Properties

Label 252.3.y.a.163.1
Level $252$
Weight $3$
Character 252.163
Analytic conductor $6.867$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,3,Mod(163,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.163"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 252.y (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.86650266188\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 163.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 252.163
Dual form 252.3.y.a.235.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +4.00000 q^{4} +(-2.50000 + 4.33013i) q^{5} +(3.50000 + 6.06218i) q^{7} -8.00000 q^{8} +(5.00000 - 8.66025i) q^{10} +(4.50000 - 2.59808i) q^{11} -16.0000 q^{13} +(-7.00000 - 12.1244i) q^{14} +16.0000 q^{16} +(2.00000 + 3.46410i) q^{17} +(-24.0000 - 13.8564i) q^{19} +(-10.0000 + 17.3205i) q^{20} +(-9.00000 + 5.19615i) q^{22} +(18.0000 + 10.3923i) q^{23} +32.0000 q^{26} +(14.0000 + 24.2487i) q^{28} -37.0000 q^{29} +(-16.5000 + 9.52628i) q^{31} -32.0000 q^{32} +(-4.00000 - 6.92820i) q^{34} -35.0000 q^{35} +(-34.0000 + 58.8897i) q^{37} +(48.0000 + 27.7128i) q^{38} +(20.0000 - 34.6410i) q^{40} -40.0000 q^{41} -24.2487i q^{43} +(18.0000 - 10.3923i) q^{44} +(-36.0000 - 20.7846i) q^{46} +(-39.0000 - 22.5167i) q^{47} +(-24.5000 + 42.4352i) q^{49} -64.0000 q^{52} +(36.5000 + 63.2199i) q^{53} +25.9808i q^{55} +(-28.0000 - 48.4974i) q^{56} +74.0000 q^{58} +(-25.5000 + 14.7224i) q^{59} +(41.0000 - 71.0141i) q^{61} +(33.0000 - 19.0526i) q^{62} +64.0000 q^{64} +(40.0000 - 69.2820i) q^{65} +(69.0000 - 39.8372i) q^{67} +(8.00000 + 13.8564i) q^{68} +70.0000 q^{70} +72.7461i q^{71} +(47.0000 + 81.4064i) q^{73} +(68.0000 - 117.779i) q^{74} +(-96.0000 - 55.4256i) q^{76} +(31.5000 + 18.1865i) q^{77} +(-7.50000 - 4.33013i) q^{79} +(-40.0000 + 69.2820i) q^{80} +80.0000 q^{82} -133.368i q^{83} -20.0000 q^{85} +48.4974i q^{86} +(-36.0000 + 20.7846i) q^{88} +(29.0000 - 50.2295i) q^{89} +(-56.0000 - 96.9948i) q^{91} +(72.0000 + 41.5692i) q^{92} +(78.0000 + 45.0333i) q^{94} +(120.000 - 69.2820i) q^{95} +47.0000 q^{97} +(49.0000 - 84.8705i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 5 q^{5} + 7 q^{7} - 16 q^{8} + 10 q^{10} + 9 q^{11} - 32 q^{13} - 14 q^{14} + 32 q^{16} + 4 q^{17} - 48 q^{19} - 20 q^{20} - 18 q^{22} + 36 q^{23} + 64 q^{26} + 28 q^{28} - 74 q^{29}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −1.00000
\(3\) 0 0
\(4\) 4.00000 1.00000
\(5\) −2.50000 + 4.33013i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 3.50000 + 6.06218i 0.500000 + 0.866025i
\(8\) −8.00000 −1.00000
\(9\) 0 0
\(10\) 5.00000 8.66025i 0.500000 0.866025i
