Properties

Label 252.5.z.f
Level 252252
Weight 55
Character orbit 252.z
Analytic conductor 26.04926.049
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,5,Mod(73,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 5, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.73"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Level: N N == 252=22327 252 = 2^{2} \cdot 3^{2} \cdot 7
Weight: k k == 5 5
Character orbit: [χ][\chi] == 252.z (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,27,0,66] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.049230697126.0492306971
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: 6.0.11337408.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6+18x4+81x2+12 x^{6} + 18x^{4} + 81x^{2} + 12 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 223372 2^{2}\cdot 3^{3}\cdot 7^{2}
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4+β2+3β1+3)q5+(β5+3β2+4β1+9)q7+(β5+2β4+45β1)q11+(β5β421β3++12)q13++(59β5+59β4+3476)q97+O(q100) q + ( - \beta_{4} + \beta_{2} + 3 \beta_1 + 3) q^{5} + ( - \beta_{5} + 3 \beta_{2} + 4 \beta_1 + 9) q^{7} + (\beta_{5} + 2 \beta_{4} + \cdots - 45 \beta_1) q^{11} + ( - \beta_{5} - \beta_{4} - 21 \beta_{3} + \cdots + 12) q^{13}+ \cdots + (59 \beta_{5} + 59 \beta_{4} + \cdots - 3476) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+27q5+66q7135q11+1107q17747q19243q23+1878q25+540q295355q316021q35+2355q37948q43+9747q47+8430q496291q53++20655q95+O(q100) 6 q + 27 q^{5} + 66 q^{7} - 135 q^{11} + 1107 q^{17} - 747 q^{19} - 243 q^{23} + 1878 q^{25} + 540 q^{29} - 5355 q^{31} - 6021 q^{35} + 2355 q^{37} - 948 q^{43} + 9747 q^{47} + 8430 q^{49} - 6291 q^{53}+ \cdots + 20655 q^{95}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6+18x4+81x2+12 x^{6} + 18x^{4} + 81x^{2} + 12 : Copy content Toggle raw display

β1\beta_{1}== (ν3+9ν+2)/4 ( \nu^{3} + 9\nu + 2 ) / 4 Copy content Toggle raw display
β2\beta_{2}== (ν59ν415ν387ν236ν36)/8 ( -\nu^{5} - 9\nu^{4} - 15\nu^{3} - 87\nu^{2} - 36\nu - 36 ) / 8 Copy content Toggle raw display
β3\beta_{3}== (ν59ν4+15ν387ν2+36ν36)/8 ( \nu^{5} - 9\nu^{4} + 15\nu^{3} - 87\nu^{2} + 36\nu - 36 ) / 8 Copy content Toggle raw display
β4\beta_{4}== (9ν53ν4+135ν3+27ν2+492ν+324)/8 ( 9\nu^{5} - 3\nu^{4} + 135\nu^{3} + 27\nu^{2} + 492\nu + 324 ) / 8 Copy content Toggle raw display
β5\beta_{5}== (9ν5+3ν4+135ν327ν2+492ν324)/8 ( 9\nu^{5} + 3\nu^{4} + 135\nu^{3} - 27\nu^{2} + 492\nu - 324 ) / 8 Copy content Toggle raw display
ν\nu== (β5+β49β3+9β2)/42 ( \beta_{5} + \beta_{4} - 9\beta_{3} + 9\beta_{2} ) / 42 Copy content Toggle raw display
ν2\nu^{2}== (3β5+3β4β3β2252)/42 ( -3\beta_{5} + 3\beta_{4} - \beta_{3} - \beta_{2} - 252 ) / 42 Copy content Toggle raw display
ν3\nu^{3}== (3β53β4+27β327β2+56β128)/14 ( -3\beta_{5} - 3\beta_{4} + 27\beta_{3} - 27\beta_{2} + 56\beta _1 - 28 ) / 14 Copy content Toggle raw display
ν4\nu^{4}== (29β529β49β39β2+2268)/42 ( 29\beta_{5} - 29\beta_{4} - 9\beta_{3} - 9\beta_{2} + 2268 ) / 42 Copy content Toggle raw display
ν5\nu^{5}== (33β5+33β4241β3+241β2840β1+420)/14 ( 33\beta_{5} + 33\beta_{4} - 241\beta_{3} + 241\beta_{2} - 840\beta _1 + 420 ) / 14 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/252Z)×\left(\mathbb{Z}/252\mathbb{Z}\right)^\times.

