412. 868471.i −1.35353 2.34439i
\(40\) 0 0
\(41\) −355426. −0.805389 −0.402694 0.915334i \(-0.631926\pi\)
−0.402694 + 0.915334i \(0.631926\pi\)
\(42\) 0 0
\(43\) 650136. 1.24699 0.623497 0.781825i \(-0.285711\pi\)
0.623497 + 0.781825i \(0.285711\pi\)
\(44\) 0 0
\(45\) 284162. + 492184.i 0.464861 + 0.805162i
\(46\) 0 0
\(47\) −50866.2 + 88102.8i −0.0714638 + 0.123779i −0.899543 0.436832i \(-0.856100\pi\)
0.828079 + 0.560611i \(0.189434\pi\)
\(48\) 0 0
\(49\) −670618. + 478010.i −0.814309 + 0.580432i
\(50\) 0 0
\(51\) 277676. 480950.i 0.293119 0.507696i
\(52\) 0 0
\(53\) −1.02218e6 1.77047e6i −0.943111 1.63352i −0.759490 0.650519i \(-0.774552\pi\)
−0.183620 0.982997i \(-0.558782\pi\)
\(54\) 0 0
\(55\) −792730. −0.642475
\(56\) 0 0
\(57\) −1.24256e6 −0.888699
\(58\) 0 0
\(59\) −100356. 173822.i −0.0636153 0.110185i 0.832464 0.554080i \(-0.186930\pi\)
−0.896079 + 0.443895i \(0.853596\pi\)
\(60\) 0 0
\(61\) −453981. + 786317.i −0.256084 + 0.443551i −0.965189 0.261552i \(-0.915766\pi\)
0.709105 + 0.705103i \(0.249099\pi\)
\(62\) 0 0
\(63\) −4.33242e6 941416.i −2.18292 0.474340i
\(64\) 0 0
\(65\) −693586. + 1.20133e6i −0.313259 + 0.542580i
\(66\) 0 0
\(67\) 1.11616e6 + 1.93324e6i 0.453382 + 0.785280i 0.998594 0.0530181i \(-0.0168841\pi\)
−0.545212 + 0.838298i \(0.683551\pi\)
\(68\) 0 0
\(69\) −2.71382e6 −0.994511
\(70\) 0 0
\(71\) −4.16441e6 −1.38086 −0.690430 0.723399i \(-0.742579\pi\)
−0.690430 + 0.723399i \(0.742579\pi\)
\(72\) 0 0
\(73\) 1.61704e6 + 2.80080e6i 0.486510 + 0.842660i 0.999880 0.0155074i \(-0.00493635\pi\)
−0.513370 + 0.858168i \(0.671603\pi\)
\(74\) 0 0
\(75\) −2.71604e6 + 4.70432e6i −0.743399 + 1.28761i
\(76\) 0 0
\(77\) 4.15876e6 4.57690e6i 1.03812 1.14249i
\(78\) 0 0
\(79\) −684840. + 1.18618e6i −0.156277 + 0.270679i −0.933523 0.358517i \(-0.883283\pi\)
0.777246 + 0.629196i \(0.216616\pi\)
\(80\) 0 0
\(81\) −4.20013e6 7.27485e6i −0.878144 1.52099i
\(82\) 0 0
\(83\) 8.14674e6 1.56391 0.781953 0.623337i \(-0.214224\pi\)
0.781953 + 0.623337i \(0.214224\pi\)
\(84\) 0 0
\(85\) −768201. −0.135678
\(86\) 0 0
\(87\) −5.33148e6 9.23439e6i −0.868021 1.50346i
\(88\) 0 0
\(89\) 1.77793e6 3.07947e6i 0.267331 0.463031i −0.700840 0.713318i \(-0.747192\pi\)
0.968172 + 0.250287i \(0.0805249\pi\)
\(90\) 0 0
\(91\) −3.29733e6 1.03068e7i −0.458689 1.43377i
\(92\) 0 0
\(93\) −7.96860e6 + 1.38020e7i −1.02729 + 1.77931i
\(94\) 0 0
\(95\) 859394. + 1.48851e6i 0.102839 + 0.178123i
\(96\) 0 0
\(97\) 1.48623e7 1.65343 0.826715 0.562622i \(-0.190207\pi\)
0.826715 + 0.562622i \(0.190207\pi\)
\(98\) 0 0
\(99\) 3.32920e7 3.44839
\(100\) 0 0
\(101\) −1.42329e6 2.46521e6i −0.137458 0.238084i 0.789076 0.614296i \(-0.210560\pi\)
−0.926534 + 0.376212i \(0.877226\pi\)
\(102\) 0 0
\(103\) −297848. + 515888.i −0.0268574 + 0.0465184i −0.879142 0.476560i \(-0.841883\pi\)
0.852284 + 0.523079i \(0.175217\pi\)
\(104\) 0 0
\(105\) 2.70520e6 + 8.45591e6i 0.228054 + 0.712849i
\(106\) 0 0
\(107\) −9.93320e6 + 1.72048e7i −0.783873 + 1.35771i 0.145797 + 0.989315i \(0.453425\pi\)
−0.929670 + 0.368393i \(0.879908\pi\)
\(108\) 0 0
\(109\) 3.92925e6 + 6.80565e6i 0.290614 + 0.503358i 0.973955 0.226741i \(-0.0728071\pi\)
−0.683341 + 0.730099i \(0.739474\pi\)
\(110\) 0 0
\(111\) 1.27958e7 0.888051
\(112\) 0 0
\(113\) −1.16317e7 −0.758347 −0.379174 0.925325i \(-0.623792\pi\)
−0.379174 + 0.925325i \(0.623792\pi\)
\(114\) 0 0
\(115\) 1.87697e6 + 3.25100e6i 0.115084 + 0.199331i
\(116\) 0 0
\(117\) 2.91283e7 5.04517e7i 1.68137 2.91223i
\(118\) 0 0
\(119\) 4.03007e6 4.43528e6i 0.219229 0.241272i
\(120\) 0 0
\(121\) −1.34752e7 + 2.33397e7i −0.691489 + 1.19769i
\(122\) 0 0
\(123\) −1.49453e7 2.58860e7i −0.724163 1.25429i
\(124\) 0 0
\(125\) 1.66023e7 0.760296
\(126\) 0 0
\(127\) −1.02118e6 −0.0442372 −0.0221186 0.999755i \(-0.507041\pi\)
−0.0221186 + 0.999755i \(0.507041\pi\)
\(128\) 0 0
\(129\) 2.73375e7 + 4.73500e7i 1.12123 + 1.94203i
\(130\) 0 0
\(131\) −2.41713e7 + 4.18660e7i −0.939401 + 1.62709i −0.172810 + 0.984955i \(0.555285\pi\)
−0.766591 + 0.642135i \(0.778049\pi\)
\(132\) 0 0
\(133\) −1.31026e7 2.84713e6i −0.482920 0.104937i
\(134\) 0 0
\(135\) −1.31997e7 + 2.28625e7i −0.461737 + 0.799752i
\(136\) 0 0
\(137\) −1.23915e7 2.14626e7i −0.411719 0.713118i 0.583359 0.812214i \(-0.301738\pi\)
−0.995078 + 0.0990967i \(0.968405\pi\)
\(138\) 0 0
\(139\) 1.93687e7 0.611713 0.305857 0.952078i \(-0.401057\pi\)
0.305857 + 0.952078i \(0.401057\pi\)
\(140\) 0 0
\(141\) −8.55548e6 −0.257026
\(142\) 0 0
\(143\) 4.06297e7 + 7.03727e7i 1.16190 + 2.01246i
\(144\) 0 0
\(145\) −7.37485e6 + 1.27736e7i −0.200893 + 0.347957i
\(146\) 0 0
\(147\) −6.30128e7 2.87419e7i −1.63613 0.746286i
\(148\) 0 0
\(149\) −8.53357e6 + 1.47806e7i −0.211339 + 0.366049i −0.952134 0.305682i \(-0.901116\pi\)
0.740795 + 0.671731i \(0.234449\pi\)
\(150\) 0 0
\(151\) 1.31225e7 + 2.27288e7i 0.310167 + 0.537225i 0.978398 0.206728i \(-0.0662817\pi\)
−0.668231 + 0.743954i \(0.732948\pi\)
\(152\) 0 0
\(153\) 3.22619e7 0.728231