\(11\) 4.50000 2.59808i 0.409091 0.236189i −0.281308 0.959617i \(-0.590768\pi\)
0.690399 + 0.723429i \(0.257435\pi\)
\(12\) 0 0
\(13\) −16.0000 −1.23077 −0.615385 0.788227i \(-0.710999\pi\)
−0.615385 + 0.788227i \(0.710999\pi\)
\(14\) −7.00000 12.1244i −0.500000 0.866025i
\(15\) 0 0
\(16\) 16.0000 1.00000
\(17\) 2.00000 + 3.46410i 0.117647 + 0.203771i 0.918835 0.394642i \(-0.129132\pi\)
−0.801188 + 0.598413i \(0.795798\pi\)
\(18\) 0 0
\(19\) −24.0000 13.8564i −1.26316 0.729285i −0.289474 0.957186i \(-0.593480\pi\)
−0.973684 + 0.227901i \(0.926814\pi\)
\(20\) −10.0000 + 17.3205i −0.500000 + 0.866025i
\(21\) 0 0
\(22\) −9.00000 + 5.19615i −0.409091 + 0.236189i
\(23\) 18.0000 + 10.3923i 0.782609 + 0.451839i 0.837354 0.546661i \(-0.184101\pi\)
−0.0547453 + 0.998500i \(0.517435\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 32.0000 1.23077
\(27\) 0 0
\(28\) 14.0000 + 24.2487i 0.500000 + 0.866025i
\(29\) −37.0000 −1.27586 −0.637931 0.770093i \(-0.720210\pi\)
−0.637931 + 0.770093i \(0.720210\pi\)
\(30\) 0 0
\(31\) −16.5000 + 9.52628i −0.532258 + 0.307299i −0.741935 0.670471i \(-0.766092\pi\)
0.209677 + 0.977771i \(0.432759\pi\)
\(32\) −32.0000 −1.00000
\(33\) 0 0
\(34\) −4.00000 6.92820i −0.117647 0.203771i
\(35\) −35.0000 −1.00000
\(36\) 0 0
\(37\) −34.0000 + 58.8897i −0.918919 + 1.59161i −0.117859 + 0.993030i \(0.537603\pi\)
−0.801060 + 0.598584i \(0.795730\pi\)
\(38\) 48.0000 + 27.7128i 1.26316 + 0.729285i
\(39\) 0 0
\(40\) 20.0000 34.6410i 0.500000 0.866025i
\(41\) −40.0000 −0.975610 −0.487805 0.872953i \(-0.662202\pi\)
−0.487805 + 0.872953i \(0.662202\pi\)
\(42\) 0 0
\(43\) 24.2487i 0.563924i −0.959426 0.281962i \(-0.909015\pi\)
0.959426 0.281962i \(-0.0909851\pi\)
\(44\) 18.0000 10.3923i 0.409091 0.236189i
\(45\) 0 0
\(46\) −36.0000 20.7846i −0.782609 0.451839i
\(47\) −39.0000 22.5167i −0.829787 0.479078i 0.0239926 0.999712i \(-0.492362\pi\)
−0.853780 + 0.520634i \(0.825696\pi\)
\(48\) 0 0
\(49\) −24.5000 + 42.4352i −0.500000 + 0.866025i
\(50\) 0 0
\(51\) 0 0
\(52\) −64.0000 −1.23077
\(53\) 36.5000 + 63.2199i 0.688679 + 1.19283i 0.972265 + 0.233881i \(0.0751425\pi\)
−0.283586 + 0.958947i \(0.591524\pi\)
\(54\) 0 0
\(55\) 25.9808i 0.472377i
\(56\) −28.0000 48.4974i −0.500000 0.866025i
\(57\) 0 0
\(58\) 74.0000 1.27586
\(59\) −25.5000 + 14.7224i −0.432203 + 0.249533i −0.700285 0.713863i \(-0.746944\pi\)
0.268081 + 0.963396i \(0.413610\pi\)
\(60\) 0 0
\(61\) 41.0000 71.0141i 0.672131 1.16417i −0.305167 0.952299i \(-0.598712\pi\)
0.977299 0.211867i \(-0.0679542\pi\)
\(62\) 33.0000 19.0526i 0.532258 0.307299i
\(63\) 0 0
\(64\) 64.0000 1.00000
