gp: [N,k,chi] = [252,5,Mod(73,252)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(252, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 5, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("252.73");
S:= CuspForms(chi, 5);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,0,0,27,0,66]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 + 18 x 4 + 81 x 2 + 12 x^{6} + 18x^{4} + 81x^{2} + 12 x 6 + 1 8 x 4 + 8 1 x 2 + 1 2
x^6 + 18*x^4 + 81*x^2 + 12
:
β 1 \beta_{1} β 1 = = =
( ν 3 + 9 ν + 2 ) / 4 ( \nu^{3} + 9\nu + 2 ) / 4 ( ν 3 + 9 ν + 2 ) / 4
(v^3 + 9*v + 2) / 4
β 2 \beta_{2} β 2 = = =
( − ν 5 − 9 ν 4 − 15 ν 3 − 87 ν 2 − 36 ν − 36 ) / 8 ( -\nu^{5} - 9\nu^{4} - 15\nu^{3} - 87\nu^{2} - 36\nu - 36 ) / 8 ( − ν 5 − 9 ν 4 − 1 5 ν 3 − 8 7 ν 2 − 3 6 ν − 3 6 ) / 8
(-v^5 - 9*v^4 - 15*v^3 - 87*v^2 - 36*v - 36) / 8
β 3 \beta_{3} β 3 = = =
( ν 5 − 9 ν 4 + 15 ν 3 − 87 ν 2 + 36 ν − 36 ) / 8 ( \nu^{5} - 9\nu^{4} + 15\nu^{3} - 87\nu^{2} + 36\nu - 36 ) / 8 ( ν 5 − 9 ν 4 + 1 5 ν 3 − 8 7 ν 2 + 3 6 ν − 3 6 ) / 8
(v^5 - 9*v^4 + 15*v^3 - 87*v^2 + 36*v - 36) / 8
β 4 \beta_{4} β 4 = = =
( 9 ν 5 − 3 ν 4 + 135 ν 3 + 27 ν 2 + 492 ν + 324 ) / 8 ( 9\nu^{5} - 3\nu^{4} + 135\nu^{3} + 27\nu^{2} + 492\nu + 324 ) / 8 ( 9 ν 5 − 3 ν 4 + 1 3 5 ν 3 + 2 7 ν 2 + 4 9 2 ν + 3 2 4 ) / 8
(9*v^5 - 3*v^4 + 135*v^3 + 27*v^2 + 492*v + 324) / 8
β 5 \beta_{5} β 5 = = =
( 9 ν 5 + 3 ν 4 + 135 ν 3 − 27 ν 2 + 492 ν − 324 ) / 8 ( 9\nu^{5} + 3\nu^{4} + 135\nu^{3} - 27\nu^{2} + 492\nu - 324 ) / 8 ( 9 ν 5 + 3 ν 4 + 1 3 5 ν 3 − 2 7 ν 2 + 4 9 2 ν − 3 2 4 ) / 8
(9*v^5 + 3*v^4 + 135*v^3 - 27*v^2 + 492*v - 324) / 8
ν \nu ν = = =
( β 5 + β 4 − 9 β 3 + 9 β 2 ) / 42 ( \beta_{5} + \beta_{4} - 9\beta_{3} + 9\beta_{2} ) / 42 ( β 5 + β 4 − 9 β 3 + 9 β 2 ) / 4 2
(b5 + b4 - 9*b3 + 9*b2) / 42
ν 2 \nu^{2} ν 2 = = =
( − 3 β 5 + 3 β 4 − β 3 − β 2 − 252 ) / 42 ( -3\beta_{5} + 3\beta_{4} - \beta_{3} - \beta_{2} - 252 ) / 42 ( − 3 β 5 + 3 β 4 − β 3 − β 2 − 2 5 2 ) / 4 2
(-3*b5 + 3*b4 - b3 - b2 - 252) / 42
ν 3 \nu^{3} ν 3 = = =
( − 3 β 5 − 3 β 4 + 27 β 3 − 27 β 2 + 56 β 1 − 28 ) / 14 ( -3\beta_{5} - 3\beta_{4} + 27\beta_{3} - 27\beta_{2} + 56\beta _1 - 28 ) / 14 ( − 3 β 5 − 3 β 4 + 2 7 β 3 − 2 7 β 2 + 5 6 β 1 − 2 8 ) / 1 4
(-3*b5 - 3*b4 + 27*b3 - 27*b2 + 56*b1 - 28) / 14
ν 4 \nu^{4} ν 4 = = =
( 29 β 5 − 29 β 4 − 9 β 3 − 9 β 2 + 2268 ) / 42 ( 29\beta_{5} - 29\beta_{4} - 9\beta_{3} - 9\beta_{2} + 2268 ) / 42 ( 2 9 β 5 − 2 9 β 4 − 9 β 3 − 9 β 2 + 2 2 6 8 ) / 4 2
(29*b5 - 29*b4 - 9*b3 - 9*b2 + 2268) / 42
ν 5 \nu^{5} ν 5 = = =
( 33 β 5 + 33 β 4 − 241 β 3 + 241 β 2 − 840 β 1 + 420 ) / 14 ( 33\beta_{5} + 33\beta_{4} - 241\beta_{3} + 241\beta_{2} - 840\beta _1 + 420 ) / 14 ( 3 3 β 5 + 3 3 β 4 − 2 4 1 β 3 + 2 4 1 β 2 − 8 4 0 β 1 + 4 2 0 ) / 1 4
(33*b5 + 33*b4 - 241*b3 + 241*b2 - 840*b1 + 420) / 14
Character values
We give the values of χ \chi χ on generators for ( Z / 252 Z ) × \left(\mathbb{Z}/252\mathbb{Z}\right)^\times ( Z / 2 5 2 Z ) × .