nn 2929 7373 127127
χ(n)\chi(n) 11 1β11 - \beta_{1} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
73.1
0.391571i
2.78499i
3.17656i
0.391571i
2.78499i
3.17656i
0 0 0 −38.3327 + 22.1314i 0 42.3967 + 24.5667i 0 0 0
73.2 0 0 0 24.9067 14.3799i 0 39.2754 29.2993i 0 0 0
73.3 0 0 0 26.9260 15.5457i 0 −48.6720 5.65972i 0 0 0
145.1 0 0 0 −38.3327 22.1314i 0 42.3967 24.5667i 0 0 0
145.2 0 0 0 24.9067 + 14.3799i 0 39.2754 + 29.2993i 0 0 0
145.3 0 0 0 26.9260 + 15.5457i 0 −48.6720 + 5.65972i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 73.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.5.z.f 6
3.b odd 2 1 28.5.h.a 6
7.d odd 6 1 inner 252.5.z.f 6
12.b even 2 1 112.5.s.c 6
15.d odd 2 1 700.5.s.a 6
15.e even 4 2 700.5.o.a 12
21.c even 2 1 196.5.h.c 6
21.g even 6 1 28.5.h.a 6
21.g even 6 1 196.5.b.a 6
21.h odd 6 1 196.5.b.a 6
21.h odd 6 1 196.5.h.c 6
84.j odd 6 1 112.5.s.c 6
84.j odd 6 1 784.5.c.e 6
84.n even 6 1 784.5.c.e 6
105.p even 6 1 700.5.s.a 6
105.w odd 12 2 700.5.o.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.5.h.a 6 3.b odd 2 1
28.5.h.a 6 21.g even 6 1
112.5.s.c 6 12.b even 2 1
112.5.s.c 6 84.j odd 6 1
196.5.b.a 6 21.g even 6 1
196.5.b.a 6 21.h odd 6 1
196.5.h.c 6 21.c even 2 1
196.5.h.c 6 21.h odd 6 1
252.5.z.f 6 1.a even 1 1 trivial
252.5.z.f 6 7.d odd 6 1 inner
700.5.o.a 12 15.e even 4 2
700.5.o.a 12 105.w odd 12 2
700.5.s.a 6 15.d odd 2 1
700.5.s.a 6 105.p even 6 1
784.5.c.e 6 84.j odd 6 1
784.5.c.e 6 84.n even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5627T551512T54+47385T53+2463048T52120310515T5+1566504603 T_{5}^{6} - 27T_{5}^{5} - 1512T_{5}^{4} + 47385T_{5}^{3} + 2463048T_{5}^{2} - 120310515T_{5} + 1566504603 acting on S5new(252,[χ])S_{5}^{\mathrm{new}}(252, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T6++1566504603 T^{6} + \cdots + 1566504603 Copy content Toggle raw display
77 T6++13841287201 T^{6} + \cdots + 13841287201 Copy content Toggle raw display
1111 T6++1920280041 T^{6} + \cdots + 1920280041 Copy content Toggle raw display
1313 T6++65933832204288 T^{6} + \cdots + 65933832204288 Copy content Toggle raw display
1717 T6++86645980184427 T^{6} + \cdots + 86645980184427 Copy content Toggle raw display
1919 T6++163848759776883 T^{6} + \cdots + 163848759776883 Copy content Toggle raw display
2323 T6++18 ⁣ ⁣21 T^{6} + \cdots + 18\!\cdots\!21 Copy content Toggle raw display
2929 (T3270T2+401089968)2 (T^{3} - 270 T^{2} + \cdots - 401089968)^{2} Copy content Toggle raw display
3131 T6++81 ⁣ ⁣63 T^{6} + \cdots + 81\!\cdots\!63 Copy content Toggle raw display
3737 T6++19 ⁣ ⁣81 T^{6} + \cdots + 19\!\cdots\!81 Copy content Toggle raw display
4141 T6++30 ⁣ ⁣92 T^{6} + \cdots + 30\!\cdots\!92 Copy content Toggle raw display
4343 (T3+474T2++2925826856)2 (T^{3} + 474 T^{2} + \cdots + 2925826856)^{2} Copy content Toggle raw display
4747 T6++12 ⁣ ⁣27 T^{6} + \cdots + 12\!\cdots\!27 Copy content Toggle raw display
5353 T6++34 ⁣ ⁣01 T^{6} + \cdots + 34\!\cdots\!01 Copy content Toggle raw display
5959 T6++40 ⁣ ⁣87 T^{6} + \cdots + 40\!\cdots\!87 Copy content Toggle raw display
6161 T6++15 ⁣ ⁣47 T^{6} + \cdots + 15\!\cdots\!47 Copy content Toggle raw display
6767 T6++30 ⁣ ⁣41 T^{6} + \cdots + 30\!\cdots\!41 Copy content Toggle raw display
7171 (T3+1134T2+66080643048)2 (T^{3} + 1134 T^{2} + \cdots - 66080643048)^{2} Copy content Toggle raw display
7373 T6++51 ⁣ ⁣67 T^{6} + \cdots + 51\!\cdots\!67 Copy content Toggle raw display
7979 T6++32 ⁣ ⁣81 T^{6} + \cdots + 32\!\cdots\!81 Copy content Toggle raw display
8383 T6++21 ⁣ ⁣72 T^{6} + \cdots + 21\!\cdots\!72 Copy content Toggle raw display
8989 T6++12 ⁣ ⁣07 T^{6} + \cdots + 12\!\cdots\!07 Copy content Toggle raw display
9797 T6++22 ⁣ ⁣32 T^{6} + \cdots + 22\!\cdots\!32 Copy content Toggle raw display
show more
show less