Properties

Label 252.4.x.a.209.22
Level $252$
Weight $4$
Character 252.209
Analytic conductor $14.868$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,4,Mod(41,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.41"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5, 3])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8684813214\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 209.22
Character \(\chi\) \(=\) 252.209
Dual form 252.4.x.a.41.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(4.81916 + 1.94311i) q^{3} +(-9.12012 - 15.7965i) q^{5} +(-9.03683 + 16.1659i) q^{7} +(19.4487 + 18.7283i) q^{9} +(-49.3053 - 28.4664i) q^{11} +(-9.36748 + 5.40831i) q^{13} +(-13.2570 - 93.8474i) q^{15} -65.2579 q^{17} +36.6039i q^{19} +(-74.9620 + 60.3464i) q^{21} +(-70.2538 + 40.5611i) q^{23} +(-103.853 + 179.879i) q^{25} +(57.3350 + 128.046i) q^{27} +(-233.584 - 134.860i) q^{29} +(117.775 - 67.9976i) q^{31} +(-182.297 - 232.990i) q^{33} +(337.782 - 4.68434i) q^{35} -125.675 q^{37} +(-55.6523 + 7.86151i) q^{39} +(117.524 + 203.557i) q^{41} +(22.6360 - 39.2067i) q^{43} +(118.468 - 478.026i) q^{45} +(241.097 - 417.592i) q^{47} +(-179.671 - 292.177i) q^{49} +(-314.488 - 126.803i) q^{51} +70.1770i q^{53} +1038.47i q^{55} +(-71.1255 + 176.400i) q^{57} +(-176.673 - 306.007i) q^{59} +(-512.605 - 295.953i) q^{61} +(-478.514 + 145.160i) q^{63} +(170.865 + 98.6490i) q^{65} +(-261.925 - 453.667i) q^{67} +(-417.379 + 58.9595i) q^{69} +895.977i q^{71} +982.681i q^{73} +(-850.011 + 665.069i) q^{75} +(905.748 - 539.817i) q^{77} +(510.195 - 883.684i) q^{79} +(27.5000 + 728.481i) q^{81} +(-152.345 + 263.869i) q^{83} +(595.160 + 1030.85i) q^{85} +(-863.632 - 1103.79i) q^{87} +1022.58 q^{89} +(-2.77785 - 200.308i) q^{91} +(699.705 - 98.8412i) q^{93} +(578.215 - 333.833i) q^{95} +(677.719 + 391.281i) q^{97} +(-425.793 - 1477.04i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 6 q^{7} + 60 q^{9} - 12 q^{11} + 192 q^{15} - 72 q^{21} - 408 q^{23} - 600 q^{25} - 84 q^{29} + 336 q^{37} + 36 q^{39} + 84 q^{43} + 318 q^{49} - 1812 q^{51} - 852 q^{57} - 564 q^{63} + 2964 q^{65}+ \cdots - 4968 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.81916 + 1.94311i 0.927448 + 0.373952i
\(4\) 0 0
\(5\) −9.12012 15.7965i −0.815729 1.41288i −0.908803 0.417225i \(-0.863003\pi\)
0.0930747 0.995659i \(-0.470330\pi\)
\(6\) 0 0
\(7\) −9.03683 + 16.1659i −0.487943 + 0.872875i
\(8\) 0 0
\(9\) 19.4487 + 18.7283i 0.720320 + 0.693642i
\(10\) 0 0
\(11\) −49.3053 28.4664i −1.35146 0.780268i −0.363009 0.931786i \(-0.618251\pi\)
−0.988455 + 0.151518i \(0.951584\pi\)
\(12\) 0 0
\(13\) −9.36748 + 5.40831i −0.199852 + 0.115384i −0.596586 0.802549i \(-0.703477\pi\)
0.396735 + 0.917933i \(0.370143\pi\)
\(14\) 0 0
\(15\) −13.2570 93.8474i −0.228196 1.61542i
\(16\) 0 0
\(17\) −65.2579 −0.931021 −0.465511 0.885042i \(-0.654129\pi\)
−0.465511 + 0.885042i \(0.654129\pi\)
\(18\) 0 0
\(19\) 36.6039i 0.441975i 0.975277 + 0.220987i \(0.0709280\pi\)
−0.975277 + 0.220987i \(0.929072\pi\)
\(20\) 0 0
\(21\) −74.9620 + 60.3464i −0.778955 + 0.627080i
\(22\) 0 0
\(23\) −70.2538 + 40.5611i −0.636910 + 0.367720i −0.783423 0.621489i \(-0.786528\pi\)
0.146513 + 0.989209i \(0.453195\pi\)
\(24\) 0 0
\(25\) −103.853 + 179.879i −0.830827 + 1.43903i
\(26\) 0 0
\(27\) 57.3350 + 128.046i 0.408671 + 0.912682i
\(28\) 0 0
\(29\) −233.584 134.860i −1.49571 0.863546i −0.495718 0.868484i \(-0.665095\pi\)
−0.999988 + 0.00493734i \(0.998428\pi\)
\(30\) 0 0
\(31\) 117.775 67.9976i 0.682357 0.393959i −0.118385 0.992968i \(-0.537772\pi\)
0.800743 + 0.599009i \(0.204438\pi\)
\(32\) 0 0
\(33\) −182.297 232.990i −0.961630 1.22904i
\(34\) 0 0
\(35\) 337.782 4.68434i 1.63130 0.0226228i
\(36\) 0 0
\(37\) −125.675 −0.558400 −0.279200 0.960233i \(-0.590069\pi\)
−0.279200 + 0.960233i \(0.590069\pi\)
\(38\) 0 0
\(39\) −55.6523 + 7.86151i −0.228500 + 0.0322782i
\(40\) 0 0
\(41\) 117.524 + 203.557i 0.447662 + 0.775374i 0.998233 0.0594145i \(-0.0189234\pi\)
−0.550571 + 0.834788i \(0.685590\pi\)
\(42\) 0 0
\(43\) 22.6360 39.2067i 0.0802780 0.139046i −0.823091 0.567909i \(-0.807753\pi\)
0.903369 + 0.428863i \(0.141086\pi\)
\(44\) 0 0
\(45\) 118.468 478.026i 0.392449 1.58355i
\(46\) 0 0
\(47\) 241.097 417.592i 0.748246 1.29600i −0.200416 0.979711i \(-0.564229\pi\)
0.948663 0.316290i \(-0.102437\pi\)
\(48\) 0 0
\(49\) −179.671 292.177i −0.523823 0.851827i
\(50\) 0 0
\(51\) −314.488 126.803i −0.863474 0.348157i
\(52\) 0 0
\(53\) 70.1770i 0.181878i 0.995856 + 0.0909392i \(0.0289869\pi\)
−0.995856 + 0.0909392i \(0.971013\pi\)
\(54\) 0 0
\(55\) 1038.47i 2.54595i
\(56\) 0 0
\(57\) −71.1255 + 176.400i −0.165277 + 0.409909i
\(58\) 0 0
\(59\) −176.673 306.007i −0.389845 0.675232i 0.602583 0.798056i \(-0.294138\pi\)
−0.992428 + 0.122824i \(0.960805\pi\)
\(60\) 0 0
\(61\) −512.605 295.953i −1.07594 0.621194i −0.146142 0.989264i \(-0.546686\pi\)
−0.929798 + 0.368069i \(0.880019\pi\)
\(62\) 0 0
\(63\) −478.514 + 145.160i −0.956938 + 0.290292i
\(64\) 0 0
\(65\) 170.865 + 98.6490i 0.326049 + 0.188245i
\(66\) 0 0
\(67\) −261.925 453.667i −0.477600 0.827228i 0.522070 0.852903i \(-0.325160\pi\)
−0.999670 + 0.0256746i \(0.991827\pi\)
\(68\) 0 0
\(69\) −417.379 + 58.9595i −0.728211 + 0.102868i
\(70\) 0 0
\(71\) 895.977i 1.49765i 0.662770 + 0.748823i \(0.269381\pi\)
−0.662770 + 0.748823i \(0.730619\pi\)
\(72\) 0 0