\(154\) 0 0
\(155\) 2.20454e7 0.475507
\(156\) 0 0
\(157\) 2.04968e7 + 3.55016e7i 0.422706 + 0.732148i 0.996203 0.0870598i \(-0.0277471\pi\)
−0.573498 + 0.819207i \(0.694414\pi\)
\(158\) 0 0
\(159\) 8.59634e7 1.48893e8i 1.69599 2.93754i
\(160\) 0 0
\(161\) −2.86168e7 6.21830e6i −0.540418 0.117431i
\(162\) 0 0
\(163\) 2.61227e7 4.52458e7i 0.472455 0.818317i −0.527048 0.849836i \(-0.676701\pi\)
0.999503 + 0.0315189i \(0.0100344\pi\)
\(164\) 0 0
\(165\) −3.33335e7 5.77353e7i −0.577680 1.00057i
\(166\) 0 0
\(167\) 5.67268e7 0.942498 0.471249 0.882000i \(-0.343803\pi\)
0.471249 + 0.882000i \(0.343803\pi\)
\(168\) 0 0
\(169\) 7.94446e7 1.26608
\(170\) 0 0
\(171\) −3.60917e7 6.25126e7i −0.551977 0.956052i
\(172\) 0 0
\(173\) 774366. 1.34124e6i 0.0113706 0.0196945i −0.860284 0.509815i \(-0.829714\pi\)
0.871655 + 0.490120i \(0.163047\pi\)
\(174\) 0 0
\(175\) −3.94194e7 + 4.33829e7i −0.556003 + 0.611907i
\(176\) 0 0
\(177\) 8.43974e6 1.46181e7i 0.114399 0.198145i
\(178\) 0 0
\(179\) 1.87023e7 + 3.23933e7i 0.243730 + 0.422153i 0.961774 0.273845i \(-0.0882955\pi\)
−0.718044 + 0.695998i \(0.754962\pi\)
\(180\) 0 0
\(181\) −1.08072e8 −1.35469 −0.677343 0.735667i \(-0.736869\pi\)
−0.677343 + 0.735667i \(0.736869\pi\)
\(182\) 0 0
\(183\) −7.63576e7 −0.921030
\(184\) 0 0
\(185\) −8.85002e6 1.53287e7i −0.102765 0.177993i
\(186\) 0 0
\(187\) −2.25003e7 + 3.89716e7i −0.251618 + 0.435816i
\(188\) 0 0
\(189\) −6.27517e7 1.96149e8i −0.676097 2.11334i
\(190\) 0 0
\(191\) −5.76760e7 + 9.98978e7i −0.598933 + 1.03738i 0.394046 + 0.919091i \(0.371075\pi\)
−0.992979 + 0.118292i \(0.962258\pi\)
\(192\) 0 0
\(193\) 4.10645e7 + 7.11257e7i 0.411164 + 0.712158i 0.995017 0.0997017i \(-0.0317888\pi\)
−0.583853 + 0.811859i \(0.698456\pi\)
\(194\) 0 0
\(195\) −1.16658e8 −1.12666
\(196\) 0 0
\(197\) 1.32327e8 1.23315 0.616576 0.787296i \(-0.288519\pi\)
0.616576 + 0.787296i \(0.288519\pi\)
\(198\) 0 0
\(199\) 3.70915e7 + 6.42444e7i 0.333648 + 0.577896i 0.983224 0.182401i \(-0.0583869\pi\)
−0.649576 + 0.760297i \(0.725054\pi\)
\(200\) 0 0
\(201\) −9.38666e7 + 1.62582e8i −0.815314 + 1.41217i
\(202\) 0 0
\(203\) −3.50603e7 1.09591e8i −0.294157 0.919475i
\(204\) 0 0
\(205\) −2.06733e7 + 3.58072e7i −0.167599 + 0.290290i
\(206\) 0 0
\(207\) −7.88264e7 1.36531e8i −0.617697 1.06988i
\(208\) 0 0
\(209\) 1.00685e8 0.762876
\(210\) 0 0
\(211\) −5.84260e7 −0.428171 −0.214086 0.976815i \(-0.568677\pi\)
−0.214086 + 0.976815i \(0.568677\pi\)
\(212\) 0 0
\(213\) −1.75109e8 3.03298e8i −1.24160 2.15051i
\(214\) 0 0
\(215\) 3.78151e7 6.54977e7i 0.259496 0.449460i
\(216\) 0 0
\(217\) −1.15653e8 + 1.27281e8i −0.768328 + 0.845580i
\(218\) 0 0
\(219\) −1.35990e8 + 2.35542e8i −0.874889 + 1.51535i
\(220\) 0 0
\(221\) 3.93725e7 + 6.81952e7i 0.245369 + 0.424992i
\(222\) 0 0
\(223\) −2.61801e8 −1.58090 −0.790449 0.612528i \(-0.790153\pi\)
−0.790449 + 0.612528i \(0.790153\pi\)
\(224\) 0 0
\(225\) −3.15564e8 −1.84692
\(226\) 0 0
\(227\) −2.89678e7 5.01737e7i −0.164371 0.284699i 0.772061 0.635549i \(-0.219226\pi\)
−0.936432 + 0.350850i \(0.885893\pi\)
\(228\) 0 0
\(229\) 8.34771e7 1.44587e8i 0.459349 0.795616i −0.539577 0.841936i \(-0.681416\pi\)
0.998927 + 0.0463198i \(0.0147493\pi\)
\(230\) 0 0
\(231\) 5.08211e8 + 1.10432e8i 2.71270 + 0.589459i
\(232\) 0 0
\(233\) −1.08941e8 + 1.88691e8i −0.564217 + 0.977252i 0.432906 + 0.901439i \(0.357488\pi\)
−0.997122 + 0.0758125i \(0.975845\pi\)
\(234\) 0 0
\(235\) 5.91725e6 + 1.02490e7i 0.0297428 + 0.0515161i
\(236\) 0 0
\(237\) −1.15187e8 −0.562064
\(238\) 0 0
\(239\) −2.23970e8 −1.06120 −0.530600 0.847622i \(-0.678033\pi\)
−0.530600 + 0.847622i \(0.678033\pi\)
\(240\) 0 0
\(241\) −4.93506e7 8.54778e7i −0.227108 0.393363i 0.729842 0.683616i \(-0.239594\pi\)
−0.956950 + 0.290253i \(0.906260\pi\)
\(242\) 0 0
\(243\) 1.05069e8 1.81985e8i 0.469735 0.813605i
\(244\) 0 0
\(245\) 9.15049e6 + 9.53646e7i 0.0397524 + 0.414291i
\(246\) 0 0
\(247\) 8.80929e7 1.52581e8i 0.371964 0.644261i
\(248\) 0 0
\(249\) 3.42562e8 + 5.93335e8i 1.40618 + 2.43558i
\(250\) 0 0
\(251\) 2.65751e8 1.06076 0.530379 0.847760i \(-0.322050\pi\)
0.530379 + 0.847760i \(0.322050\pi\)
\(252\) 0 0
\(253\) 2.19903e8 0.853706
\(254\) 0 0
\(255\) −3.23020e7 5.59488e7i −0.121994 0.211300i
\(256\) 0 0
\(257\) −1.52841e7 + 2.64728e7i −0.0561660 + 0.0972824i −0.892741 0.450570i \(-0.851221\pi\)
0.836575 + 0.547852i \(0.184554\pi\)
\(258\) 0 0
\(259\) 1.34930e8 + 2.93197e7i 0.482568 + 0.104860i
\(260\) 0 0
\(261\) 3.09719e8 5.36449e8i 1.07827 1.86761i
\(262\) 0 0
\(263\) −3.61770e6 6.26604e6i −0.0122627 0.0212397i 0.859829 0.510582i \(-0.170570\pi\)
−0.872092 + 0.489343i \(0.837237\pi\)
\(264\) 0 0
\(265\) −2.37820e8 −0.785034
\(266\) 0 0
\(267\) 2.99041e8 0.961481
\(268\) 0 0
\(269\) −3.42076e7 5.92494e7i −0.107150 0.185588i 0.807465 0.589916i \(-0.200839\pi\)
−0.914614 + 0.404327i \(0.867506\pi\)
\(270\) 0 0
\(271\) −4.88220e7 + 8.45622e7i −0.149013 + 0.258097i −0.930863 0.365369i \(-0.880943\pi\)