\(65\) 40.0000 69.2820i 0.615385 1.06588i
\(66\) 0 0
\(67\) 69.0000 39.8372i 1.02985 0.594585i 0.112909 0.993605i \(-0.463983\pi\)
0.916942 + 0.399021i \(0.130650\pi\)
\(68\) 8.00000 + 13.8564i 0.117647 + 0.203771i
\(69\) 0 0
\(70\) 70.0000 1.00000
\(71\) 72.7461i 1.02459i 0.858809 + 0.512297i \(0.171205\pi\)
−0.858809 + 0.512297i \(0.828795\pi\)
\(72\) 0 0
\(73\) 47.0000 + 81.4064i 0.643836 + 1.11516i 0.984569 + 0.174996i \(0.0559913\pi\)
−0.340734 + 0.940160i \(0.610675\pi\)
\(74\) 68.0000 117.779i 0.918919 1.59161i
\(75\) 0 0
\(76\) −96.0000 55.4256i −1.26316 0.729285i
\(77\) 31.5000 + 18.1865i 0.409091 + 0.236189i
\(78\) 0 0
\(79\) −7.50000 4.33013i −0.0949367 0.0548117i 0.451780 0.892129i \(-0.350789\pi\)
−0.546717 + 0.837318i \(0.684123\pi\)
\(80\) −40.0000 + 69.2820i −0.500000 + 0.866025i
\(81\) 0 0
\(82\) 80.0000 0.975610
\(83\) 133.368i 1.60684i −0.595411 0.803421i \(-0.703011\pi\)
0.595411 0.803421i \(-0.296989\pi\)
\(84\) 0 0
\(85\) −20.0000 −0.235294
\(86\) 48.4974i 0.563924i
\(87\) 0 0
\(88\) −36.0000 + 20.7846i −0.409091 + 0.236189i
\(89\) 29.0000 50.2295i 0.325843 0.564376i −0.655840 0.754900i \(-0.727685\pi\)
0.981683 + 0.190524i \(0.0610187\pi\)
\(90\) 0 0
\(91\) −56.0000 96.9948i −0.615385 1.06588i
\(92\) 72.0000 + 41.5692i 0.782609 + 0.451839i
\(93\) 0 0
\(94\) 78.0000 + 45.0333i 0.829787 + 0.479078i
\(95\) 120.000 69.2820i 1.26316 0.729285i
\(96\) 0 0
\(97\) 47.0000 0.484536 0.242268 0.970209i \(-0.422109\pi\)
0.242268 + 0.970209i \(0.422109\pi\)
\(98\) 49.0000 84.8705i 0.500000 0.866025i
\(99\) 0 0
\(100\) 0 0
\(101\) 65.0000 + 112.583i 0.643564 + 1.11469i 0.984631 + 0.174647i \(0.0558784\pi\)
−0.341067 + 0.940039i \(0.610788\pi\)
\(102\) 0 0
\(103\) 18.0000 + 10.3923i 0.174757 + 0.100896i 0.584827 0.811158i \(-0.301162\pi\)
−0.410070 + 0.912054i \(0.634496\pi\)
\(104\) 128.000 1.23077
\(105\) 0 0
\(106\) −73.0000 126.440i −0.688679 1.19283i
\(107\) 70.5000 + 40.7032i 0.658879 + 0.380404i 0.791850 0.610716i \(-0.209118\pi\)
−0.132971 + 0.991120i \(0.542452\pi\)
\(108\) 0 0
\(109\) −61.0000 105.655i −0.559633 0.969313i −0.997527 0.0702862i \(-0.977609\pi\)
0.437894 0.899027i \(-0.355725\pi\)
\(110\) 51.9615i 0.472377i
\(111\) 0 0
\(112\) 56.0000 + 96.9948i 0.500000 + 0.866025i
\(113\) −16.0000 −0.141593 −0.0707965 0.997491i \(-0.522554\pi\)
−0.0707965 + 0.997491i \(0.522554\pi\)
\(114\) 0 0
\(115\) −90.0000 + 51.9615i −0.782609 + 0.451839i
\(116\) −148.000 −1.27586
\(117\) 0 0
\(118\) 51.0000 29.4449i 0.432203 0.249533i
\(119\) −14.0000 + 24.2487i −0.117647 + 0.203771i
\(120\) 0 0
\(121\) −47.0000 + 81.4064i −0.388430 + 0.672780i