\(73\) 982.681i 1.57554i 0.615972 + 0.787768i \(0.288763\pi\)
−0.615972 + 0.787768i \(0.711237\pi\)
\(74\) 0 0
\(75\) −850.011 + 665.069i −1.30868 + 1.02394i
\(76\) 0 0
\(77\) 905.748 539.817i 1.34051 0.798933i
\(78\) 0 0
\(79\) 510.195 883.684i 0.726601 1.25851i −0.231711 0.972785i \(-0.574432\pi\)
0.958312 0.285725i \(-0.0922343\pi\)
\(80\) 0 0
\(81\) 27.5000 + 728.481i 0.0377229 + 0.999288i
\(82\) 0 0
\(83\) −152.345 + 263.869i −0.201470 + 0.348957i −0.949002 0.315269i \(-0.897905\pi\)
0.747532 + 0.664226i \(0.231239\pi\)
\(84\) 0 0
\(85\) 595.160 + 1030.85i 0.759461 + 1.31542i
\(86\) 0 0
\(87\) −863.632 1103.79i −1.06427 1.36022i
\(88\) 0 0
\(89\) 1022.58 1.21791 0.608953 0.793206i \(-0.291590\pi\)
0.608953 + 0.793206i \(0.291590\pi\)
\(90\) 0 0
\(91\) −2.77785 200.308i −0.00319998 0.230747i
\(92\) 0 0
\(93\) 699.705 98.8412i 0.780173 0.110208i
\(94\) 0 0
\(95\) 578.215 333.833i 0.624459 0.360532i
\(96\) 0 0
\(97\) 677.719 + 391.281i 0.709402 + 0.409573i 0.810839 0.585269i \(-0.199011\pi\)
−0.101438 + 0.994842i \(0.532344\pi\)
\(98\) 0 0
\(99\) −425.793 1477.04i −0.432261 1.49947i
\(100\) 0 0
\(101\) 786.668 1362.55i 0.775014 1.34236i −0.159773 0.987154i \(-0.551076\pi\)
0.934787 0.355209i \(-0.115590\pi\)
\(102\) 0 0
\(103\) 597.068 344.717i 0.571174 0.329767i −0.186444 0.982466i \(-0.559696\pi\)
0.757618 + 0.652698i \(0.226363\pi\)
\(104\) 0 0
\(105\) 1636.93 + 633.772i 1.52141 + 0.589046i
\(106\) 0 0
\(107\) 627.635i 0.567063i −0.958963 0.283532i \(-0.908494\pi\)
0.958963 0.283532i \(-0.0915061\pi\)
\(108\) 0 0
\(109\) −1110.51 −0.975851 −0.487925 0.872885i \(-0.662246\pi\)
−0.487925 + 0.872885i \(0.662246\pi\)
\(110\) 0 0
\(111\) −605.647 244.200i −0.517887 0.208814i
\(112\) 0 0
\(113\) −1047.17 + 604.581i −0.871762 + 0.503312i −0.867933 0.496681i \(-0.834552\pi\)
−0.00382837 + 0.999993i \(0.501219\pi\)
\(114\) 0 0
\(115\) 1281.45 + 739.844i 1.03909 + 0.599920i
\(116\) 0 0
\(117\) −283.473 70.2527i −0.223993 0.0555116i
\(118\) 0 0
\(119\) 589.725 1054.95i 0.454285 0.812666i
\(120\) 0 0
\(121\) 955.174 + 1654.41i 0.717636 + 1.24298i
\(122\) 0 0
\(123\) 170.832 + 1209.34i 0.125231 + 0.886523i
\(124\) 0 0
\(125\) 1508.59 1.07946
\(126\) 0 0
\(127\) 2687.40 1.87770 0.938850 0.344327i \(-0.111893\pi\)
0.938850 + 0.344327i \(0.111893\pi\)
\(128\) 0 0
\(129\) 185.269 144.959i 0.126450 0.0989375i
\(130\) 0 0
\(131\) 74.0557 + 128.268i 0.0493914 + 0.0855484i 0.889664 0.456616i \(-0.150938\pi\)
−0.840273 + 0.542164i \(0.817605\pi\)
\(132\) 0 0
\(133\) −591.735 330.784i −0.385789 0.215659i
\(134\) 0 0
\(135\) 1499.77 2073.49i 0.956148 1.32191i
\(136\) 0 0
\(137\) 880.674 + 508.458i 0.549205 + 0.317084i 0.748801 0.662795i \(-0.230630\pi\)
−0.199596 + 0.979878i \(0.563963\pi\)
\(138\) 0 0
\(139\) −2221.28 + 1282.46i −1.35544 + 0.782566i −0.989006 0.147877i \(-0.952756\pi\)
−0.366438 + 0.930443i \(0.619423\pi\)
\(140\) 0 0
\(141\) 1973.31 1543.97i 1.17860 0.922166i
\(142\) 0 0
\(143\) 615.821 0.360123
\(144\) 0 0
\(145\) 4919.75i 2.81768i
\(146\) 0 0
\(147\) −298.134 1757.17i −0.167277 0.985910i
\(148\) 0 0
\(149\) 358.972 207.253i 0.197370 0.113952i −0.398058 0.917360i \(-0.630316\pi\)
0.595428 + 0.803409i \(0.296982\pi\)
\(150\) 0 0
\(151\) −949.812 + 1645.12i −0.511885 + 0.886610i 0.488021 + 0.872832i \(0.337719\pi\)
−0.999905 + 0.0137779i \(0.995614\pi\)
\(152\) 0 0
\(153\) −1269.18 1222.17i −0.670634 0.645795i
\(154\) 0 0
\(155\) −2148.25 1240.29i −1.11324 0.642728i
\(156\) 0 0
\(157\) −1833.97 + 1058.84i −0.932271 + 0.538247i −0.887529 0.460751i \(-0.847580\pi\)
−0.0447422 + 0.998999i \(0.514247\pi\)
\(158\) 0 0
\(159\) −136.362 + 338.194i −0.0680137 + 0.168683i
\(160\) 0 0
\(161\) −20.8332 1502.26i −0.0101981 0.735370i
\(162\) 0 0
\(163\) −62.3148 −0.0299440 −0.0149720 0.999888i \(-0.504766\pi\)
−0.0149720 + 0.999888i \(0.504766\pi\)
\(164\) 0 0
\(165\) −2017.86 + 5004.55i −0.952061 + 2.36123i
\(166\) 0 0
\(167\) −504.850 874.426i −0.233931 0.405180i 0.725031 0.688717i \(-0.241826\pi\)
−0.958961 + 0.283536i \(0.908492\pi\)
\(168\) 0 0
\(169\) −1040.00 + 1801.33i −0.473373 + 0.819906i
\(170\) 0 0
\(171\) −685.530 + 711.897i −0.306572 + 0.318363i
\(172\) 0 0
\(173\) 234.008 405.315i 0.102840 0.178124i −0.810014 0.586411i \(-0.800540\pi\)
0.912854 + 0.408287i \(0.133874\pi\)
\(174\) 0 0
\(175\) −1969.40 3304.42i −0.850701 1.42738i
\(176\) 0 0
\(177\) −256.811 1817.99i −0.109057 0.772025i
\(178\) 0 0
\(179\) 2028.76i 0.847131i 0.905866 + 0.423565i \(0.139222\pi\)
−0.905866 + 0.423565i \(0.860778\pi\)
\(180\) 0 0
\(181\) 3998.62i 1.64207i −0.570876 0.821036i \(-0.693396\pi\)
0.570876 0.821036i \(-0.306604\pi\)
\(182\) 0 0
\(183\) −1895.26 2422.29i −0.765582 0.978475i
\(184\) 0 0
\(185\) 1146.17 + 1985.22i 0.455503 + 0.788954i
\(186\) 0 0
\(187\) 3217.56 + 1857.66i 1.25824 + 0.726446i
\(188\) 0 0
\(189\) −2588.10 230.256i −0.996066 0.0886174i
\(190\) 0 0
\(191\) −1746.98 1008.62i −0.661817 0.382100i 0.131152 0.991362i \(-0.458132\pi\)
−0.792969 + 0.609262i \(0.791466\pi\)
\(192\) 0 0
\(193\) −582.965 1009.72i −0.217423 0.376588i 0.736596 0.676333i \(-0.236432\pi\)
−0.954020 + 0.299745i \(0.903099\pi\)
\(194\) 0 0
\(195\) 631.741 + 807.415i 0.231999 + 0.296514i
\(196\) 0 0
\(197\) 4449.56i 1.60923i 0.593799 + 0.804613i \(0.297627\pi\)
−0.593799 + 0.804613i \(0.702373\pi\)
\(198\) 0 0
\(199\) 5156.28i 1.83678i −0.395677 0.918390i \(-0.629490\pi\)