0.781850 + 0.623466i \(0.214276\pi\)
\(272\) 0 0
\(273\) 6.12003e8 6.73537e8i 1.82047 2.00351i
\(274\) 0 0
\(275\) 2.20083e8 3.81194e8i 0.638148 1.10530i
\(276\) 0 0
\(277\) −1.93980e8 3.35983e8i −0.548375 0.949814i −0.998386 0.0567907i \(-0.981913\pi\)
0.450011 0.893023i \(-0.351420\pi\)
\(278\) 0 0
\(279\) −9.25832e8 −2.55222
\(280\) 0 0
\(281\) 4.44469e8 1.19500 0.597502 0.801868i \(-0.296160\pi\)
0.597502 + 0.801868i \(0.296160\pi\)
\(282\) 0 0
\(283\) 3.11056e8 + 5.38765e8i 0.815805 + 1.41302i 0.908748 + 0.417345i \(0.137039\pi\)
−0.0929429 + 0.995671i \(0.529627\pi\)
\(284\) 0 0
\(285\) −7.22733e7 + 1.25181e8i −0.184936 + 0.320318i
\(286\) 0 0
\(287\) −9.82817e7 3.07208e8i −0.245407 0.767090i
\(288\) 0 0
\(289\) 1.83365e8 3.17598e8i 0.446863 0.773990i
\(290\) 0 0
\(291\) 6.24945e8 + 1.08244e9i 1.48668 + 2.57500i
\(292\) 0 0
\(293\) −3.26197e8 −0.757606 −0.378803 0.925477i \(-0.623664\pi\)
−0.378803 + 0.925477i \(0.623664\pi\)
\(294\) 0 0
\(295\) −2.33488e7 −0.0529526
\(296\) 0 0
\(297\) 7.73225e8 + 1.33927e9i 1.71261 + 2.96633i
\(298\) 0 0
\(299\) 1.92400e8 3.33247e8i 0.416252 0.720969i
\(300\) 0 0
\(301\) 1.79774e8 + 5.61937e8i 0.379966 + 1.18770i
\(302\) 0 0
\(303\) 1.19696e8 2.07319e8i 0.247190 0.428145i
\(304\) 0 0
\(305\) 5.28115e7 + 9.14721e7i 0.106581 + 0.184603i
\(306\) 0 0
\(307\) −2.17327e8 −0.428675 −0.214338 0.976760i \(-0.568759\pi\)
−0.214338 + 0.976760i \(0.568759\pi\)
\(308\) 0 0
\(309\) −5.00968e7 −0.0965952
\(310\) 0 0
\(311\) −1.26348e8 2.18842e8i −0.238182 0.412543i 0.722011 0.691882i \(-0.243218\pi\)
−0.960193 + 0.279339i \(0.909885\pi\)
\(312\) 0 0
\(313\) −1.71496e8 + 2.97039e8i −0.316117 + 0.547531i −0.979674 0.200595i \(-0.935713\pi\)
0.663557 + 0.748125i \(0.269046\pi\)
\(314\) 0 0
\(315\) −3.46837e8 + 3.81710e8i −0.625229 + 0.688093i
\(316\) 0 0
\(317\) −1.70616e8 + 2.95516e8i −0.300824 + 0.521042i −0.976323 0.216319i \(-0.930595\pi\)
0.675499 + 0.737361i \(0.263928\pi\)
\(318\) 0 0
\(319\) 4.32013e8 + 7.48268e8i 0.745125 + 1.29059i
\(320\) 0 0
\(321\) −1.67072e9 −2.81927
\(322\) 0 0
\(323\) 9.75697e7 0.161104
\(324\) 0 0
\(325\) −3.85115e8 6.67039e8i −0.622299 1.07785i
\(326\) 0 0
\(327\) −3.30441e8 + 5.72341e8i −0.522610 + 0.905186i
\(328\) 0 0
\(329\) −9.02160e7 1.96036e7i −0.139668 0.0303493i
\(330\) 0 0
\(331\) 2.70854e8 4.69133e8i 0.410523 0.711046i −0.584424 0.811448i \(-0.698680\pi\)
0.994947 + 0.100402i \(0.0320130\pi\)
\(332\) 0 0
\(333\) 3.71671e8 + 6.43753e8i 0.551574 + 0.955355i
\(334\) 0 0
\(335\) 2.59685e8 0.377390
\(336\) 0 0
\(337\) 5.08120e7 0.0723205 0.0361602 0.999346i \(-0.488487\pi\)
0.0361602 + 0.999346i \(0.488487\pi\)
\(338\) 0 0
\(339\) −4.89101e8 8.47147e8i −0.681866 1.18103i
\(340\) 0 0
\(341\) 6.45700e8 1.11839e9i 0.881842 1.52739i
\(342\) 0 0
\(343\) −5.98601e8 4.47463e8i −0.800955 0.598725i
\(344\) 0 0
\(345\) −1.57849e8 + 2.73403e8i −0.206955 + 0.358456i
\(346\) 0 0
\(347\) −3.39930e8 5.88776e8i −0.436753 0.756479i 0.560684 0.828030i \(-0.310538\pi\)
−0.997437 + 0.0715511i \(0.977205\pi\)
\(348\) 0 0
\(349\) −4.75862e8 −0.599228 −0.299614 0.954060i \(-0.596858\pi\)
−0.299614 + 0.954060i \(0.596858\pi\)
\(350\) 0 0
\(351\) 2.70608e9 3.34015
\(352\) 0 0
\(353\) −2.08969e8 3.61945e8i −0.252855 0.437957i 0.711456 0.702731i \(-0.248036\pi\)
−0.964311 + 0.264774i \(0.914703\pi\)
\(354\) 0 0
\(355\) −2.42223e8 + 4.19542e8i −0.287353 + 0.497710i
\(356\) 0 0
\(357\) 4.92486e8 + 1.07015e8i 0.572868 + 0.124482i
\(358\) 0 0
\(359\) 1.89840e8 3.28812e8i 0.216549 0.375074i −0.737201 0.675673i \(-0.763853\pi\)
0.953751 + 0.300599i \(0.0971865\pi\)
\(360\) 0 0
\(361\) 3.37784e8 + 5.85058e8i 0.377888 + 0.654521i
\(362\) 0 0
\(363\) −2.26647e9 −2.48700
\(364\) 0 0
\(365\) 3.76221e8 0.404965
\(366\) 0 0
\(367\) −2.24517e8 3.88875e8i −0.237093 0.410656i 0.722786 0.691072i \(-0.242861\pi\)
−0.959879 + 0.280415i \(0.909528\pi\)
\(368\) 0 0
\(369\) 8.68210e8 1.50378e9i 0.899565 1.55809i
\(370\) 0 0
\(371\) 1.24763e9 1.37308e9i 1.26847 1.39600i
\(372\) 0 0
\(373\) −1.92208e8 + 3.32913e8i −0.191774 + 0.332162i −0.945838 0.324638i \(-0.894757\pi\)
0.754064 + 0.656801i \(0.228091\pi\)
\(374\) 0 0
\(375\) 6.98109e8 + 1.20916e9i 0.683618 + 1.18406i
\(376\) 0 0
\(377\) 1.51193e9 1.45324
\(378\) 0 0
\(379\) −1.06012e9 −1.00027 −0.500137 0.865946i \(-0.666717\pi\)
−0.500137 + 0.865946i \(0.666717\pi\)
\(380\) 0 0
\(381\) −4.29394e7 7.43732e7i −0.0397758 0.0688936i
\(382\) 0 0
\(383\) −4.71522e8 + 8.16701e8i −0.428851 + 0.742792i −0.996771 0.0802915i \(-0.974415\pi\)
0.567920 + 0.823084i \(0.307748\pi\)
\(384\) 0 0
\(385\) −2.19204e8 6.85187e8i −0.195766 0.611923i
\(386\) 0 0
\(387\) −1.58811e9 + 2.75068e9i −1.39281 + 2.41242i
\(388\) 0 0
\(389\) −2.74414e8 4.75300e8i −0.236365 0.409396i 0.723303 0.690530i \(-0.242623\pi\)
−0.959669 + 0.281134i \(0.909289\pi\)
\(390\) 0 0
\(391\) 2.13098e8 0.180286
\(392\) 0 0
\(393\) −4.06552e9 −3.37864
\(394\) 0 0
