Properties

Label 252.4.x
Level $252$
Weight $4$
Character orbit 252.x
Rep. character $\chi_{252}(41,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $48$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 252.x (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(252, [\chi])\).

Total New Old
Modular forms 300 48 252
Cusp forms 276 48 228
Eisenstein series 24 0 24

Trace form

\( 48q + 6q^{7} + 60q^{9} + O(q^{10}) \) \( 48q + 6q^{7} + 60q^{9} - 12q^{11} + 192q^{15} - 72q^{21} - 408q^{23} - 600q^{25} - 84q^{29} + 336q^{37} + 36q^{39} + 84q^{43} + 318q^{49} - 1812q^{51} - 852q^{57} - 564q^{63} + 2964q^{65} - 588q^{67} + 2400q^{77} + 204q^{79} + 1980q^{81} - 360q^{85} - 1080q^{91} + 2496q^{93} + 300q^{95} - 4968q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(252, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
252.4.x.a \(48\) \(14.868\) None \(0\) \(0\) \(0\) \(6\)

Decomposition of \(S_{4}^{\mathrm{old}}(252, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(252, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 2}\)