0.395677 0.918390i \(-0.370510\pi\)
\(200\) 0 0
\(201\) −380.733 2695.25i −0.133606 0.945811i
\(202\) 0 0
\(203\) 4290.99 2557.39i 1.48359 0.884204i
\(204\) 0 0
\(205\) 2143.67 3712.94i 0.730342 1.26499i
\(206\) 0 0
\(207\) −2125.98 526.878i −0.713845 0.176911i
\(208\) 0 0
\(209\) 1041.98 1804.77i 0.344859 0.597313i
\(210\) 0 0
\(211\) −354.558 614.113i −0.115682 0.200366i 0.802370 0.596826i \(-0.203572\pi\)
−0.918052 + 0.396460i \(0.870239\pi\)
\(212\) 0 0
\(213\) −1740.98 + 4317.86i −0.560047 + 1.38899i
\(214\) 0 0
\(215\) −825.771 −0.261940
\(216\) 0 0
\(217\) 34.9254 + 2518.42i 0.0109258 + 0.787842i
\(218\) 0 0
\(219\) −1909.46 + 4735.70i −0.589174 + 1.46123i
\(220\) 0 0
\(221\) 611.302 352.935i 0.186066 0.107425i
\(222\) 0 0
\(223\) −270.455 156.147i −0.0812153 0.0468897i 0.458842 0.888518i \(-0.348264\pi\)
−0.540058 + 0.841628i \(0.681598\pi\)
\(224\) 0 0
\(225\) −5388.64 + 1553.41i −1.59664 + 0.460270i
\(226\) 0 0
\(227\) −364.722 + 631.717i −0.106641 + 0.184707i −0.914407 0.404795i \(-0.867343\pi\)
0.807767 + 0.589502i \(0.200676\pi\)
\(228\) 0 0
\(229\) 1400.43 808.539i 0.404118 0.233318i −0.284141 0.958782i \(-0.591708\pi\)
0.688259 + 0.725465i \(0.258375\pi\)
\(230\) 0 0
\(231\) 5413.87 841.498i 1.54202 0.239682i
\(232\) 0 0
\(233\) 2237.18i 0.629023i 0.949254 + 0.314511i \(0.101841\pi\)
−0.949254 + 0.314511i \(0.898159\pi\)
\(234\) 0 0
\(235\) −8795.33 −2.44146
\(236\) 0 0
\(237\) 4175.81 3267.25i 1.14451 0.895489i
\(238\) 0 0
\(239\) −4456.87 + 2573.17i −1.20624 + 0.696422i −0.961935 0.273278i \(-0.911892\pi\)
−0.244302 + 0.969699i \(0.578559\pi\)
\(240\) 0 0
\(241\) 933.854 + 539.161i 0.249605 + 0.144110i 0.619583 0.784931i \(-0.287302\pi\)
−0.369978 + 0.929040i \(0.620635\pi\)
\(242\) 0 0
\(243\) −1282.99 + 3564.10i −0.338699 + 0.940895i
\(244\) 0 0
\(245\) −2976.75 + 5502.87i −0.776235 + 1.43496i
\(246\) 0 0
\(247\) −197.966 342.887i −0.0509970 0.0883294i
\(248\) 0 0
\(249\) −1246.90 + 975.605i −0.317346 + 0.248299i
\(250\) 0 0
\(251\) −3429.17 −0.862340 −0.431170 0.902271i \(-0.641899\pi\)
−0.431170 + 0.902271i \(0.641899\pi\)
\(252\) 0 0
\(253\) 4618.51 1.14768
\(254\) 0 0
\(255\) 865.123 + 6124.28i 0.212455 + 1.50399i
\(256\) 0 0
\(257\) −3394.82 5880.00i −0.823981 1.42718i −0.902695 0.430280i \(-0.858415\pi\)
0.0787143 0.996897i \(-0.474919\pi\)
\(258\) 0 0
\(259\) 1135.70 2031.64i 0.272467 0.487413i
\(260\) 0 0
\(261\) −2017.20 6997.48i −0.478396 1.65951i
\(262\) 0 0
\(263\) −6692.65 3864.00i −1.56915 0.905949i −0.996268 0.0863104i \(-0.972492\pi\)
−0.572881 0.819638i \(-0.694174\pi\)
\(264\) 0 0
\(265\) 1108.55 640.023i 0.256973 0.148363i
\(266\) 0 0
\(267\) 4928.00 + 1986.99i 1.12955 + 0.455438i
\(268\) 0 0
\(269\) 2457.17 0.556938 0.278469 0.960445i \(-0.410173\pi\)
0.278469 + 0.960445i \(0.410173\pi\)
\(270\) 0 0
\(271\) 6080.16i 1.36289i −0.731869 0.681446i \(-0.761352\pi\)
0.731869 0.681446i \(-0.238648\pi\)
\(272\) 0 0
\(273\) 375.833 970.712i 0.0833202 0.215202i
\(274\) 0 0
\(275\) 10241.0 5912.67i 2.24566 1.29654i
\(276\) 0 0
\(277\) −1092.78 + 1892.75i −0.237036 + 0.410558i −0.959862 0.280471i \(-0.909509\pi\)
0.722827 + 0.691029i \(0.242843\pi\)
\(278\) 0 0
\(279\) 3564.05 + 883.272i 0.764782 + 0.189535i
\(280\) 0 0
\(281\) −2196.63 1268.23i −0.466335 0.269239i 0.248369 0.968665i \(-0.420105\pi\)
−0.714704 + 0.699427i \(0.753439\pi\)
\(282\) 0 0
\(283\) −3627.22 + 2094.17i −0.761893 + 0.439879i −0.829975 0.557801i \(-0.811645\pi\)
0.0680823 + 0.997680i \(0.478312\pi\)
\(284\) 0 0
\(285\) 3435.19 485.258i 0.713975 0.100857i
\(286\) 0 0
\(287\) −4352.73 + 60.3634i −0.895238 + 0.0124151i
\(288\) 0 0
\(289\) −654.409 −0.133199
\(290\) 0 0
\(291\) 2505.74 + 3202.53i 0.504773 + 0.645140i
\(292\) 0 0
\(293\) 3751.85 + 6498.40i 0.748074 + 1.29570i 0.948745 + 0.316043i \(0.102354\pi\)
−0.200671 + 0.979659i \(0.564312\pi\)
\(294\) 0 0
\(295\) −3222.56 + 5581.64i −0.636016 + 1.10161i
\(296\) 0 0
\(297\) 818.082 7945.45i 0.159831 1.55233i
\(298\) 0 0
\(299\) 438.734 759.909i 0.0848583 0.146979i
\(300\) 0 0
\(301\) 429.253 + 720.234i 0.0821984 + 0.137919i
\(302\) 0 0
\(303\) 6438.66 5037.76i 1.22076 0.955155i
\(304\) 0 0
\(305\) 10796.5i 2.02690i
\(306\) 0 0
\(307\) 4315.01i 0.802184i −0.916038 0.401092i \(-0.868631\pi\)
0.916038 0.401092i \(-0.131369\pi\)
\(308\) 0 0
\(309\) 3547.19 501.081i 0.653051 0.0922507i
\(310\) 0 0
\(311\) −2224.42 3852.80i −0.405579 0.702483i 0.588810 0.808272i \(-0.299597\pi\)
−0.994389 + 0.105788i \(0.966263\pi\)
\(312\) 0 0
\(313\) −6535.19 3773.10i −1.18016 0.681367i −0.224111 0.974564i \(-0.571948\pi\)
−0.956052 + 0.293196i \(0.905281\pi\)
\(314\) 0 0
\(315\) 6657.13 + 6234.98i 1.19075 + 1.11524i
\(316\) 0 0
\(317\) −7839.87 4526.35i −1.38906 0.801973i −0.395848 0.918316i \(-0.629549\pi\)
−0.993209 + 0.116343i \(0.962883\pi\)
\(318\) 0 0
\(319\) 7677.95 + 13298.6i 1.34759 + 2.33410i
\(320\) 0 0
\(321\) 1219.56 3024.67i 0.212054 0.525922i
\(322\) 0 0
\(323\) 2388.70i 0.411488i
\(324\) 0 0
\(325\) 2246.69i 0.383458i
\(326\) 0 0
\(327\) −5351.74 2157.85i −0.905051 0.364921i
\(328\) 0 0
\(329\) 4571.99 + 7671.25i 0.766146 + 1.28550i
\(330\) 0 0
\(331\) 3366.69 5831.27i 0.559063 0.968326i −0.438512 0.898725i \(-0.644494\pi\)
0.997575 0.0696003i \(-0.0221724\pi\)
\(332\) 0 0
\(333\) −2444.20 2353.68i −0.402227 0.387329i
\(334\) 0 0
\(335\) −4777.58 + 8275.00i −0.779185 + 1.34959i