\(395\) 7.96673e7 + 1.37988e8i 0.0650415 + 0.112655i
\(396\) 0 0
\(397\) 7.09112e8 1.22822e9i 0.568785 0.985164i −0.427902 0.903825i \(-0.640747\pi\)
0.996687 0.0813387i \(-0.0259196\pi\)
\(398\) 0 0
\(399\) −3.43590e8 1.07399e9i −0.270792 0.846439i
\(400\) 0 0
\(401\) 5.03119e8 8.71428e8i 0.389642 0.674880i −0.602759 0.797923i \(-0.705932\pi\)
0.992401 + 0.123043i \(0.0392654\pi\)
\(402\) 0 0
\(403\) −1.12989e9 1.95703e9i −0.859940 1.48946i
\(404\) 0 0
\(405\) −9.77202e8 −0.730957
\(406\) 0 0
\(407\) −1.03685e9 −0.762320
\(408\) 0 0
\(409\) 4.83763e8 + 8.37902e8i 0.349624 + 0.605566i 0.986183 0.165662i \(-0.0529761\pi\)
−0.636559 + 0.771228i \(0.719643\pi\)
\(410\) 0 0
\(411\) 1.04210e9 1.80496e9i 0.740392 1.28240i
\(412\) 0 0
\(413\) 1.22491e8 1.34806e8i 0.0855613 0.0941641i
\(414\) 0 0
\(415\) 4.73854e8 8.20740e8i 0.325444 0.563686i
\(416\) 0 0
\(417\) 8.14433e8 + 1.41064e9i 0.550021 + 0.952664i
\(418\) 0 0
\(419\) 1.33931e9 0.889473 0.444736 0.895662i \(-0.353297\pi\)
0.444736 + 0.895662i \(0.353297\pi\)
\(420\) 0 0
\(421\) 4.59395e8 0.300054 0.150027 0.988682i \(-0.452064\pi\)
0.150027 + 0.988682i \(0.452064\pi\)
\(422\) 0 0
\(423\) −2.48505e8 4.30423e8i −0.159641 0.276506i
\(424\) 0 0
\(425\) 2.13273e8 3.69399e8i 0.134764 0.233418i
\(426\) 0 0
\(427\) −8.05178e8 1.74962e8i −0.500489 0.108754i
\(428\) 0 0
\(429\) −3.41687e9 + 5.91820e9i −2.08943 + 3.61900i
\(430\) 0 0
\(431\) 1.25854e9 + 2.17985e9i 0.757173 + 1.31146i 0.944287 + 0.329123i \(0.106753\pi\)
−0.187114 + 0.982338i \(0.559913\pi\)
\(432\) 0 0
\(433\) −1.94780e9 −1.15302 −0.576511 0.817090i \(-0.695586\pi\)
−0.576511 + 0.817090i \(0.695586\pi\)
\(434\) 0 0
\(435\) −1.24042e9 −0.722530
\(436\) 0 0
\(437\) −2.38395e8 4.12913e8i −0.136651 0.236686i
\(438\) 0 0
\(439\) 6.98148e8 1.20923e9i 0.393842 0.682154i −0.599111 0.800666i \(-0.704479\pi\)
0.992953 + 0.118512i \(0.0378124\pi\)
\(440\) 0 0
\(441\) −3.84290e8 4.00499e9i −0.213365 2.22365i
\(442\) 0 0
\(443\) −9.85364e8 + 1.70670e9i −0.538498 + 0.932705i 0.460488 + 0.887666i \(0.347675\pi\)
−0.998985 + 0.0450392i \(0.985659\pi\)
\(444\) 0 0
\(445\) −2.06826e8 3.58234e8i −0.111262 0.192711i
\(446\) 0 0
\(447\) −1.43531e9 −0.760098
\(448\) 0 0
\(449\) 8.24242e8 0.429727 0.214864 0.976644i \(-0.431069\pi\)
0.214864 + 0.976644i \(0.431069\pi\)
\(450\) 0 0
\(451\) 1.21103e9 + 2.09756e9i 0.621635 + 1.07670i
\(452\) 0 0
\(453\) −1.10357e9 + 1.91144e9i −0.557772 + 0.966089i
\(454\) 0 0
\(455\) −1.23014e9 2.67304e8i −0.612231 0.133035i
\(456\) 0 0
\(457\) 3.05260e8 5.28726e8i 0.149611 0.259134i −0.781473 0.623939i \(-0.785531\pi\)
0.931084 + 0.364806i \(0.118865\pi\)
\(458\) 0 0
\(459\) 7.49299e8 + 1.29782e9i 0.361669 + 0.626429i
\(460\) 0 0
\(461\) −1.46019e9 −0.694155 −0.347078 0.937836i \(-0.612826\pi\)
−0.347078 + 0.937836i \(0.612826\pi\)
\(462\) 0 0
\(463\) 6.99630e7 0.0327593 0.0163797 0.999866i \(-0.494786\pi\)
0.0163797 + 0.999866i \(0.494786\pi\)
\(464\) 0 0
\(465\) 9.26985e8 + 1.60559e9i 0.427551 + 0.740539i
\(466\) 0 0
\(467\) 1.79060e9 3.10141e9i 0.813559 1.40913i −0.0967986 0.995304i \(-0.530860\pi\)
0.910358 0.413822i \(-0.135806\pi\)
\(468\) 0 0
\(469\) −1.36234e9 + 1.49932e9i −0.609790 + 0.671101i
\(470\) 0 0
\(471\) −1.72374e9 + 2.98561e9i −0.760149 + 1.31662i
\(472\) 0 0
\(473\) −2.21518e9 3.83680e9i −0.962486 1.66708i
\(474\) 0 0
\(475\) −9.54361e8 −0.408588
\(476\) 0 0
\(477\) 9.98766e9 4.21356
\(478\) 0 0
\(479\) 9.65832e7 + 1.67287e8i 0.0401539 + 0.0695485i 0.885404 0.464822i \(-0.153882\pi\)
−0.845250 + 0.534371i \(0.820549\pi\)
\(480\) 0 0
\(481\) −9.07178e8 + 1.57128e9i −0.371693 + 0.643792i
\(482\) 0 0
\(483\) −7.50421e8 2.34566e9i −0.303033 0.947218i
\(484\) 0 0
\(485\) 8.64465e8 1.49730e9i 0.344074 0.595953i
\(486\) 0 0
\(487\) −1.79836e8 3.11486e8i −0.0705547 0.122204i 0.828590 0.559856i \(-0.189144\pi\)
−0.899145 + 0.437652i \(0.855810\pi\)
\(488\) 0 0
\(489\) 4.39372e9 1.69923
\(490\) 0 0
\(491\) 2.79812e9 1.06680 0.533398 0.845865i \(-0.320915\pi\)
0.533398 + 0.845865i \(0.320915\pi\)
\(492\) 0 0
\(493\) 4.18645e8 + 7.25114e8i 0.157355 + 0.272548i
\(494\) 0 0
\(495\) 1.93643e9 3.35399e9i 0.717601 1.24292i
\(496\) 0 0
\(497\) −1.15154e9 3.59946e9i −0.420756 1.31520i
\(498\) 0 0
\(499\) 1.02578e8 1.77670e8i 0.0369573 0.0640120i −0.846955 0.531664i \(-0.821567\pi\)
0.883912 + 0.467652i \(0.154900\pi\)
\(500\) 0 0
\(501\) 2.38530e9 + 4.13146e9i 0.847444 + 1.46782i
\(502\) 0 0
\(503\) 2.67473e9 0.937114 0.468557 0.883433i \(-0.344774\pi\)
0.468557 + 0.883433i \(0.344774\pi\)
\(504\) 0 0
\(505\) −3.31143e8 −0.114418
\(506\) 0 0
\(507\) 3.34056e9 + 5.78602e9i 1.13839 + 1.97175i
\(508\) 0 0
\(509\) 2.49115e9 4.31481e9i 0.837314 1.45027i −0.0548181 0.998496i \(-0.517458\pi\)
0.892132 0.451774i \(-0.149209\pi\)
\(510\) 0 0
\(511\) −1.97370e9 + 2.17215e9i −0.654346 + 0.720138i
\(512\) 0 0
\(513\) 1.67650e9 2.90378e9i 0.548267 0.949627i
\(514\) 0 0
\(515\) 3.46486e7 + 6.00131e7i 0.0111779 + 0.0193607i
\(516\) 0 0
