Properties

Label 252.5.z
Level $252$
Weight $5$
Character orbit 252.z
Rep. character $\chi_{252}(73,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $26$
Newform subspaces $6$
Sturm bound $240$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 252.z (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 7 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 6 \)
Sturm bound: \(240\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(252, [\chi])\).

Total New Old
Modular forms 408 26 382
Cusp forms 360 26 334
Eisenstein series 48 0 48

Trace form

\( 26 q - 27 q^{5} + 16 q^{7} - 21 q^{11} + 243 q^{17} + 603 q^{19} + 57 q^{23} + 1172 q^{25} + 60 q^{29} + 1239 q^{31} - 1299 q^{35} - 151 q^{37} + 5720 q^{43} + 2781 q^{47} + 7028 q^{49} + 2565 q^{53} + 6867 q^{59}+ \cdots + 12273 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
252.5.z.a 252.z 7.d $2$ $26.049$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 252.5.z.a \(0\) \(0\) \(0\) \(-23\) $\mathrm{U}(1)[D_{6}]$ \(q+(2^{4}-55\zeta_{6})q^{7}+(-15+30\zeta_{6})q^{13}+\cdots\)
252.5.z.b 252.z 7.d $4$ $26.049$ \(\Q(\sqrt{-3}, \sqrt{-19})\) None 84.5.m.a \(0\) \(0\) \(-39\) \(-70\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-13+3\beta _{1}-5\beta _{2})q^{5}+(-14-7\beta _{1}+\cdots)q^{7}+\cdots\)
252.5.z.c 252.z 7.d $4$ $26.049$ \(\Q(\sqrt{-3}, \sqrt{14})\) None 252.5.z.c \(0\) \(0\) \(0\) \(-154\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{3}q^{5}+(-56-35\beta _{1})q^{7}+(2\beta _{2}+\cdots)q^{11}+\cdots\)
252.5.z.d 252.z 7.d $4$ $26.049$ \(\Q(\sqrt{-3}, \sqrt{133})\) None 252.5.z.d \(0\) \(0\) \(0\) \(182\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{2}q^{5}+(56-21\beta _{1})q^{7}+(-5\beta _{2}+\cdots)q^{11}+\cdots\)
252.5.z.e 252.z 7.d $6$ $26.049$ 6.0.\(\cdots\).2 None 84.5.m.b \(0\) \(0\) \(-15\) \(15\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-1-2\beta _{1}-\beta _{3})q^{5}+(3+\beta _{2}-2\beta _{3}+\cdots)q^{7}+\cdots\)
252.5.z.f 252.z 7.d $6$ $26.049$ 6.0.11337408.1 None 28.5.h.a \(0\) \(0\) \(27\) \(66\) $\mathrm{SU}(2)[C_{6}]$ \(q+(3+3\beta _{1}+\beta _{2}-\beta _{4})q^{5}+(9+4\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(252, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(7, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(14, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)