\(336\) 0 0
\(337\) −1414.64 2450.22i −0.228665 0.396060i 0.728747 0.684783i \(-0.240103\pi\)
−0.957413 + 0.288723i \(0.906769\pi\)
\(338\) 0 0
\(339\) −6221.23 + 878.818i −0.996728 + 0.140799i
\(340\) 0 0
\(341\) −7742.59 −1.22957
\(342\) 0 0
\(343\) 6346.95 264.193i 0.999135 0.0415892i
\(344\) 0 0
\(345\) 4737.90 + 6055.42i 0.739363 + 0.944965i
\(346\) 0 0
\(347\) −1635.49 + 944.250i −0.253019 + 0.146081i −0.621146 0.783695i \(-0.713333\pi\)
0.368127 + 0.929776i \(0.379999\pi\)
\(348\) 0 0
\(349\) −8771.88 5064.44i −1.34541 0.776772i −0.357814 0.933793i \(-0.616478\pi\)
−0.987595 + 0.157021i \(0.949811\pi\)
\(350\) 0 0
\(351\) −1229.60 889.379i −0.186983 0.135247i
\(352\) 0 0
\(353\) −2939.16 + 5090.78i −0.443161 + 0.767577i −0.997922 0.0644323i \(-0.979476\pi\)
0.554761 + 0.832010i \(0.312810\pi\)
\(354\) 0 0
\(355\) 14153.3 8171.42i 2.11600 1.22167i
\(356\) 0 0
\(357\) 4891.86 3938.08i 0.725224 0.583824i
\(358\) 0 0
\(359\) 5020.49i 0.738081i 0.929413 + 0.369041i \(0.120314\pi\)
−0.929413 + 0.369041i \(0.879686\pi\)
\(360\) 0 0
\(361\) 5519.15 0.804658
\(362\) 0 0
\(363\) 1388.44 + 9828.87i 0.200755 + 1.42116i
\(364\) 0 0
\(365\) 15522.9 8962.17i 2.22605 1.28521i
\(366\) 0 0
\(367\) 8074.26 + 4661.68i 1.14843 + 0.663045i 0.948504 0.316766i \(-0.102597\pi\)
0.199924 + 0.979811i \(0.435930\pi\)
\(368\) 0 0
\(369\) −1526.61 + 6159.94i −0.215371 + 0.869035i
\(370\) 0 0
\(371\) −1134.47 634.178i −0.158757 0.0887463i
\(372\) 0 0
\(373\) −510.522 884.250i −0.0708682 0.122747i 0.828414 0.560116i \(-0.189244\pi\)
−0.899282 + 0.437369i \(0.855910\pi\)
\(374\) 0 0
\(375\) 7270.14 + 2931.36i 1.00114 + 0.403666i
\(376\) 0 0
\(377\) 2917.46 0.398559
\(378\) 0 0
\(379\) −8222.23 −1.11437 −0.557187 0.830387i \(-0.688119\pi\)
−0.557187 + 0.830387i \(0.688119\pi\)
\(380\) 0 0
\(381\) 12951.0 + 5221.90i 1.74147 + 0.702169i
\(382\) 0 0
\(383\) −1833.55 3175.80i −0.244621 0.423697i 0.717404 0.696658i \(-0.245330\pi\)
−0.962025 + 0.272961i \(0.911997\pi\)
\(384\) 0 0
\(385\) −16787.8 9384.47i −2.22230 1.24228i
\(386\) 0 0
\(387\) 1174.51 338.583i 0.154274 0.0444732i
\(388\) 0 0
\(389\) −1487.93 859.056i −0.193936 0.111969i 0.399888 0.916564i \(-0.369049\pi\)
−0.593824 + 0.804595i \(0.702382\pi\)
\(390\) 0 0
\(391\) 4584.61 2646.93i 0.592977 0.342355i
\(392\) 0 0
\(393\) 107.647 + 762.043i 0.0138170 + 0.0978117i
\(394\) 0 0
\(395\) −18612.2 −2.37084
\(396\) 0 0
\(397\) 11666.0i 1.47481i 0.675448 + 0.737407i \(0.263950\pi\)
−0.675448 + 0.737407i \(0.736050\pi\)
\(398\) 0 0
\(399\) −2208.92 2743.91i −0.277153 0.344279i
\(400\) 0 0
\(401\) 2312.57 1335.16i 0.287990 0.166271i −0.349045 0.937106i \(-0.613494\pi\)
0.637035 + 0.770835i \(0.280161\pi\)
\(402\) 0 0
\(403\) −735.505 + 1273.93i −0.0909134 + 0.157467i
\(404\) 0 0
\(405\) 11256.7 7078.24i 1.38111 0.868446i
\(406\) 0 0
\(407\) 6196.42 + 3577.51i 0.754657 + 0.435701i
\(408\) 0 0
\(409\) 375.615 216.862i 0.0454107 0.0262179i −0.477123 0.878837i \(-0.658320\pi\)
0.522533 + 0.852619i \(0.324987\pi\)
\(410\) 0 0
\(411\) 3256.12 + 4161.59i 0.390785 + 0.499455i
\(412\) 0 0
\(413\) 6543.43 90.7439i 0.779615 0.0108117i
\(414\) 0 0
\(415\) 5557.62 0.657380
\(416\) 0 0
\(417\) −13196.7 + 1864.18i −1.54975 + 0.218919i
\(418\) 0 0
\(419\) −2916.15 5050.92i −0.340008 0.588911i 0.644426 0.764667i \(-0.277096\pi\)
−0.984434 + 0.175756i \(0.943763\pi\)
\(420\) 0 0
\(421\) 5481.42 9494.10i 0.634556 1.09908i −0.352053 0.935980i \(-0.614516\pi\)
0.986609 0.163104i \(-0.0521505\pi\)
\(422\) 0 0
\(423\) 12509.8 3606.26i 1.43794 0.414521i
\(424\) 0 0
\(425\) 6777.25 11738.5i 0.773517 1.33977i
\(426\) 0 0
\(427\) 9416.66 5612.24i 1.06722 0.636054i
\(428\) 0 0
\(429\) 2967.74 + 1196.61i 0.333995 + 0.134669i
\(430\) 0 0
\(431\) 9711.53i 1.08536i 0.839941 + 0.542678i \(0.182589\pi\)
−0.839941 + 0.542678i \(0.817411\pi\)
\(432\) 0 0
\(433\) 28.2134i 0.00313129i −0.999999 0.00156564i \(-0.999502\pi\)
0.999999 0.00156564i \(-0.000498360\pi\)
\(434\) 0 0
\(435\) −9559.62 + 23709.1i −1.05368 + 2.61325i
\(436\) 0 0
\(437\) −1484.69 2571.57i −0.162523 0.281498i
\(438\) 0 0
\(439\) 5470.43 + 3158.35i 0.594736 + 0.343371i 0.766968 0.641685i \(-0.221764\pi\)
−0.172232 + 0.985056i \(0.555098\pi\)
\(440\) 0 0
\(441\) 1977.61 9047.38i 0.213542 0.976934i
\(442\) 0 0
\(443\) 13946.4 + 8051.96i 1.49574 + 0.863567i 0.999988 0.00489651i \(-0.00155861\pi\)
0.495754 + 0.868463i \(0.334892\pi\)
\(444\) 0 0
\(445\) −9326.09 16153.3i −0.993481 1.72076i
\(446\) 0 0
\(447\) 2132.66 301.262i 0.225663 0.0318774i
\(448\) 0 0
\(449\) 2392.17i 0.251433i 0.992066 + 0.125717i \(0.0401230\pi\)
−0.992066 + 0.125717i \(0.959877\pi\)
\(450\) 0 0
\(451\) 13381.9i 1.39719i
\(452\) 0 0
\(453\) −7773.95 + 6082.52i −0.806296 + 0.630865i
\(454\) 0 0
\(455\) −3138.83 + 1870.71i −0.323408 + 0.192748i
\(456\) 0 0
\(457\) −6222.62 + 10777.9i −0.636940 + 1.10321i 0.349160 + 0.937063i \(0.386467\pi\)
−0.986100 + 0.166150i \(0.946866\pi\)
\(458\) 0 0
\(459\) −3741.56 8355.99i −0.380482 0.849726i
\(460\) 0 0
\(461\) −9386.24 + 16257.4i −0.948288 + 1.64248i −0.199257 + 0.979947i \(0.563853\pi\)
−0.749031 + 0.662535i \(0.769481\pi\)
\(462\) 0 0
\(463\) −3011.11 5215.40i −0.302243 0.523499i 0.674401 0.738365i \(-0.264402\pi\)
−0.976644 + 0.214866i \(0.931069\pi\)
\(464\) 0 0
\(465\) −7942.75 10151.5i −0.792120 1.01239i
\(466\) 0 0
\(467\) 8896.12 0.881506 0.440753 0.897628i \(-0.354711\pi\)