\(517\) 6.93255e8 0.220636
\(518\) 0 0
\(519\) 1.30245e8 0.0408955
\(520\) 0 0
\(521\) 9.19617e8 + 1.59282e9i 0.284888 + 0.493441i 0.972582 0.232560i \(-0.0747101\pi\)
−0.687694 + 0.726001i \(0.741377\pi\)
\(522\) 0 0
\(523\) −2.73502e8 + 4.73720e8i −0.0835997 + 0.144799i −0.904794 0.425850i \(-0.859975\pi\)
0.821194 + 0.570649i \(0.193308\pi\)
\(524\) 0 0
\(525\) −4.81716e9 1.04675e9i −1.45289 0.315708i
\(526\) 0 0
\(527\) 6.25720e8 1.08378e9i 0.186227 0.322555i
\(528\) 0 0
\(529\) 1.18174e9 + 2.04684e9i 0.347079 + 0.601158i
\(530\) 0 0
\(531\) 9.80571e8 0.284216
\(532\) 0 0
\(533\) 4.23827e9 1.21239
\(534\) 0 0
\(535\) 1.15553e9 + 2.00143e9i 0.326243 + 0.565070i
\(536\) 0 0
\(537\) −1.57283e9 + 2.72421e9i −0.438299 + 0.759156i
\(538\) 0 0
\(539\) 5.10596e9 + 2.32898e9i 1.40448 + 0.640626i
\(540\) 0 0
\(541\) −3.54288e9 + 6.13644e9i −0.961979 + 1.66620i −0.244457 + 0.969660i \(0.578610\pi\)
−0.717522 + 0.696536i \(0.754724\pi\)
\(542\) 0 0
\(543\) −4.54432e9 7.87100e9i −1.21806 2.10975i
\(544\) 0 0
\(545\) 9.14177e8 0.241904
\(546\) 0 0
\(547\) 6.74238e9 1.76140 0.880700 0.473675i \(-0.157073\pi\)
0.880700 + 0.473675i \(0.157073\pi\)
\(548\) 0 0
\(549\) −2.21790e9 3.84152e9i −0.572058 0.990833i
\(550\) 0 0
\(551\) 9.36685e8 1.62239e9i 0.238541 0.413165i
\(552\) 0 0
\(553\) −1.21463e9 2.63934e8i −0.305426 0.0663678i
\(554\) 0 0
\(555\) 7.44268e8 1.28911e9i 0.184801 0.320085i
\(556\) 0 0
\(557\) 3.68771e9 + 6.38730e9i 0.904198 + 1.56612i 0.821990 + 0.569502i \(0.192864\pi\)
0.0822077 + 0.996615i \(0.473803\pi\)
\(558\) 0 0
\(559\) −7.75253e9 −1.87716
\(560\) 0 0
\(561\) −3.78446e9 −0.904968
\(562\) 0 0
\(563\) −3.19279e9 5.53008e9i −0.754034 1.30603i −0.945853 0.324596i \(-0.894772\pi\)
0.191818 0.981430i \(-0.438562\pi\)
\(564\) 0 0
\(565\) −6.76556e8 + 1.17183e9i −0.157810 + 0.273335i
\(566\) 0 0
\(567\) 5.12652e9 5.64196e9i 1.18109 1.29984i
\(568\) 0 0
\(569\) 3.00015e9 5.19642e9i 0.682733 1.18253i −0.291411 0.956598i \(-0.594125\pi\)
0.974144 0.225929i \(-0.0725419\pi\)
\(570\) 0 0
\(571\) 1.47621e9 + 2.55687e9i 0.331835 + 0.574755i 0.982872 0.184291i \(-0.0589990\pi\)
−0.651037 + 0.759046i \(0.725666\pi\)
\(572\) 0 0
\(573\) −9.70086e9 −2.15412
\(574\) 0 0
\(575\) −2.08438e9 −0.457235
\(576\) 0 0
\(577\) −4.88420e8 8.45969e8i −0.105847 0.183332i 0.808237 0.588857i \(-0.200422\pi\)
−0.914084 + 0.405525i \(0.867089\pi\)
\(578\) 0 0
\(579\) −3.45344e9 + 5.98153e9i −0.739395 + 1.28067i
\(580\) 0 0
\(581\) 2.25272e9 + 7.04154e9i 0.476531 + 1.48954i
\(582\) 0 0
\(583\) −6.96567e9 + 1.20649e10i −1.45587 + 2.52164i
\(584\) 0 0
\(585\) −3.38849e9 5.86903e9i −0.699778 1.21205i
\(586\) 0 0
\(587\) −1.30141e9 −0.265572 −0.132786 0.991145i \(-0.542392\pi\)
−0.132786 + 0.991145i \(0.542392\pi\)
\(588\) 0 0
\(589\) −2.80000e9 −0.564618
\(590\) 0 0
\(591\) 5.56421e9 + 9.63749e9i 1.10878 + 1.92047i
\(592\) 0 0
\(593\) −1.46216e8 + 2.53254e8i −0.0287942 + 0.0498730i −0.880063 0.474856i \(-0.842500\pi\)
0.851269 + 0.524729i \(0.175833\pi\)
\(594\) 0 0
\(595\) −2.12421e8 6.63985e8i −0.0413417 0.129226i
\(596\) 0 0
\(597\) −3.11932e9 + 5.40282e9i −0.599998 + 1.03923i
\(598\) 0 0
\(599\) 6.08228e8 + 1.05348e9i 0.115631 + 0.200278i 0.918032 0.396507i \(-0.129778\pi\)
−0.802401 + 0.596785i \(0.796444\pi\)
\(600\) 0 0
\(601\) 8.70073e9 1.63491 0.817457 0.575990i \(-0.195383\pi\)
0.817457 + 0.575990i \(0.195383\pi\)
\(602\) 0 0
\(603\) −1.09059e10 −2.02559
\(604\) 0 0
\(605\) 1.56756e9 + 2.71510e9i 0.287794 + 0.498473i
\(606\) 0 0
\(607\) 1.73761e9 3.00963e9i 0.315350 0.546202i −0.664162 0.747589i \(-0.731212\pi\)
0.979512 + 0.201387i \(0.0645448\pi\)
\(608\) 0 0
\(609\) 6.50739e9 7.16168e9i 1.16747 1.28485i
\(610\) 0 0
\(611\) 6.06552e8 1.05058e9i 0.107578 0.186331i
\(612\) 0 0
\(613\) −9.58454e8 1.66009e9i −0.168058 0.291085i 0.769679 0.638431i \(-0.220416\pi\)
−0.937737 + 0.347346i \(0.887083\pi\)
\(614\) 0 0
\(615\) −3.47717e9 −0.602785
\(616\) 0 0
\(617\) −9.94935e9 −1.70528 −0.852642 0.522496i \(-0.825001\pi\)
−0.852642 + 0.522496i \(0.825001\pi\)
\(618\) 0 0
\(619\) −5.68330e9 9.84377e9i −0.963127 1.66818i −0.714565 0.699569i \(-0.753375\pi\)
−0.248562 0.968616i \(-0.579958\pi\)
\(620\) 0 0
\(621\) 3.66157e9 6.34203e9i 0.613546 1.06269i
\(622\) 0 0
\(623\) 3.15333e9 + 6.85206e8i 0.522470 + 0.113531i
\(624\) 0 0
\(625\) −1.55747e9 + 2.69762e9i −0.255176 + 0.441977i
\(626\) 0 0
\(627\) 4.23371e9 + 7.33300e9i 0.685938 + 1.18808i
\(628\) 0 0
\(629\) −1.00477e9 −0.160987
\(630\) 0 0
\(631\) −7.79638e9 −1.23535 −0.617676 0.786433i \(-0.711925\pi\)
−0.617676 + 0.786433i \(0.711925\pi\)
\(632\) 0 0
\(633\) −2.45675e9 4.25522e9i −0.384989 0.666821i
\(634\) 0 0
\(635\) −5.93966e7 + 1.02878e8i −0.00920563 + 0.0159446i
\(636\) 0 0
\(637\) 7.99677e9 5.70002e9i 1.22582 0.873753i
\(638\) 0 0
\(639\) 1.01725e10 1.76194e10i 1.54233 2.67139i
\(640\) 0 0
\(641\) 5.82020e9 + 1.00809e10i 0.872841 + 1.51181i 0.859045 + 0.511900i \(0.171058\pi\)