\(122\) −82.0000 + 142.028i −0.672131 + 1.16417i
\(123\) 0 0
\(124\) −66.0000 + 38.1051i −0.532258 + 0.307299i
\(125\) −125.000 −1.00000
\(126\) 0 0
\(127\) 109.119i 0.859206i 0.903018 + 0.429603i \(0.141347\pi\)
−0.903018 + 0.429603i \(0.858653\pi\)
\(128\) −128.000 −1.00000
\(129\) 0 0
\(130\) −80.0000 + 138.564i −0.615385 + 1.06588i
\(131\) 13.5000 + 7.79423i 0.103053 + 0.0594979i 0.550641 0.834742i \(-0.314383\pi\)
−0.447587 + 0.894240i \(0.647717\pi\)
\(132\) 0 0
\(133\) 193.990i 1.45857i
\(134\) −138.000 + 79.6743i −1.02985 + 0.594585i
\(135\) 0 0
\(136\) −16.0000 27.7128i −0.117647 0.203771i
\(137\) −37.0000 64.0859i −0.270073 0.467780i 0.698807 0.715310i \(-0.253715\pi\)
−0.968880 + 0.247530i \(0.920381\pi\)
\(138\) 0 0
\(139\) 169.741i 1.22116i 0.791955 + 0.610579i \(0.209063\pi\)
−0.791955 + 0.610579i \(0.790937\pi\)
\(140\) −140.000 −1.00000
\(141\) 0 0
\(142\) 145.492i 1.02459i
\(143\) −72.0000 + 41.5692i −0.503497 + 0.290694i
\(144\) 0 0
\(145\) 92.5000 160.215i 0.637931 1.10493i
\(146\) −94.0000 162.813i −0.643836 1.11516i
\(147\) 0 0
\(148\) −136.000 + 235.559i −0.918919 + 1.59161i
\(149\) 83.0000 143.760i 0.557047 0.964834i −0.440694 0.897657i \(-0.645268\pi\)
0.997741 0.0671763i \(-0.0213990\pi\)
\(150\) 0 0
\(151\) 121.500 70.1481i 0.804636 0.464557i −0.0404538 0.999181i \(-0.512880\pi\)
0.845090 + 0.534625i \(0.179547\pi\)
\(152\) 192.000 + 110.851i 1.26316 + 0.729285i
\(153\) 0 0
\(154\) −63.0000 36.3731i −0.409091 0.236189i
\(155\) 95.2628i 0.614599i
\(156\) 0 0
\(157\) 26.0000 + 45.0333i 0.165605 + 0.286836i 0.936870 0.349678i \(-0.113709\pi\)
−0.771265 + 0.636514i \(0.780376\pi\)
\(158\) 15.0000 + 8.66025i 0.0949367 + 0.0548117i
\(159\) 0 0
\(160\) 80.0000 138.564i 0.500000 0.866025i
\(161\) 145.492i 0.903679i
\(162\) 0 0
\(163\) 66.0000 + 38.1051i 0.404908 + 0.233774i 0.688600 0.725142i \(-0.258226\pi\)
−0.283692 + 0.958916i \(0.591559\pi\)
\(164\) −160.000 −0.975610
\(165\) 0 0
\(166\) 266.736i 1.60684i
\(167\) 169.741i 1.01641i 0.861235 + 0.508207i \(0.169691\pi\)
−0.861235 + 0.508207i \(0.830309\pi\)
\(168\) 0 0
\(169\) 87.0000 0.514793
\(170\) 40.0000 0.235294
\(171\) 0 0
\(172\) 96.9948i 0.563924i
\(173\) −13.0000 + 22.5167i −0.0751445 + 0.130154i −0.901149 0.433509i \(-0.857275\pi\)
0.826005 + 0.563663i \(0.190608\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 72.0000 41.5692i 0.409091 0.236189i
\(177\) 0 0
\(178\) −58.0000 + 100.459i −0.325843 + 0.564376i
\(179\) −258.000 + 148.956i −1.44134 + 0.832158i −0.997939 0.0641646i \(-0.979562\pi\)
−0.443401 + 0.896323i \(0.646228\pi\)
\(180\) 0 0