0.440753 + 0.897628i \(0.354711\pi\)
\(468\) 0 0
\(469\) 9700.90 134.532i 0.955109 0.0132454i
\(470\) 0 0
\(471\) −10895.6 + 1539.13i −1.06591 + 0.150572i
\(472\) 0 0
\(473\) −2232.15 + 1288.73i −0.216986 + 0.125277i
\(474\) 0 0
\(475\) −6584.29 3801.44i −0.636017 0.367205i
\(476\) 0 0
\(477\) −1314.30 + 1364.85i −0.126158 + 0.131011i
\(478\) 0 0
\(479\) 6.85714 11.8769i 0.000654094 0.00113292i −0.865698 0.500566i \(-0.833125\pi\)
0.866352 + 0.499433i \(0.166458\pi\)
\(480\) 0 0
\(481\) 1177.25 679.688i 0.111597 0.0644306i
\(482\) 0 0
\(483\) 2818.65 7280.11i 0.265535 0.685831i
\(484\) 0 0
\(485\) 14274.1i 1.33640i
\(486\) 0 0
\(487\) 14175.4 1.31899 0.659497 0.751708i \(-0.270770\pi\)
0.659497 + 0.751708i \(0.270770\pi\)
\(488\) 0 0
\(489\) −300.305 121.084i −0.0277715 0.0111976i
\(490\) 0 0
\(491\) 1949.66 1125.63i 0.179199 0.103461i −0.407717 0.913108i \(-0.633675\pi\)
0.586916 + 0.809648i \(0.300342\pi\)
\(492\) 0 0
\(493\) 15243.2 + 8800.67i 1.39253 + 0.803980i
\(494\) 0 0
\(495\) −19448.8 + 20196.8i −1.76598 + 1.83390i
\(496\) 0 0
\(497\) −14484.3 8096.80i −1.30726 0.730766i
\(498\) 0 0
\(499\) −3676.93 6368.63i −0.329864 0.571340i 0.652621 0.757685i \(-0.273669\pi\)
−0.982485 + 0.186344i \(0.940336\pi\)
\(500\) 0 0
\(501\) −733.849 5194.98i −0.0654410 0.463263i
\(502\) 0 0
\(503\) −9876.83 −0.875519 −0.437759 0.899092i \(-0.644228\pi\)
−0.437759 + 0.899092i \(0.644228\pi\)
\(504\) 0 0
\(505\) −28698.0 −2.52880
\(506\) 0 0
\(507\) −8512.12 + 6660.08i −0.745634 + 0.583402i
\(508\) 0 0
\(509\) 3653.69 + 6328.37i 0.318167 + 0.551081i 0.980106 0.198477i \(-0.0635995\pi\)
−0.661939 + 0.749558i \(0.730266\pi\)
\(510\) 0 0
\(511\) −15885.9 8880.32i −1.37525 0.768772i
\(512\) 0 0
\(513\) −4686.98 + 2098.69i −0.403382 + 0.180623i
\(514\) 0 0
\(515\) −10890.7 6287.73i −0.931845 0.538001i
\(516\) 0 0
\(517\) −23774.7 + 13726.3i −2.02246 + 1.16767i
\(518\) 0 0
\(519\) 1915.30 1498.57i 0.161989 0.126744i
\(520\) 0 0
\(521\) 16702.5 1.40451 0.702256 0.711924i \(-0.252176\pi\)
0.702256 + 0.711924i \(0.252176\pi\)
\(522\) 0 0
\(523\) 17735.9i 1.48286i 0.671028 + 0.741432i \(0.265853\pi\)
−0.671028 + 0.741432i \(0.734147\pi\)
\(524\) 0 0
\(525\) −3070.02 19751.3i −0.255212 1.64194i
\(526\) 0 0
\(527\) −7685.77 + 4437.38i −0.635289 + 0.366784i
\(528\) 0 0
\(529\) −2793.10 + 4837.79i −0.229564 + 0.397616i
\(530\) 0 0
\(531\) 2294.94 9260.20i 0.187555 0.756796i
\(532\) 0 0
\(533\) −2201.80 1271.21i −0.178932 0.103306i
\(534\) 0 0
\(535\) −9914.45 + 5724.11i −0.801194 + 0.462570i
\(536\) 0 0
\(537\) −3942.10 + 9776.91i −0.316786 + 0.785670i
\(538\) 0 0
\(539\) 541.521 + 19520.5i 0.0432745 + 1.55994i
\(540\) 0 0
\(541\) −14759.1 −1.17291 −0.586454 0.809983i \(-0.699476\pi\)
−0.586454 + 0.809983i \(0.699476\pi\)
\(542\) 0 0
\(543\) 7769.76 19270.0i 0.614056 1.52294i
\(544\) 0 0
\(545\) 10128.0 + 17542.2i 0.796030 + 1.37876i
\(546\) 0 0
\(547\) −1188.36 + 2058.30i −0.0928897 + 0.160890i −0.908726 0.417393i \(-0.862944\pi\)
0.815836 + 0.578283i \(0.196277\pi\)
\(548\) 0 0
\(549\) −4426.78 15356.1i −0.344136 1.19378i
\(550\) 0 0
\(551\) 4936.40 8550.10i 0.381666 0.661064i
\(552\) 0 0
\(553\) 9674.98 + 16233.5i 0.743982 + 1.24831i
\(554\) 0 0
\(555\) 1666.07 + 11794.2i 0.127425 + 0.902050i
\(556\) 0 0
\(557\) 15.7702i 0.00119965i 1.00000 0.000599827i \(0.000190931\pi\)
−1.00000 0.000599827i \(0.999809\pi\)
\(558\) 0 0
\(559\) 489.690i 0.0370513i
\(560\) 0 0
\(561\) 11896.3 + 15204.4i 0.895298 + 1.14426i
\(562\) 0 0
\(563\) −3299.49 5714.88i −0.246993 0.427804i 0.715697 0.698411i \(-0.246109\pi\)
−0.962690 + 0.270607i \(0.912776\pi\)
\(564\) 0 0
\(565\) 19100.6 + 11027.7i 1.42224 + 0.821132i
\(566\) 0 0
\(567\) −12025.1 6138.60i −0.890661 0.454668i
\(568\) 0 0
\(569\) −22038.3 12723.8i −1.62371 0.937450i −0.985915 0.167245i \(-0.946513\pi\)
−0.637796 0.770205i \(-0.720154\pi\)
\(570\) 0 0
\(571\) 10540.7 + 18257.0i 0.772527 + 1.33806i 0.936174 + 0.351538i \(0.114341\pi\)
−0.163646 + 0.986519i \(0.552326\pi\)
\(572\) 0 0
\(573\) −6459.12 8255.27i −0.470914 0.601865i
\(574\) 0 0
\(575\) 16849.6i 1.22205i
\(576\) 0 0
\(577\) 847.126i 0.0611201i −0.999533 0.0305601i \(-0.990271\pi\)
0.999533 0.0305601i \(-0.00972908\pi\)
\(578\) 0 0
\(579\) −847.396 5998.79i −0.0608231 0.430572i
\(580\) 0 0
\(581\) −2888.96 4847.33i −0.206290 0.346129i
\(582\) 0 0
\(583\) 1997.69 3460.10i 0.141914 0.245802i
\(584\) 0 0
\(585\) 1475.57 + 5118.61i 0.104286 + 0.361758i
\(586\) 0 0
\(587\) 9171.88 15886.2i 0.644913 1.11702i −0.339408 0.940639i \(-0.610227\pi\)
0.984322 0.176383i \(-0.0564398\pi\)
\(588\) 0 0
\(589\) 2488.98 + 4311.04i 0.174120 + 0.301585i
\(590\) 0 0
\(591\) −8645.97 + 21443.1i −0.601773 + 1.49247i
\(592\) 0 0
\(593\) 5722.96 0.396314 0.198157 0.980170i \(-0.436504\pi\)
0.198157 + 0.980170i \(0.436504\pi\)
\(594\) 0 0
\(595\) −22042.9 + 305.690i −1.51878 + 0.0210623i
\(596\) 0 0
\(597\) 10019.2 24849.0i 0.686867 1.70352i
\(598\) 0 0
\(599\) −8776.18 + 5066.93i −0.598639 + 0.345625i −0.768506 0.639842i \(-0.779000\pi\)
0.169867 + 0.985467i \(0.445666\pi\)
\(600\) 0 0
\(601\) 6127.51 + 3537.72i 0.415884 + 0.240111i 0.693315 0.720635i \(-0.256150\pi\)
−0.277431 + 0.960746i \(0.589483\pi\)
\(602\) 0 0
\(603\) 3402.34 13728.6i 0.229774 0.927153i
\(604\) 0 0
\(605\) 17422.6 30176.8i 1.17079 2.02787i
\(606\) 0 0