0.0137961 + 0.999905i \(0.495608\pi\)
\(642\) 0 0
\(643\) 9.21864e9 1.36750 0.683752 0.729714i \(-0.260347\pi\)
0.683752 + 0.729714i \(0.260347\pi\)
\(644\) 0 0
\(645\) 6.36034e9 0.933301
\(646\) 0 0
\(647\) −5.05598e9 8.75721e9i −0.733905 1.27116i −0.955202 0.295955i \(-0.904362\pi\)
0.221297 0.975206i \(-0.428971\pi\)
\(648\) 0 0
\(649\) −6.83877e8 + 1.18451e9i −0.0982023 + 0.170091i
\(650\) 0 0
\(651\) −1.41331e10 3.07106e9i −2.00772 0.436269i
\(652\) 0 0
\(653\) 6.45809e9 1.11857e10i 0.907629 1.57206i 0.0902794 0.995916i \(-0.471224\pi\)
0.817349 0.576142i \(-0.195443\pi\)
\(654\) 0 0
\(655\) 2.81185e9 + 4.87026e9i 0.390973 + 0.677186i
\(656\) 0 0
\(657\) −1.58000e10 −2.17360
\(658\) 0 0
\(659\) 1.30898e9 0.178170 0.0890848 0.996024i \(-0.471606\pi\)
0.0890848 + 0.996024i \(0.471606\pi\)
\(660\) 0 0
\(661\) −5.09754e9 8.82919e9i −0.686523 1.18909i −0.972956 0.230993i \(-0.925803\pi\)
0.286432 0.958100i \(-0.407531\pi\)
\(662\) 0 0
\(663\) −3.31115e9 + 5.73507e9i −0.441246 + 0.764261i
\(664\) 0 0
\(665\) −1.04894e9 + 1.15441e9i −0.138317 + 0.152224i
\(666\) 0 0
\(667\) 2.04578e9 3.54339e9i 0.266943 0.462358i
\(668\) 0 0
\(669\) −1.10085e10 1.90672e10i −1.42146 2.46204i
\(670\) 0 0
\(671\) 6.18731e9 0.790629
\(672\) 0 0
\(673\) −1.13920e10 −1.44061 −0.720305 0.693658i \(-0.755998\pi\)
−0.720305 + 0.693658i \(0.755998\pi\)
\(674\) 0 0
\(675\) −7.32914e9 1.26944e10i −0.917254 1.58873i
\(676\) 0 0
\(677\) −4.89269e9 + 8.47439e9i −0.606021 + 1.04966i 0.385868 + 0.922554i \(0.373902\pi\)
−0.991889 + 0.127105i \(0.959431\pi\)
\(678\) 0 0
\(679\) 4.10970e9 + 1.28461e10i 0.503809 + 1.57480i
\(680\) 0 0
\(681\) 2.43613e9 4.21950e9i 0.295587 0.511972i
\(682\) 0 0
\(683\) 3.21469e9 + 5.56801e9i 0.386071 + 0.668694i 0.991917 0.126888i \(-0.0404988\pi\)
−0.605847 + 0.795582i \(0.707165\pi\)
\(684\) 0 0
\(685\) −2.88299e9 −0.342710
\(686\) 0 0
\(687\) 1.40405e10 1.65209
\(688\) 0 0
\(689\) 1.21890e10 + 2.11119e10i 1.41971 + 2.45901i
\(690\) 0 0
\(691\) −8.28687e7 + 1.43533e8i −0.00955471 + 0.0165492i −0.870763 0.491703i \(-0.836375\pi\)
0.861209 + 0.508252i \(0.169708\pi\)
\(692\) 0 0
\(693\) 9.20585e9 + 2.87756e10i 1.05075 + 3.28441i
\(694\) 0 0
\(695\) 1.12658e9 1.95129e9i 0.127296 0.220483i
\(696\) 0 0
\(697\) 1.17355e9 + 2.03265e9i 0.131277 + 0.227378i
\(698\) 0 0
\(699\) −1.83234e10 −2.02926
\(700\) 0 0
\(701\) 2.81761e9 0.308935 0.154468 0.987998i \(-0.450634\pi\)
0.154468 + 0.987998i \(0.450634\pi\)
\(702\) 0 0
\(703\) 1.12405e9 + 1.94691e9i 0.122023 + 0.211350i
\(704\) 0 0
\(705\) −4.97628e8 + 8.61918e8i −0.0534864 + 0.0926411i
\(706\) 0 0
\(707\) 1.73721e9 1.91188e9i 0.184878 0.203467i
\(708\) 0 0
\(709\) −3.67090e9 + 6.35819e9i −0.386822 + 0.669995i −0.992020 0.126080i \(-0.959761\pi\)
0.605198 + 0.796075i \(0.293094\pi\)
\(710\) 0 0
\(711\) −3.34576e9 5.79503e9i −0.349101 0.604661i
\(712\) 0 0
\(713\) −6.11537e9 −0.631843
\(714\) 0 0
\(715\) 9.45289e9 0.967149
\(716\) 0 0
\(717\) −9.41771e9 1.63119e10i −0.954175 1.65268i
\(718\) 0 0
\(719\) −9.73646e8 + 1.68640e9i −0.0976899 + 0.169204i −0.910728 0.413006i \(-0.864479\pi\)
0.813038 + 0.582210i \(0.197812\pi\)
\(720\) 0 0
\(721\) −5.28262e8 1.14789e8i −0.0524899 0.0114058i
\(722\) 0 0
\(723\) 4.15029e9 7.18851e9i 0.408408 0.707383i
\(724\) 0 0
\(725\) −4.09490e9 7.09258e9i −0.399080 0.691228i
\(726\) 0 0
\(727\) −8.55516e9 −0.825768 −0.412884 0.910784i \(-0.635478\pi\)
−0.412884 + 0.910784i \(0.635478\pi\)
\(728\) 0 0
\(729\) −6.99205e8 −0.0668434
\(730\) 0 0
\(731\) −2.14663e9 3.71808e9i −0.203258 0.352053i
\(732\) 0 0
\(733\) 5.23062e9 9.05970e9i 0.490557 0.849669i −0.509384 0.860539i \(-0.670127\pi\)
0.999941 + 0.0108699i \(0.00346006\pi\)
\(734\) 0 0
\(735\) −6.56073e9 + 4.67642e9i −0.609461 + 0.434418i
\(736\) 0 0
\(737\) 7.60607e9 1.31741e10i 0.699881 1.21223i
\(738\) 0 0
\(739\) −6.64787e8 1.15144e9i −0.0605936 0.104951i 0.834137 0.551557i \(-0.185966\pi\)
−0.894731 + 0.446606i \(0.852633\pi\)
\(740\) 0 0
\(741\) 1.48169e10 1.33780
\(742\) 0 0
\(743\) 1.68408e9 0.150627 0.0753133 0.997160i \(-0.476004\pi\)
0.0753133 + 0.997160i \(0.476004\pi\)
\(744\) 0 0
\(745\) 9.92708e8 + 1.71942e9i 0.0879579 + 0.152348i
\(746\) 0 0
\(747\) −1.99003e10 + 3.44683e10i −1.74678 + 3.02551i
\(748\) 0 0
\(749\) −1.76175e10 3.82820e9i −1.53199 0.332896i
\(750\) 0 0
\(751\) 2.22383e9 3.85178e9i 0.191585 0.331835i −0.754191 0.656655i \(-0.771971\pi\)
0.945776 + 0.324821i \(0.105304\pi\)
\(752\) 0 0
\(753\) 1.11745e10 + 1.93549e10i 0.953778 + 1.65199i
\(754\) 0 0
\(755\) 3.05307e9 0.258179
\(756\) 0 0
\(757\) −7.99647e9 −0.669981 −0.334991 0.942221i \(-0.608733\pi\)
−0.334991 + 0.942221i \(0.608733\pi\)
\(758\) 0 0
\(759\) 9.24668e9 + 1.60157e10i 0.767608 + 1.32954i
\(760\) 0 0
\(761\) 4.22630e9 7.32016e9i 0.347627 0.602108i −0.638200 0.769870i \(-0.720321\pi\)
0.985827 + 0.167762i \(0.0536541\pi\)
\(762\) 0 0
\(763\) −4.79588e9 + 5.27808e9i −0.390870 + 0.430170i
\(764\) 0 0
