Properties

Label 252.8.k
Level $252$
Weight $8$
Character orbit 252.k
Rep. character $\chi_{252}(37,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $46$
Newform subspaces $5$
Sturm bound $384$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 252.k (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(384\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(252, [\chi])\).

Total New Old
Modular forms 696 46 650
Cusp forms 648 46 602
Eisenstein series 48 0 48

Trace form

\( 46 q - 251 q^{5} + 394 q^{7} + O(q^{10}) \) \( 46 q - 251 q^{5} + 394 q^{7} + 491 q^{11} + 2024 q^{13} - 8473 q^{17} - 26233 q^{19} + 30623 q^{23} - 239102 q^{25} - 130364 q^{29} + 86597 q^{31} + 81035 q^{35} - 11773 q^{37} + 2115768 q^{41} + 93044 q^{43} - 167751 q^{47} - 872648 q^{49} - 267357 q^{53} - 2572386 q^{55} - 681647 q^{59} + 252749 q^{61} - 3390060 q^{65} + 205193 q^{67} + 3580772 q^{71} + 3117095 q^{73} + 4587313 q^{77} - 1904845 q^{79} - 16106524 q^{83} + 8232762 q^{85} - 449301 q^{89} - 1992970 q^{91} + 1579667 q^{95} + 6957356 q^{97} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
252.8.k.a 252.k 7.c $2$ $78.721$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 252.8.k.a \(0\) \(0\) \(0\) \(-1255\) $\mathrm{U}(1)[D_{3}]$ \(q+(-249-757\zeta_{6})q^{7}+12605q^{13}+\cdots\)
252.8.k.b 252.k 7.c $8$ $78.721$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 84.8.i.a \(0\) \(0\) \(196\) \(-434\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}+7^{2}\beta _{2}-\beta _{5})q^{5}+(47+\beta _{1}-206\beta _{2}+\cdots)q^{7}+\cdots\)
252.8.k.c 252.k 7.c $10$ $78.721$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 28.8.e.a \(0\) \(0\) \(-249\) \(332\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-50+50\beta _{1}-\beta _{4})q^{5}+(129-191\beta _{1}+\cdots)q^{7}+\cdots\)
252.8.k.d 252.k 7.c $10$ $78.721$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 84.8.i.b \(0\) \(0\) \(-198\) \(71\) $\mathrm{SU}(2)[C_{3}]$ \(q+(40\beta _{1}-\beta _{2})q^{5}+(40+65\beta _{1}-\beta _{4}+\cdots)q^{7}+\cdots\)
252.8.k.e 252.k 7.c $16$ $78.721$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 252.8.k.e \(0\) \(0\) \(0\) \(1680\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{2}+\beta _{4})q^{5}+(35+140\beta _{1}-3\beta _{3}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)