n n n
29 29 2 9
73 73 7 3
127 127 1 2 7
χ ( n ) \chi(n) χ ( n )
1 1 1
1 − β 1 1 - \beta_{1} 1 − β 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 6 − 27 T 5 5 − 1512 T 5 4 + 47385 T 5 3 + 2463048 T 5 2 − 120310515 T 5 + 1566504603 T_{5}^{6} - 27T_{5}^{5} - 1512T_{5}^{4} + 47385T_{5}^{3} + 2463048T_{5}^{2} - 120310515T_{5} + 1566504603 T 5 6 − 2 7 T 5 5 − 1 5 1 2 T 5 4 + 4 7 3 8 5 T 5 3 + 2 4 6 3 0 4 8 T 5 2 − 1 2 0 3 1 0 5 1 5 T 5 + 1 5 6 6 5 0 4 6 0 3
T5^6 - 27*T5^5 - 1512*T5^4 + 47385*T5^3 + 2463048*T5^2 - 120310515*T5 + 1566504603
acting on S 5 n e w ( 252 , [ χ ] ) S_{5}^{\mathrm{new}}(252, [\chi]) S 5 n e w ( 2 5 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 T^{6} T 6
T^6
3 3 3
T 6 T^{6} T 6
T^6
5 5 5
T 6 + ⋯ + 1566504603 T^{6} + \cdots + 1566504603 T 6 + ⋯ + 1 5 6 6 5 0 4 6 0 3
T^6 - 27*T^5 - 1512*T^4 + 47385*T^3 + 2463048*T^2 - 120310515*T + 1566504603
7 7 7
T 6 + ⋯ + 13841287201 T^{6} + \cdots + 13841287201 T 6 + ⋯ + 1 3 8 4 1 2 8 7 2 0 1
T^6 - 66*T^5 - 2037*T^4 + 331436*T^3 - 4890837*T^2 - 380476866*T + 13841287201
11 11 1 1
T 6 + ⋯ + 1920280041 T^{6} + \cdots + 1920280041 T 6 + ⋯ + 1 9 2 0 2 8 0 0 4 1
T^6 + 135*T^5 + 20088*T^4 - 163863*T^3 + 9386604*T^2 + 81638523*T + 1920280041
13 13 1 3
T 6 + ⋯ + 65933832204288 T^{6} + \cdots + 65933832204288 T 6 + ⋯ + 6 5 9 3 3 8 3 2 2 0 4 2 8 8
T^6 + 143208*T^4 + 5865137424*T^2 + 65933832204288
17 17 1 7
T 6 + ⋯ + 86645980184427 T^{6} + \cdots + 86645980184427 T 6 + ⋯ + 8 6 6 4 5 9 8 0 1 8 4 4 2 7
T^6 - 1107*T^5 + 542808*T^4 - 148697775*T^3 + 23992441704*T^2 - 2165667036075*T + 86645980184427
19 19 1 9
T 6 + ⋯ + 163848759776883 T^{6} + \cdots + 163848759776883 T 6 + ⋯ + 1 6 3 8 4 8 7 5 9 7 7 6 8 8 3
T^6 + 747*T^5 + 150318*T^4 - 26656695*T^3 - 4247120682*T^2 + 791166532455*T + 163848759776883
23 23 2 3
T 6 + ⋯ + 18 ⋯ 21 T^{6} + \cdots + 18\!\cdots\!21 T 6 + ⋯ + 1 8 ⋯ 2 1
T^6 + 243*T^5 + 380700*T^4 - 164398815*T^3 + 92981494728*T^2 - 13869208676961*T + 1859231862053721
29 29 2 9
( T 3 − 270 T 2 + ⋯ − 401089968 ) 2 (T^{3} - 270 T^{2} + \cdots - 401089968)^{2} ( T 3 − 2 7 0 T 2 + ⋯ − 4 0 1 0 8 9 9 6 8 ) 2
(T^3 - 270*T^2 - 1261656*T - 401089968)^2
31 31 3 1
T 6 + ⋯ + 81 ⋯ 63 T^{6} + \cdots + 81\!\cdots\!63 T 6 + ⋯ + 8 1 ⋯ 6 3
T^6 + 5355*T^5 + 12530574*T^4 + 15914519145*T^3 + 11629710845046*T^2 + 4657685280270183*T + 818749284432880563
37 37 3 7
T 6 + ⋯ + 19 ⋯ 81 T^{6} + \cdots + 19\!\cdots\!81 T 6 + ⋯ + 1 9 ⋯ 8 1