\(765\) 1.87651e9 3.25021e9i 0.151543 0.262480i
\(766\) 0 0
\(767\) 1.19669e9 + 2.07273e9i 0.0957633 + 0.165867i
\(768\) 0 0
\(769\) 4.93932e9 0.391674 0.195837 0.980636i \(-0.437258\pi\)
0.195837 + 0.980636i \(0.437258\pi\)
\(770\) 0 0
\(771\) −2.57072e9 −0.202006
\(772\) 0 0
\(773\) 2.76862e9 + 4.79539e9i 0.215593 + 0.373418i 0.953456 0.301532i \(-0.0974982\pi\)
−0.737863 + 0.674951i \(0.764165\pi\)
\(774\) 0 0
\(775\) −6.12037e9 + 1.06008e10i −0.472304 + 0.818055i
\(776\) 0 0
\(777\) 3.53828e9 + 1.10599e10i 0.270594 + 0.845822i
\(778\) 0 0
\(779\) 2.62573e9 4.54790e9i 0.199008 0.344691i
\(780\) 0 0
\(781\) 1.41892e10 + 2.45764e10i 1.06581 + 1.84604i
\(782\) 0 0
\(783\) 2.87736e10 2.14204
\(784\) 0 0
\(785\) 4.76879e9 0.351855
\(786\) 0 0
\(787\) 2.39855e9 + 4.15440e9i 0.175403 + 0.303806i 0.940301 0.340345i \(-0.110544\pi\)
−0.764898 + 0.644152i \(0.777211\pi\)
\(788\) 0 0
\(789\) 3.04241e8 5.26961e8i 0.0220520 0.0381952i
\(790\) 0 0
\(791\) −3.21637e9 1.00537e10i −0.231073 0.722285i
\(792\) 0 0
\(793\) 5.41348e9 9.37642e9i 0.385496 0.667699i
\(794\) 0 0
\(795\) −1.00001e10 1.73207e10i −0.705862 1.22259i
\(796\) 0 0
\(797\) 1.15558e9 0.0808526 0.0404263 0.999183i \(-0.487128\pi\)
0.0404263 + 0.999183i \(0.487128\pi\)
\(798\) 0 0
\(799\) 6.71804e8 0.0465939
\(800\) 0 0
\(801\) 8.68601e9 + 1.50446e10i 0.597182 + 1.03435i
\(802\) 0 0
\(803\) 1.10194e10 1.90861e10i 0.751021 1.30081i
\(804\) 0 0
\(805\) −2.29095e9 + 2.52130e9i −0.154786 + 0.170349i
\(806\) 0 0
\(807\) 2.87679e9 4.98275e9i 0.192686 0.333743i
\(808\) 0 0
\(809\) −1.19483e10 2.06951e10i −0.793390 1.37419i −0.923857 0.382739i \(-0.874981\pi\)
0.130467 0.991453i \(-0.458352\pi\)
\(810\) 0 0
\(811\) 1.09421e10 0.720326 0.360163 0.932889i \(-0.382721\pi\)
0.360163 + 0.932889i \(0.382721\pi\)
\(812\) 0 0
\(813\) −8.21166e9 −0.535937
\(814\) 0 0
\(815\) −3.03884e9 5.26343e9i −0.196633 0.340579i
\(816\) 0 0
\(817\) −4.80292e9 + 8.31891e9i −0.308126 + 0.533690i
\(818\) 0 0
\(819\) 5.16618e10 + 1.12259e10i 3.28606 + 0.714048i
\(820\) 0 0
\(821\) 1.11318e10 1.92808e10i 0.702043 1.21597i −0.265705 0.964054i \(-0.585605\pi\)
0.967748 0.251920i \(-0.0810620\pi\)
\(822\) 0 0
\(823\) −1.83529e9 3.17881e9i −0.114764 0.198777i 0.802921 0.596085i \(-0.203278\pi\)
−0.917685 + 0.397308i \(0.869944\pi\)
\(824\) 0 0
\(825\) 3.70170e10 2.29516
\(826\) 0 0
\(827\) −8.88318e9 −0.546134 −0.273067 0.961995i \(-0.588038\pi\)
−0.273067 + 0.961995i \(0.588038\pi\)
\(828\) 0 0
\(829\) −6.36202e9 1.10193e10i −0.387842 0.671761i 0.604317 0.796744i \(-0.293446\pi\)
−0.992159 + 0.124982i \(0.960113\pi\)
\(830\) 0 0
\(831\) 1.63133e10 2.82555e10i 0.986140 1.70805i
\(832\) 0 0
\(833\) 4.94797e9 + 2.25691e9i 0.296599 + 0.135287i
\(834\) 0 0
\(835\) 3.29951e9 5.71491e9i 0.196131 0.339709i
\(836\) 0 0
\(837\) −2.15030e10 3.72442e10i −1.26753 2.19543i
\(838\) 0 0
\(839\) −2.40186e9 −0.140404 −0.0702022 0.997533i \(-0.522364\pi\)
−0.0702022 + 0.997533i \(0.522364\pi\)
\(840\) 0 0
\(841\) −1.17364e9 −0.0680375
\(842\) 0 0
\(843\) 1.86895e10 + 3.23711e10i 1.07448 + 1.86106i
\(844\) 0 0
\(845\) 4.62089e9 8.00361e9i 0.263467 0.456339i
\(846\) 0 0
\(847\) −2.38995e10 5.19326e9i −1.35144 0.293662i
\(848\) 0 0
\(849\) −2.61592e10 + 4.53091e10i −1.46706 + 2.54102i
\(850\) 0 0
\(851\) 2.45499e9 + 4.25216e9i 0.136551 + 0.236514i
\(852\) 0 0
\(853\) 2.38086e10 1.31344 0.656722 0.754133i \(-0.271942\pi\)
0.656722 + 0.754133i \(0.271942\pi\)
\(854\) 0 0
\(855\) −8.39708e9 −0.459459
\(856\) 0 0
\(857\) 9.45036e8 + 1.63685e9i 0.0512880 + 0.0888334i 0.890530 0.454925i \(-0.150334\pi\)
−0.839242 + 0.543759i \(0.817001\pi\)
\(858\) 0 0
\(859\) 1.62617e10 2.81661e10i 0.875368 1.51618i 0.0189969 0.999820i \(-0.493953\pi\)
0.856371 0.516362i \(-0.172714\pi\)
\(860\) 0 0
\(861\) 1.82416e10 2.00757e10i 0.973986 1.07192i
\(862\) 0 0
\(863\) −1.57375e10 + 2.72581e10i −0.833483 + 1.44364i 0.0617761 + 0.998090i \(0.480324\pi\)
−0.895259 + 0.445545i \(0.853010\pi\)
\(864\) 0 0
\(865\) −9.00818e7 1.56026e8i −0.00473239 0.00819675i
\(866\) 0 0
\(867\) 3.08413e10 1.60718
\(868\) 0 0
\(869\) 9.33370e9 0.482486
\(870\) 0 0
\(871\) −1.33096e10 2.30529e10i −0.682498 1.18212i
\(872\) 0 0
\(873\) −3.63047e10 + 6.28815e10i −1.84677 + 3.19870i
\(874\) 0 0
\(875\) 4.59083e9 + 1.43500e10i 0.231666 + 0.724142i
\(876\) 0 0
\(877\) −4.66652e9 + 8.08264e9i −0.233612 + 0.404627i −0.958868 0.283851i \(-0.908388\pi\)
0.725257 + 0.688479i \(0.241721\pi\)
\(878\) 0 0
\(879\) −1.37163e10 2.37572e10i −0.681200 1.17987i
\(880\) 0 0
\(881\) −2.08746e10 −1.02850 −0.514248 0.857641i \(-0.671929\pi\)
−0.514248 + 0.857641i \(0.671929\pi\)
\(882\) 0 0
\(883\) −2.12927e10 −1.04080 −0.520402 0.853922i \(-0.674218\pi\)
−0.520402 + 0.853922i \(0.674218\pi\)
\(884\) 0 0
\(885\) −9.81793e8 1.70051e9i −0.0476122 0.0824668i
\(886\) 0 0
\(887\) −1.74469e10 + 3.02188e10i −0.839430 + 1.45394i 0.0509420 + 0.998702i \(0.483778\pi\)
−0.890372 + 0.455234i \(0.849556\pi\)
\(888\) 0 0
