Properties

Label 252.4
Level 252
Weight 4
Dimension 2250
Nonzero newspaces 20
Sturm bound 13824
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 20 \)
Sturm bound: \(13824\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(252))\).

Total New Old
Modular forms 5424 2342 3082
Cusp forms 4944 2250 2694
Eisenstein series 480 92 388

Trace form

\( 2250q - 3q^{2} + 6q^{3} - 31q^{4} - 42q^{5} - 54q^{6} + 22q^{7} + 33q^{8} - 114q^{9} + O(q^{10}) \) \( 2250q - 3q^{2} + 6q^{3} - 31q^{4} - 42q^{5} - 54q^{6} + 22q^{7} + 33q^{8} - 114q^{9} + 268q^{10} - 114q^{11} - 162q^{13} - 87q^{14} + 480q^{15} - 619q^{16} + 240q^{17} + 228q^{18} - 46q^{19} + 450q^{20} - 138q^{21} + 1044q^{22} - 696q^{23} - 18q^{24} - 716q^{25} + 294q^{26} - 900q^{27} + 273q^{28} - 1212q^{29} - 1638q^{30} - 1024q^{31} - 3483q^{32} + 1230q^{33} - 1064q^{34} + 1386q^{35} - 1410q^{36} + 888q^{37} + 72q^{38} + 1332q^{39} + 2626q^{40} + 1518q^{41} + 1962q^{42} + 266q^{43} + 2532q^{44} - 1008q^{45} + 282q^{46} + 324q^{47} + 2670q^{48} + 5652q^{49} + 1671q^{50} - 990q^{51} + 2794q^{52} + 1152q^{53} + 2628q^{54} + 72q^{55} + 2421q^{56} + 1974q^{57} + 2680q^{58} + 96q^{59} + 2370q^{60} - 9198q^{61} + 3312q^{63} - 811q^{64} - 3576q^{65} - 5106q^{66} - 4354q^{67} - 6360q^{68} - 3420q^{69} - 1290q^{70} - 4200q^{71} - 7728q^{72} - 324q^{73} - 12492q^{74} - 7086q^{75} - 2904q^{76} - 1782q^{77} - 9444q^{78} + 2408q^{79} - 9162q^{80} + 6474q^{81} - 4808q^{82} + 6654q^{83} - 3126q^{84} + 6644q^{85} + 7278q^{86} + 8964q^{87} - 810q^{88} + 17460q^{89} + 17718q^{90} + 3590q^{91} + 12222q^{92} + 4200q^{93} + 3486q^{94} + 2172q^{95} + 13920q^{96} - 3474q^{97} + 6999q^{98} - 3612q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(252))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
252.4.a \(\chi_{252}(1, \cdot)\) 252.4.a.a 1 1
252.4.a.b 1
252.4.a.c 1
252.4.a.d 1
252.4.a.e 2
252.4.a.f 2
252.4.b \(\chi_{252}(55, \cdot)\) 252.4.b.a 2 1
252.4.b.b 4
252.4.b.c 4
252.4.b.d 8
252.4.b.e 12
252.4.b.f 12
252.4.b.g 16
252.4.e \(\chi_{252}(71, \cdot)\) 252.4.e.a 36 1
252.4.f \(\chi_{252}(125, \cdot)\) 252.4.f.a 8 1
252.4.i \(\chi_{252}(25, \cdot)\) 252.4.i.a 48 2
252.4.j \(\chi_{252}(85, \cdot)\) 252.4.j.a 18 2
252.4.j.b 18
252.4.k \(\chi_{252}(37, \cdot)\) 252.4.k.a 2 2
252.4.k.b 2
252.4.k.c 4
252.4.k.d 4
252.4.k.e 4
252.4.k.f 4
252.4.l \(\chi_{252}(193, \cdot)\) 252.4.l.a 48 2
252.4.n \(\chi_{252}(31, \cdot)\) n/a 280 2
252.4.o \(\chi_{252}(95, \cdot)\) n/a 280 2
252.4.t \(\chi_{252}(17, \cdot)\) 252.4.t.a 16 2
252.4.w \(\chi_{252}(5, \cdot)\) 252.4.w.a 48 2
252.4.x \(\chi_{252}(41, \cdot)\) 252.4.x.a 48 2
252.4.ba \(\chi_{252}(155, \cdot)\) n/a 216 2
252.4.bb \(\chi_{252}(11, \cdot)\) n/a 280 2
252.4.be \(\chi_{252}(107, \cdot)\) 252.4.be.a 96 2
252.4.bf \(\chi_{252}(19, \cdot)\) n/a 116 2
252.4.bi \(\chi_{252}(139, \cdot)\) n/a 280 2
252.4.bj \(\chi_{252}(103, \cdot)\) n/a 280 2
252.4.bm \(\chi_{252}(173, \cdot)\) 252.4.bm.a 48 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(252))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(252)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(63))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(126))\)\(^{\oplus 2}\)