T^6 - 2355*T^5 + 5983494*T^4 - 1762232087*T^3 + 3479514413766*T^2 - 610809875252979*T + 1949474384069395681
41 41 4 1
T 6 + ⋯ + 30 ⋯ 92 T^{6} + \cdots + 30\!\cdots\!92 T 6 + ⋯ + 3 0 ⋯ 9 2
T^6 + 14908968*T^4 + 58812570389520*T^2 + 30617085863456980992
43 43 4 3
( T 3 + 474 T 2 + ⋯ + 2925826856 ) 2 (T^{3} + 474 T^{2} + \cdots + 2925826856)^{2} ( T 3 + 4 7 4 T 2 + ⋯ + 2 9 2 5 8 2 6 8 5 6 ) 2
(T^3 + 474*T^2 - 4592652*T + 2925826856)^2
47 47 4 7
T 6 + ⋯ + 12 ⋯ 27 T^{6} + \cdots + 12\!\cdots\!27 T 6 + ⋯ + 1 2 ⋯ 2 7
T^6 - 9747*T^5 + 40165902*T^4 - 82829021553*T^3 + 91714282823142*T^2 - 51003075249505791*T + 12007382371055101827
53 53 5 3
T 6 + ⋯ + 34 ⋯ 01 T^{6} + \cdots + 34\!\cdots\!01 T 6 + ⋯ + 3 4 ⋯ 0 1
T^6 + 6291*T^5 + 31845798*T^4 + 52357433751*T^3 + 71475514653798*T^2 - 14388908065414317*T + 3464156263432911201
59 59 5 9
T 6 + ⋯ + 40 ⋯ 87 T^{6} + \cdots + 40\!\cdots\!87 T 6 + ⋯ + 4 0 ⋯ 8 7
T^6 - 2943*T^5 - 13578894*T^4 + 48459370311*T^3 + 237132183168090*T^2 - 570622732726616163*T + 400315010438243761587
61 61 6 1
T 6 + ⋯ + 15 ⋯ 47 T^{6} + \cdots + 15\!\cdots\!47 T 6 + ⋯ + 1 5 ⋯ 4 7
T^6 - 4041*T^5 - 82908*T^4 + 22331111535*T^3 + 1270138682988*T^2 - 120073557090573585*T + 157373106493448603547
67 67 6 7
T 6 + ⋯ + 30 ⋯ 41 T^{6} + \cdots + 30\!\cdots\!41 T 6 + ⋯ + 3 0 ⋯ 4 1
T^6 - 1659*T^5 + 46628988*T^4 + 83814690071*T^3 + 1916021645259288*T^2 + 241831585733125353*T + 30377917313907663241
71 71 7 1
( T 3 + 1134 T 2 + ⋯ − 66080643048 ) 2 (T^{3} + 1134 T^{2} + \cdots - 66080643048)^{2} ( T 3 + 1 1 3 4 T 2 + ⋯ − 6 6 0 8 0 6 4 3 0 4 8 ) 2
(T^3 + 1134*T^2 - 57518748*T - 66080643048)^2
73 73 7 3
T 6 + ⋯ + 51 ⋯ 67 T^{6} + \cdots + 51\!\cdots\!67 T 6 + ⋯ + 5 1 ⋯ 6 7
T^6 + 8703*T^5 + 10727892*T^4 - 126363304233*T^3 - 149632437632580*T^2 + 1804046175243796311*T + 5146003339031035005867
79 79 7 9
T 6 + ⋯ + 32 ⋯ 81 T^{6} + \cdots + 32\!\cdots\!81 T 6 + ⋯ + 3 2 ⋯ 8 1
T^6 + 7773*T^5 + 67927740*T^4 + 56054451215*T^3 + 501050143193928*T^2 + 429528891408068049*T + 3272742410404764500281
83 83 8 3
T 6 + ⋯ + 21 ⋯ 72 T^{6} + \cdots + 21\!\cdots\!72 T 6 + ⋯ + 2 1 ⋯ 7 2
T^6 + 73570464*T^4 + 772925219778816*T^2 + 2119841468956608233472
89 89 8 9
T 6 + ⋯ + 12 ⋯ 07 T^{6} + \cdots + 12\!\cdots\!07 T 6 + ⋯ + 1 2 ⋯ 0 7
T^6 + 14985*T^5 + 31277988*T^4 - 652927723695*T^3 - 1124094141465876*T^2 + 26366746972549723857*T + 122060494227189993108507
97 97 9 7
T 6 + ⋯ + 22 ⋯ 32 T^{6} + \cdots + 22\!\cdots\!32 T 6 + ⋯ + 2 2 ⋯ 3 2
T^6 + 161932968*T^4 + 6209172331595280*T^2 + 222775495464660959232
show more
show less