\(889\) −2.82374e8 8.82642e8i −0.0134793 0.0421336i
\(890\) 0 0
\(891\) −2.86218e10 + 4.95745e10i −1.35558 + 2.34794i
\(892\) 0 0
\(893\) −7.51554e8 1.30173e9i −0.0353167 0.0611703i
\(894\) 0 0
\(895\) 4.35127e9 0.202878
\(896\) 0 0
\(897\) 3.23609e10 1.49709
\(898\) 0 0
\(899\) −1.20140e10 2.08089e10i −0.551480 0.955191i
\(900\) 0 0
\(901\) −6.75013e9 + 1.16916e10i −0.307450 + 0.532520i
\(902\) 0 0
\(903\) −3.33671e10 + 3.67220e10i −1.50804 + 1.65966i
\(904\) 0 0
\(905\) −6.28601e9 + 1.08877e10i −0.281906 + 0.488276i
\(906\) 0 0
\(907\) −1.66490e9 2.88370e9i −0.0740907 0.128329i 0.826600 0.562790i \(-0.190272\pi\)
−0.900691 + 0.434461i \(0.856939\pi\)
\(908\) 0 0
\(909\) 1.39069e10 0.614124
\(910\) 0 0
\(911\) −4.05647e10 −1.77760 −0.888799 0.458297i \(-0.848460\pi\)
−0.888799 + 0.458297i \(0.848460\pi\)
\(912\) 0 0
\(913\) −2.77580e10 4.80783e10i −1.20709 2.09075i
\(914\) 0 0
\(915\) −4.44134e9 + 7.69262e9i −0.191664 + 0.331971i
\(916\) 0 0
\(917\) −4.28702e10 9.31551e9i −1.83596 0.398946i
\(918\) 0 0
\(919\) 1.14032e10 1.97509e10i 0.484644 0.839428i −0.515200 0.857070i \(-0.672283\pi\)
0.999844 + 0.0176418i \(0.00561585\pi\)
\(920\) 0 0
\(921\) −9.13836e9 1.58281e10i −0.385442 0.667606i
\(922\) 0 0
\(923\) 4.96585e10 2.07868
\(924\) 0 0
\(925\) 9.82798e9 0.408290
\(926\) 0 0
\(927\) −1.45513e9 2.52035e9i −0.0599959 0.103916i
\(928\) 0 0
\(929\) 1.60242e10 2.77547e10i 0.655724 1.13575i −0.325987 0.945374i \(-0.605697\pi\)
0.981712 0.190374i \(-0.0609700\pi\)
\(930\) 0 0
\(931\) −1.16221e9 1.21123e10i −0.0472021 0.491931i
\(932\) 0 0
\(933\) 1.06256e10 1.84041e10i 0.428321 0.741873i
\(934\) 0 0
\(935\) 2.61745e9 + 4.53356e9i 0.104722 + 0.181384i
\(936\) 0 0
\(937\) 2.73774e10 1.08718 0.543592 0.839350i \(-0.317064\pi\)
0.543592 + 0.839350i \(0.317064\pi\)
\(938\) 0 0
\(939\) −2.88448e10 −1.13694
\(940\) 0 0
\(941\) 4.29951e9 + 7.44697e9i 0.168211 + 0.291350i 0.937791 0.347200i \(-0.112868\pi\)
−0.769580 + 0.638551i \(0.779534\pi\)
\(942\) 0 0
\(943\) 5.73476e9 9.93289e9i 0.222702 0.385731i
\(944\) 0 0
\(945\) −2.34109e10 5.08708e9i −0.902415 0.196091i
\(946\) 0 0
\(947\) −1.99474e10 + 3.45500e10i −0.763242 + 1.32197i 0.177930 + 0.984043i \(0.443060\pi\)
−0.941171 + 0.337930i \(0.890273\pi\)
\(948\) 0 0
\(949\) −1.92824e10 3.33981e10i −0.732368 1.26850i
\(950\) 0 0
\(951\) −2.86969e10 −1.08194
\(952\) 0 0
\(953\) −7.66469e9 −0.286860 −0.143430 0.989660i \(-0.545813\pi\)
−0.143430 + 0.989660i \(0.545813\pi\)
\(954\) 0 0
\(955\) 6.70944e9 + 1.16211e10i 0.249272 + 0.431753i
\(956\) 0 0
\(957\) −3.63314e10 + 6.29278e10i −1.33995 + 2.32087i
\(958\) 0 0
\(959\) 1.51245e10 1.66452e10i 0.553753 0.609431i
\(960\) 0 0
\(961\) −4.20025e9 + 7.27504e9i −0.152666 + 0.264426i
\(962\) 0 0
\(963\) −4.85283e10 8.40534e10i −1.75107 3.03294i
\(964\) 0 0
\(965\) 9.55404e9 0.342249
\(966\) 0 0
\(967\) 5.31576e10 1.89048 0.945241 0.326373i \(-0.105826\pi\)
0.945241 + 0.326373i \(0.105826\pi\)
\(968\) 0 0
\(969\) 4.10271e9 + 7.10610e9i 0.144856 + 0.250898i
\(970\) 0 0
\(971\) 4.20926e9 7.29066e9i 0.147550 0.255564i −0.782772 0.622309i \(-0.786195\pi\)
0.930321 + 0.366745i \(0.119528\pi\)
\(972\) 0 0
\(973\) 5.35579e9 + 1.67411e10i 0.186393 + 0.582624i
\(974\) 0 0
\(975\) 3.23874e10 5.60966e10i 1.11908 1.93830i
\(976\) 0 0
\(977\) −7.60872e9 1.31787e10i −0.261024 0.452107i 0.705490 0.708720i \(-0.250727\pi\)
−0.966514 + 0.256613i \(0.917393\pi\)
\(978\) 0 0
\(979\) −2.42314e10 −0.825353
\(980\) 0 0
\(981\) −3.83924e10 −1.29838
\(982\) 0 0
\(983\) 1.96526e10 + 3.40393e10i 0.659907 + 1.14299i 0.980639 + 0.195822i \(0.0627375\pi\)
−0.320733 + 0.947170i \(0.603929\pi\)
\(984\) 0 0
\(985\) 7.69678e9 1.33312e10i 0.256615 0.444470i
\(986\) 0 0
\(987\) −2.36574e9 7.39483e9i −0.0783173 0.244804i
\(988\) 0 0
\(989\) −1.04899e10 + 1.81690e10i −0.344813 + 0.597233i
\(990\) 0 0
\(991\) −4.22919e9 7.32516e9i −0.138038 0.239089i 0.788716 0.614758i \(-0.210746\pi\)
−0.926754 + 0.375669i \(0.877413\pi\)
\(992\) 0 0
\(993\) 4.55565e10 1.47648
\(994\) 0 0
\(995\) 8.62970e9 0.277725
\(996\) 0 0
\(997\) −4.10207e8 7.10500e8i −0.0131090 0.0227055i 0.859396 0.511310i \(-0.170840\pi\)
−0.872505 + 0.488604i \(0.837506\pi\)
\(998\) 0 0
\(999\) −1.72645e10 + 2.99031e10i −0.547868 + 0.948935i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.8.i.d.65.5 10
4.3 odd 2 28.8.e.a.9.1 10
7.4 even 3 inner 112.8.i.d.81.5 10
12.11 even 2 252.8.k.c.37.3 10
28.3 even 6 196.8.e.f.165.5 10
28.11 odd 6 28.8.e.a.25.1 yes 10
28.19 even 6 196.8.a.e.1.1 5
28.23 odd 6 196.8.a.d.1.5 5
28.27 even 2 196.8.e.f.177.5 10
84.11 even 6 252.8.k.c.109.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.8.e.a.9.1 10 4.3 odd 2
28.8.e.a.25.1 yes 10 28.11 odd 6
112.8.i.d.65.5 10 1.1 even 1 trivial
112.8.i.d.81.5 10 7.4 even 3 inner
196.8.a.d.1.5 5 28.23 odd 6
196.8.a.e.1.1 5 28.19 even 6
196.8.e.f.165.5 10 28.3 even 6
196.8.e.f.177.5 10 28.27 even 2
252.8.k.c.37.3 10 12.11 even 2
252.8.k.c.109.3 10 84.11 even 6