Defining parameters
Level: | \( N \) | \(=\) | \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 252.k (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(384\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(252, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 696 | 46 | 650 |
Cusp forms | 648 | 46 | 602 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(252, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
252.8.k.a | $2$ | $78.721$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-1255\) | \(q+(-249-757\zeta_{6})q^{7}+12605q^{13}+\cdots\) |
252.8.k.b | $8$ | $78.721$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(0\) | \(0\) | \(196\) | \(-434\) | \(q+(\beta _{1}+7^{2}\beta _{2}-\beta _{5})q^{5}+(47+\beta _{1}-206\beta _{2}+\cdots)q^{7}+\cdots\) |
252.8.k.c | $10$ | $78.721$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(-249\) | \(332\) | \(q+(-50+50\beta _{1}-\beta _{4})q^{5}+(129-191\beta _{1}+\cdots)q^{7}+\cdots\) |
252.8.k.d | $10$ | $78.721$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(-198\) | \(71\) | \(q+(40\beta _{1}-\beta _{2})q^{5}+(40+65\beta _{1}-\beta _{4}+\cdots)q^{7}+\cdots\) |
252.8.k.e | $16$ | $78.721$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(1680\) | \(q+(\beta _{2}+\beta _{4})q^{5}+(35+140\beta _{1}-3\beta _{3}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(252, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)