\(607\) 11291.3 6519.01i 0.755021 0.435912i −0.0724839 0.997370i \(-0.523093\pi\)
0.827505 + 0.561458i \(0.189759\pi\)
\(608\) 0 0
\(609\) 25648.2 3986.60i 1.70660 0.265263i
\(610\) 0 0
\(611\) 5215.71i 0.345344i
\(612\) 0 0
\(613\) 5876.91 0.387220 0.193610 0.981079i \(-0.437980\pi\)
0.193610 + 0.981079i \(0.437980\pi\)
\(614\) 0 0
\(615\) 17545.3 13727.9i 1.15040 0.900099i
\(616\) 0 0
\(617\) 9655.60 5574.66i 0.630016 0.363740i −0.150742 0.988573i \(-0.548166\pi\)
0.780758 + 0.624833i \(0.214833\pi\)
\(618\) 0 0
\(619\) 15732.2 + 9083.00i 1.02154 + 0.589785i 0.914549 0.404476i \(-0.132546\pi\)
0.106988 + 0.994260i \(0.465879\pi\)
\(620\) 0 0
\(621\) −9221.67 6670.13i −0.595898 0.431019i
\(622\) 0 0
\(623\) −9240.92 + 16531.0i −0.594269 + 1.06308i
\(624\) 0 0
\(625\) −776.867 1345.57i −0.0497195 0.0861167i
\(626\) 0 0
\(627\) 8528.35 6672.78i 0.543205 0.425016i
\(628\) 0 0
\(629\) 8201.26 0.519882
\(630\) 0 0
\(631\) 6044.76 0.381360 0.190680 0.981652i \(-0.438931\pi\)
0.190680 + 0.981652i \(0.438931\pi\)
\(632\) 0 0
\(633\) −515.385 3648.46i −0.0323613 0.229089i
\(634\) 0 0
\(635\) −24509.4 42451.5i −1.53169 2.65297i
\(636\) 0 0
\(637\) 3263.25 + 1765.24i 0.202974 + 0.109798i
\(638\) 0 0
\(639\) −16780.1 + 17425.5i −1.03883 + 1.07879i
\(640\) 0 0
\(641\) 3969.31 + 2291.68i 0.244584 + 0.141211i 0.617282 0.786742i \(-0.288234\pi\)
−0.372698 + 0.927953i \(0.621567\pi\)
\(642\) 0 0
\(643\) −6413.00 + 3702.55i −0.393319 + 0.227083i −0.683597 0.729860i \(-0.739585\pi\)
0.290278 + 0.956942i \(0.406252\pi\)
\(644\) 0 0
\(645\) −3979.53 1604.56i −0.242936 0.0979530i
\(646\) 0 0
\(647\) 21755.4 1.32193 0.660967 0.750415i \(-0.270146\pi\)
0.660967 + 0.750415i \(0.270146\pi\)
\(648\) 0 0
\(649\) 20117.0i 1.21673i
\(650\) 0 0
\(651\) −4725.26 + 12204.6i −0.284482 + 0.734769i
\(652\) 0 0
\(653\) −1656.32 + 956.276i −0.0992599 + 0.0573078i −0.548808 0.835948i \(-0.684918\pi\)
0.449548 + 0.893256i \(0.351585\pi\)
\(654\) 0 0
\(655\) 1350.79 2339.64i 0.0805800 0.139569i
\(656\) 0 0
\(657\) −18404.0 + 19111.8i −1.09286 + 1.13489i
\(658\) 0 0
\(659\) −1009.42 582.787i −0.0596681 0.0344494i 0.469869 0.882736i \(-0.344301\pi\)
−0.529537 + 0.848287i \(0.677634\pi\)
\(660\) 0 0
\(661\) −20327.5 + 11736.1i −1.19614 + 0.690593i −0.959693 0.281051i \(-0.909317\pi\)
−0.236449 + 0.971644i \(0.575984\pi\)
\(662\) 0 0
\(663\) 3631.75 513.026i 0.212738 0.0300517i
\(664\) 0 0
\(665\) 171.465 + 12364.1i 0.00999870 + 0.720994i
\(666\) 0 0
\(667\) 21880.2 1.27017
\(668\) 0 0
\(669\) −999.956 1278.02i −0.0577885 0.0738584i
\(670\) 0 0
\(671\) 16849.4 + 29184.1i 0.969396 + 1.67904i
\(672\) 0 0
\(673\) 12009.3 20800.7i 0.687850 1.19139i −0.284682 0.958622i \(-0.591888\pi\)
0.972532 0.232770i \(-0.0747788\pi\)
\(674\) 0 0
\(675\) −28987.2 2984.59i −1.65292 0.170188i
\(676\) 0 0
\(677\) 8076.04 13988.1i 0.458475 0.794102i −0.540406 0.841405i \(-0.681729\pi\)
0.998881 + 0.0473029i \(0.0150626\pi\)
\(678\) 0 0
\(679\) −12449.8 + 7419.98i −0.703654 + 0.419371i
\(680\) 0 0
\(681\) −2985.15 + 2335.65i −0.167975 + 0.131428i
\(682\) 0 0
\(683\) 28554.3i 1.59970i −0.600197 0.799852i \(-0.704911\pi\)
0.600197 0.799852i \(-0.295089\pi\)
\(684\) 0 0
\(685\) 18548.8i 1.03462i
\(686\) 0 0
\(687\) 8319.98 1175.29i 0.462048 0.0652695i
\(688\) 0 0
\(689\) −379.539 657.381i −0.0209859 0.0363487i
\(690\) 0 0
\(691\) 29465.7 + 17012.0i 1.62218 + 0.936567i 0.986335 + 0.164753i \(0.0526826\pi\)
0.635848 + 0.771815i \(0.280651\pi\)
\(692\) 0 0
\(693\) 27725.4 + 6464.43i 1.51977 + 0.354348i
\(694\) 0 0
\(695\) 40516.7 + 23392.3i 2.21135 + 1.27672i
\(696\) 0 0
\(697\) −7669.36 13283.7i −0.416783 0.721889i
\(698\) 0 0
\(699\) −4347.08 + 10781.3i −0.235224 + 0.583386i
\(700\) 0 0
\(701\) 9879.92i 0.532325i 0.963928 + 0.266162i \(0.0857557\pi\)
−0.963928 + 0.266162i \(0.914244\pi\)
\(702\) 0 0
\(703\) 4600.19i 0.246799i
\(704\) 0 0
\(705\) −42386.1 17090.3i −2.26433 0.912990i
\(706\) 0 0
\(707\) 14917.8 + 25030.3i 0.793553 + 1.33149i
\(708\) 0 0
\(709\) −16309.1 + 28248.1i −0.863893 + 1.49631i 0.00424980 + 0.999991i \(0.498647\pi\)
−0.868142 + 0.496315i \(0.834686\pi\)
\(710\) 0 0
\(711\) 26472.5 7631.36i 1.39634 0.402529i
\(712\) 0 0
\(713\) −5516.11 + 9554.18i −0.289733 + 0.501833i
\(714\) 0 0
\(715\) −5616.37 9727.83i −0.293763 0.508812i
\(716\) 0 0
\(717\) −26478.3 + 3740.36i −1.37915 + 0.194820i
\(718\) 0 0
\(719\) −22467.8 −1.16538 −0.582689 0.812695i \(-0.698000\pi\)
−0.582689 + 0.812695i \(0.698000\pi\)
\(720\) 0 0
\(721\) 177.056 + 12767.3i 0.00914550 + 0.659471i
\(722\) 0 0
\(723\) 3452.74 + 4412.88i 0.177606 + 0.226994i
\(724\) 0 0
\(725\) 48517.0 28011.3i 2.48534 1.43491i
\(726\) 0 0
\(727\) −9455.61 5459.20i −0.482378 0.278501i 0.239029 0.971013i \(-0.423171\pi\)
−0.721407 + 0.692511i \(0.756504\pi\)
\(728\) 0 0
\(729\) −13108.4 + 14683.0i −0.665975 + 0.745974i
\(730\) 0 0
\(731\) −1477.18 + 2558.54i −0.0747405 + 0.129454i
\(732\) 0 0
\(733\) 10792.3 6230.94i 0.543824 0.313977i −0.202803 0.979219i \(-0.565005\pi\)
0.746627 + 0.665243i \(0.231672\pi\)
\(734\) 0 0
\(735\) −25038.1 + 20735.1i −1.25652 + 1.04058i
\(736\) 0 0
\(737\) 29824.3i 1.49062i
\(738\) 0 0
\(739\) 8019.93 0.399212 0.199606 0.979876i \(-0.436034\pi\)
0.199606 + 0.979876i \(0.436034\pi\)
\(740\) 0 0
\(741\) −287.762 2037.10i −0.0142662 0.100991i
\(742\) 0 0
\(743\) −17310.5 + 9994.23i −0.854725 + 0.493476i −0.862242 0.506496i \(-0.830941\pi\)
