Properties

Label 252.5
Level 252
Weight 5
Dimension 3012
Nonzero newspaces 20
Sturm bound 17280
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 20 \)
Sturm bound: \(17280\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(252))\).

Total New Old
Modular forms 7152 3100 4052
Cusp forms 6672 3012 3660
Eisenstein series 480 88 392

Trace form

\( 3012 q - 3 q^{2} + 18 q^{3} + 17 q^{4} - 3 q^{5} - 42 q^{6} - 97 q^{7} - 525 q^{8} + 54 q^{9} - 2 q^{10} + 207 q^{11} + 444 q^{12} - 818 q^{13} + 15 q^{14} - 150 q^{15} + 413 q^{16} + 1131 q^{17} - 156 q^{18}+ \cdots + 39318 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(252))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
252.5.c \(\chi_{252}(197, \cdot)\) 252.5.c.a 8 1
252.5.d \(\chi_{252}(181, \cdot)\) 252.5.d.a 2 1
252.5.d.b 2
252.5.d.c 4
252.5.d.d 6
252.5.g \(\chi_{252}(127, \cdot)\) 252.5.g.a 12 1
252.5.g.b 12
252.5.g.c 12
252.5.g.d 24
252.5.h \(\chi_{252}(251, \cdot)\) 252.5.h.a 8 1
252.5.h.b 56
252.5.m \(\chi_{252}(65, \cdot)\) 252.5.m.a 64 2
252.5.p \(\chi_{252}(61, \cdot)\) 252.5.p.a 64 2
252.5.q \(\chi_{252}(143, \cdot)\) n/a 128 2
252.5.r \(\chi_{252}(131, \cdot)\) n/a 376 2
252.5.s \(\chi_{252}(83, \cdot)\) n/a 376 2
252.5.u \(\chi_{252}(151, \cdot)\) n/a 376 2
252.5.v \(\chi_{252}(43, \cdot)\) n/a 288 2
252.5.y \(\chi_{252}(163, \cdot)\) n/a 156 2
252.5.z \(\chi_{252}(73, \cdot)\) 252.5.z.a 2 2
252.5.z.b 4
252.5.z.c 4
252.5.z.d 4
252.5.z.e 6
252.5.z.f 6
252.5.bc \(\chi_{252}(13, \cdot)\) 252.5.bc.a 64 2
252.5.bd \(\chi_{252}(229, \cdot)\) 252.5.bd.a 64 2
252.5.bg \(\chi_{252}(29, \cdot)\) 252.5.bg.a 48 2
252.5.bh \(\chi_{252}(137, \cdot)\) 252.5.bh.a 64 2
252.5.bk \(\chi_{252}(53, \cdot)\) 252.5.bk.a 20 2
252.5.bl \(\chi_{252}(67, \cdot)\) n/a 376 2
252.5.bn \(\chi_{252}(47, \cdot)\) n/a 376 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(252))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(252)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 2}\)