0.00751697 + 0.999972i \(0.497607\pi\)
\(744\) 0 0
\(745\) −6547.74 3780.34i −0.322001 0.185907i
\(746\) 0 0
\(747\) −7904.73 + 2278.73i −0.387174 + 0.111612i
\(748\) 0 0
\(749\) 10146.3 + 5671.83i 0.494976 + 0.276695i
\(750\) 0 0
\(751\) −5462.66 9461.60i −0.265426 0.459732i 0.702249 0.711931i \(-0.252179\pi\)
−0.967675 + 0.252200i \(0.918846\pi\)
\(752\) 0 0
\(753\) −16525.7 6663.26i −0.799776 0.322473i
\(754\) 0 0
\(755\) 34649.6 1.67024
\(756\) 0 0
\(757\) 32902.1 1.57972 0.789859 0.613288i \(-0.210153\pi\)
0.789859 + 0.613288i \(0.210153\pi\)
\(758\) 0 0
\(759\) 22257.4 + 8974.27i 1.06441 + 0.429177i
\(760\) 0 0
\(761\) −13873.1 24028.9i −0.660839 1.14461i −0.980395 0.197040i \(-0.936867\pi\)
0.319556 0.947567i \(-0.396466\pi\)
\(762\) 0 0
\(763\) 10035.5 17952.4i 0.476160 0.851796i
\(764\) 0 0
\(765\) −7730.98 + 31194.9i −0.365378 + 1.47432i
\(766\) 0 0
\(767\) 3309.96 + 1911.01i 0.155822 + 0.0899641i
\(768\) 0 0
\(769\) −22748.3 + 13133.8i −1.06674 + 0.615885i −0.927290 0.374344i \(-0.877868\pi\)
−0.139454 + 0.990229i \(0.544535\pi\)
\(770\) 0 0
\(771\) −4934.71 34933.2i −0.230505 1.63176i
\(772\) 0 0
\(773\) 1419.67 0.0660570 0.0330285 0.999454i \(-0.489485\pi\)
0.0330285 + 0.999454i \(0.489485\pi\)
\(774\) 0 0
\(775\) 28247.1i 1.30925i
\(776\) 0 0
\(777\) 9420.83 7584.02i 0.434968 0.350161i
\(778\) 0 0
\(779\) −7451.00 + 4301.84i −0.342696 + 0.197855i
\(780\) 0 0
\(781\) 25505.3 44176.4i 1.16857 2.02402i
\(782\) 0 0
\(783\) 3875.67 37641.6i 0.176890 1.71801i
\(784\) 0 0
\(785\) 33452.0 + 19313.5i 1.52096 + 0.878127i
\(786\) 0 0
\(787\) 11207.6 6470.69i 0.507632 0.293082i −0.224227 0.974537i \(-0.571986\pi\)
0.731860 + 0.681455i \(0.238653\pi\)
\(788\) 0 0
\(789\) −24744.8 31625.8i −1.11652 1.42701i
\(790\) 0 0
\(791\) −310.529 22391.9i −0.0139585 1.00653i
\(792\) 0 0
\(793\) 6402.42 0.286705
\(794\) 0 0
\(795\) 6585.93 930.336i 0.293810 0.0415039i
\(796\) 0 0
\(797\) −5013.20 8683.11i −0.222806 0.385912i 0.732853 0.680387i \(-0.238188\pi\)
−0.955659 + 0.294476i \(0.904855\pi\)
\(798\) 0 0
\(799\) −15733.5 + 27251.2i −0.696633 + 1.20660i
\(800\) 0 0
\(801\) 19887.9 + 19151.3i 0.877283 + 0.844791i
\(802\) 0 0
\(803\) 27973.4 48451.4i 1.22934 2.12928i
\(804\) 0 0
\(805\) −23540.4 + 14029.9i −1.03067 + 0.614271i
\(806\) 0 0
\(807\) 11841.5 + 4774.55i 0.516531 + 0.208268i
\(808\) 0 0
\(809\) 17736.4i 0.770800i 0.922750 + 0.385400i \(0.125937\pi\)
−0.922750 + 0.385400i \(0.874063\pi\)
\(810\) 0 0
\(811\) 2438.23i 0.105571i 0.998606 + 0.0527853i \(0.0168099\pi\)
−0.998606 + 0.0527853i \(0.983190\pi\)
\(812\) 0 0
\(813\) 11814.4 29301.3i 0.509655 1.26401i
\(814\) 0 0
\(815\) 568.319 + 984.357i 0.0244262 + 0.0423074i
\(816\) 0 0
\(817\) 1435.12 + 828.566i 0.0614546 + 0.0354808i
\(818\) 0 0
\(819\) 3697.40 3947.74i 0.157750 0.168431i
\(820\) 0 0
\(821\) −24719.7 14271.9i −1.05082 0.606691i −0.127941 0.991782i \(-0.540837\pi\)
−0.922879 + 0.385091i \(0.874170\pi\)
\(822\) 0 0
\(823\) −16131.9 27941.3i −0.683261 1.18344i −0.973980 0.226635i \(-0.927228\pi\)
0.290718 0.956809i \(-0.406106\pi\)
\(824\) 0 0
\(825\) 60842.2 8594.64i 2.56758 0.362699i
\(826\) 0 0
\(827\) 28049.2i 1.17940i −0.807622 0.589701i \(-0.799246\pi\)
0.807622 0.589701i \(-0.200754\pi\)
\(828\) 0 0
\(829\) 3574.94i 0.149774i 0.997192 + 0.0748870i \(0.0238596\pi\)
−0.997192 + 0.0748870i \(0.976140\pi\)
\(830\) 0 0
\(831\) −8944.12 + 6998.09i −0.373367 + 0.292131i
\(832\) 0 0
\(833\) 11725.0 + 19066.8i 0.487690 + 0.793069i
\(834\) 0 0
\(835\) −9208.59 + 15949.7i −0.381648 + 0.661034i
\(836\) 0 0
\(837\) 15459.5 + 11182.0i 0.638419 + 0.461775i
\(838\) 0 0
\(839\) −9245.81 + 16014.2i −0.380454 + 0.658966i −0.991127 0.132917i \(-0.957566\pi\)
0.610673 + 0.791883i \(0.290899\pi\)
\(840\) 0 0
\(841\) 24179.8 + 41880.7i 0.991424 + 1.71720i
\(842\) 0 0
\(843\) −8121.63 10380.1i −0.331819 0.424092i
\(844\) 0 0
\(845\) 37939.7 1.54458
\(846\) 0 0
\(847\) −35376.7 + 490.602i −1.43513 + 0.0199024i
\(848\) 0 0
\(849\) −21549.3 + 3044.09i −0.871109 + 0.123054i
\(850\) 0 0
\(851\) 8829.12 5097.50i 0.355650 0.205335i
\(852\) 0 0
\(853\) −16048.0 9265.31i −0.644165 0.371909i 0.142052 0.989859i \(-0.454630\pi\)
−0.786217 + 0.617950i \(0.787963\pi\)
\(854\) 0 0
\(855\) 17497.6 + 4336.40i 0.699890 + 0.173452i
\(856\) 0 0
\(857\) −2912.03 + 5043.79i −0.116071 + 0.201041i −0.918207 0.396100i \(-0.870363\pi\)
0.802136 + 0.597141i \(0.203697\pi\)
\(858\) 0 0
\(859\) 15711.1 9070.82i 0.624047 0.360294i −0.154396 0.988009i \(-0.549343\pi\)
0.778443 + 0.627715i \(0.216010\pi\)
\(860\) 0 0
\(861\) −21093.8 8166.93i −0.834930 0.323261i
\(862\) 0 0
\(863\) 30785.2i 1.21430i −0.794587 0.607150i \(-0.792313\pi\)
0.794587 0.607150i \(-0.207687\pi\)
\(864\) 0 0
\(865\) −8536.75 −0.335558
\(866\) 0 0
\(867\) −3153.70 1271.59i −0.123536 0.0498102i
\(868\) 0 0
\(869\) −50310.6 + 29046.9i −1.96395 + 1.13389i
\(870\) 0 0
\(871\) 4907.15 + 2833.14i 0.190898 + 0.110215i
\(872\) 0 0
\(873\) 5852.68 + 20302.4i 0.226900 + 0.787095i
\(874\) 0 0
\(875\) −13632.9 + 24387.7i −0.526715 + 0.942234i
\(876\) 0 0
\(877\) 7709.14 + 13352.6i 0.296829 + 0.514123i 0.975409 0.220404i \(-0.0707375\pi\)
−0.678580 + 0.734527i \(0.737404\pi\)
\(878\) 0 0
\(879\) 5453.69 + 38607.1i 0.209270 + 1.48144i
\(880\) 0 0
\(881\) −32547.9 −1.24469 −0.622343 0.782745i \(-0.713819\pi\)
−0.622343 + 0.782745i \(0.713819\pi\)
\(882\) 0 0
\(883\) 8816.39 0.336008 0.168004 0.985786i \(-0.446268\pi\)
0.168004 + 0.985786i \(0.446268\pi\)
\(884\) 0 0
\(885\) −26375.8 + 20637.0i −1.00182 + 0.783849i
\(886\) 0 0
\(887\) −7698.51 13334.2i −0.291421 0.504756i 0.682725 0.730676i \(-0.260795\pi\)
−0.974146 + 0.225919i \(0.927461\pi\)
\(888\) 0 0
\(889\) −24285.5 + 43444.1i −0.916210 + 1.63900i
\(890\) 0 0
\(891\) 19381.4 36700.8i 0.728731 1.37994i
\(892\) 0 0
\(893\) 15285.5 + 8825.10i 0.572800 + 0.330706i
\(894\) 0 0
\(895\) 32047.3 18502.5i 1.19690 0.691029i
\(896\) 0 0
\(897\) 3590.92 2809.62i 0.133665 0.104582i
\(898\) 0 0
\(899\) −36680.6 −1.36081
\(900\) 0 0
\(901\) 4579.60i 0.169333i
\(902\) 0 0
\(903\) 669.143 + 4305.01i 0.0246597 + 0.158651i
\(904\) 0 0
\(905\) −63164.3 + 36467.9i −2.32006 + 1.33949i
\(906\) 0 0
\(907\) −6029.71 + 10443.8i −0.220742 + 0.382337i −0.955034 0.296498i \(-0.904181\pi\)
0.734291 + 0.678835i \(0.237515\pi\)
\(908\) 0 0
\(909\) 40817.9 11766.8i 1.48938 0.429350i
\(910\) 0 0
\(911\) −8661.13 5000.50i −0.314990 0.181860i 0.334167 0.942514i \(-0.391545\pi\)
−0.649157 + 0.760654i \(0.724878\pi\)
\(912\) 0 0
\(913\) 15022.8 8673.43i 0.544559 0.314401i
\(914\) 0 0
\(915\) −20978.8 + 52030.1i −0.757964 + 1.87985i
\(916\) 0 0
\(917\) −2742.80 + 38.0369i −0.0987733 + 0.00136978i
\(918\) 0 0
\(919\) −7722.40 −0.277191 −0.138596 0.990349i \(-0.544259\pi\)
−0.138596 + 0.990349i \(0.544259\pi\)
\(920\) 0 0
\(921\) 8384.53 20794.7i 0.299978 0.743984i
\(922\) 0 0
\(923\) −4845.73 8393.04i −0.172805 0.299307i
\(924\) 0 0
\(925\) 13051.7 22606.3i 0.463933 0.803556i
\(926\) 0 0
\(927\) 18068.1 + 4477.79i 0.640168 + 0.158652i
\(928\) 0 0
\(929\) −6779.53 + 11742.5i −0.239429 + 0.414702i −0.960550 0.278106i \(-0.910293\pi\)
0.721122 + 0.692808i \(0.243627\pi\)
\(930\) 0 0
\(931\) 10694.8 6576.68i 0.376486 0.231517i
\(932\) 0 0
\(933\) −3233.41 22889.6i −0.113459 0.803184i
\(934\) 0 0
\(935\) 67768.3i 2.37033i
\(936\) 0 0
\(937\) 28967.7i 1.00996i −0.863131 0.504980i \(-0.831500\pi\)
0.863131 0.504980i \(-0.168500\pi\)
\(938\) 0 0
\(939\) −24162.6 30881.8i −0.839742 1.07326i
\(940\) 0 0
\(941\) 10159.8 + 17597.2i 0.351965 + 0.609621i 0.986594 0.163196i \(-0.0521804\pi\)
−0.634629 + 0.772817i \(0.718847\pi\)
\(942\) 0 0
\(943\) −16513.0 9533.79i −0.570241 0.329229i
\(944\) 0 0
\(945\) 19966.5 + 42982.9i 0.687313 + 1.47961i
\(946\) 0 0
\(947\) −8045.62 4645.14i −0.276080 0.159395i 0.355568 0.934651i \(-0.384288\pi\)
−0.631647 + 0.775256i \(0.717621\pi\)
\(948\) 0 0
\(949\) −5314.65 9205.24i −0.181792 0.314873i
\(950\) 0 0
\(951\) −28986.4 37047.0i −0.988380 1.26323i
\(952\) 0 0
\(953\) 38803.4i 1.31896i −0.751724 0.659478i \(-0.770777\pi\)
0.751724 0.659478i \(-0.229223\pi\)
\(954\) 0 0
\(955\) 36794.9i 1.24676i
\(956\) 0 0
\(957\) 11160.7 + 79007.2i 0.376983 + 2.66869i
\(958\) 0 0
\(959\) −16178.2 + 9642.03i −0.544755 + 0.324669i
\(960\) 0 0
\(961\) −5648.15 + 9782.88i −0.189592 + 0.328384i
\(962\) 0 0
\(963\) 11754.5 12206.7i 0.393339 0.408467i
\(964\) 0 0
\(965\) −10633.4 + 18417.6i −0.354717 + 0.614388i
\(966\) 0 0
\(967\) −1327.12 2298.64i −0.0441338 0.0764420i 0.843115 0.537734i \(-0.180719\pi\)
−0.887248 + 0.461292i \(0.847386\pi\)
\(968\) 0 0
\(969\) 4641.50 11511.5i 0.153877 0.381634i
\(970\) 0 0
\(971\) −9651.29 −0.318975 −0.159487 0.987200i \(-0.550984\pi\)
−0.159487 + 0.987200i \(0.550984\pi\)
\(972\) 0 0
\(973\) −658.704 47498.3i −0.0217031 1.56498i
\(974\) 0 0
\(975\) 4365.56 10827.1i 0.143395 0.355637i
\(976\) 0 0
\(977\) 11836.4 6833.72i 0.387593 0.223777i −0.293524 0.955952i \(-0.594828\pi\)
0.681117 + 0.732175i \(0.261495\pi\)
\(978\) 0 0
\(979\) −50418.8 29109.3i −1.64596 0.950293i
\(980\) 0 0
\(981\) −21598.0 20798.0i −0.702925 0.676891i
\(982\) 0 0
\(983\) −1350.47 + 2339.08i −0.0438181 + 0.0758952i −0.887103 0.461572i \(-0.847286\pi\)
0.843285 + 0.537467i \(0.180619\pi\)
\(984\) 0 0
\(985\) 70287.5 40580.5i 2.27365 1.31269i
\(986\) 0 0
\(987\) 7127.08 + 45852.9i 0.229845 + 1.47874i
\(988\) 0 0
\(989\) 3672.56i 0.118079i
\(990\) 0 0
\(991\) −50519.8 −1.61939 −0.809694 0.586852i \(-0.800367\pi\)
−0.809694 + 0.586852i \(0.800367\pi\)
\(992\) 0 0
\(993\) 27555.4 21560.0i 0.880609 0.689009i
\(994\) 0 0
\(995\) −81451.3 + 47025.9i −2.59516 + 1.49831i
\(996\) 0 0
\(997\) 14397.0 + 8312.09i 0.457329 + 0.264039i 0.710920 0.703273i \(-0.248279\pi\)
−0.253592 + 0.967311i \(0.581612\pi\)
\(998\) 0 0
\(999\) −7205.56 16092.1i −0.228202 0.509641i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.4.x.a.209.22 yes 48
3.2 odd 2 756.4.x.a.629.23 48
7.6 odd 2 inner 252.4.x.a.209.3 yes 48
9.2 odd 6 2268.4.f.a.1133.3 48
9.4 even 3 756.4.x.a.125.2 48
9.5 odd 6 inner 252.4.x.a.41.3 48
9.7 even 3 2268.4.f.a.1133.46 48
21.20 even 2 756.4.x.a.629.2 48
63.13 odd 6 756.4.x.a.125.23 48
63.20 even 6 2268.4.f.a.1133.45 48
63.34 odd 6 2268.4.f.a.1133.4 48
63.41 even 6 inner 252.4.x.a.41.22 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.4.x.a.41.3 48 9.5 odd 6 inner
252.4.x.a.41.22 yes 48 63.41 even 6 inner
252.4.x.a.209.3 yes 48 7.6 odd 2 inner
252.4.x.a.209.22 yes 48 1.1 even 1 trivial
756.4.x.a.125.2 48 9.4 even 3
756.4.x.a.125.23 48 63.13 odd 6
756.4.x.a.629.2 48 21.20 even 2
756.4.x.a.629.23 48 3.2 odd 2
2268.4.f.a.1133.3 48 9.2 odd 6
2268.4.f.a.1133.4 48 63.34 odd 6
2268.4.f.a.1133.45 48 63.20 even 6
2268.4.f.a.1133.46 48 9.7 even 3