\(181\) −16.0000 −0.0883978 −0.0441989 0.999023i \(-0.514074\pi\)
−0.0441989 + 0.999023i \(0.514074\pi\)
\(182\) 112.000 + 193.990i 0.615385 + 1.06588i
\(183\) 0 0
\(184\) −144.000 83.1384i −0.782609 0.451839i
\(185\) −170.000 294.449i −0.918919 1.59161i
\(186\) 0 0
\(187\) 18.0000 + 10.3923i 0.0962567 + 0.0555738i
\(188\) −156.000 90.0666i −0.829787 0.479078i
\(189\) 0 0
\(190\) −240.000 + 138.564i −1.26316 + 0.729285i
\(191\) 312.000 + 180.133i 1.63351 + 0.943106i 0.983000 + 0.183607i \(0.0587773\pi\)
0.650508 + 0.759499i \(0.274556\pi\)
\(192\) 0 0
\(193\) 75.5000 + 130.770i 0.391192 + 0.677564i 0.992607 0.121373i \(-0.0387296\pi\)
−0.601415 + 0.798937i \(0.705396\pi\)
\(194\) −94.0000 −0.484536
\(195\) 0 0
\(196\) −98.0000 + 169.741i −0.500000 + 0.866025i
\(197\) 278.000 1.41117 0.705584 0.708627i \(-0.250685\pi\)
0.705584 + 0.708627i \(0.250685\pi\)
\(198\) 0 0
\(199\) 120.000 69.2820i 0.603015 0.348151i −0.167212 0.985921i \(-0.553476\pi\)
0.770227 + 0.637770i \(0.220143\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −130.000 225.167i −0.643564 1.11469i
\(203\) −129.500 224.301i −0.637931 1.10493i
\(204\) 0 0
\(205\) 100.000 173.205i 0.487805 0.844903i
\(206\) −36.0000 20.7846i −0.174757 0.100896i
\(207\) 0 0
\(208\) −256.000 −1.23077
\(209\) −144.000 −0.688995
\(210\) 0 0
\(211\) 121.244i 0.574614i −0.957839 0.287307i \(-0.907240\pi\)
0.957839 0.287307i \(-0.0927600\pi\)
\(212\) 146.000 + 252.879i 0.688679 + 1.19283i
\(213\) 0 0
\(214\) −141.000 81.4064i −0.658879 0.380404i
\(215\) 105.000 + 60.6218i 0.488372 + 0.281962i
\(216\) 0 0
\(217\) −115.500 66.6840i −0.532258 0.307299i
\(218\) 122.000 + 211.310i 0.559633 + 0.969313i
\(219\) 0 0
\(220\) 103.923i 0.472377i
\(221\) −32.0000 55.4256i −0.144796 0.250795i
\(222\) 0 0
\(223\) 12.1244i 0.0543693i 0.999630 + 0.0271847i \(0.00865421\pi\)
−0.999630 + 0.0271847i \(0.991346\pi\)
\(224\) −112.000 193.990i −0.500000 0.866025i
\(225\) 0 0
\(226\) 32.0000 0.141593
\(227\) −130.500 + 75.3442i −0.574890 + 0.331913i −0.759100 0.650974i \(-0.774361\pi\)
0.184210 + 0.982887i \(0.441027\pi\)
\(228\) 0 0
\(229\) −106.000 + 183.597i −0.462882 + 0.801735i −0.999103 0.0423423i \(-0.986518\pi\)
0.536221 + 0.844078i \(0.319851\pi\)
\(230\) 180.000 103.923i 0.782609 0.451839i
\(231\) 0 0
\(232\) 296.000 1.27586
\(233\) −106.000 + 183.597i −0.454936 + 0.787972i −0.998685 0.0512764i \(-0.983671\pi\)
0.543749 + 0.839248i \(0.317004\pi\)
\(234\) 0 0
\(235\) 195.000 112.583i 0.829787 0.479078i
\(236\) −102.000 + 58.8897i −0.432203 + 0.249533i
\(237\) 0 0
\(238\) 28.0000 48.4974i 0.117647 0.203771i
\(239\) 48.4974i 0.202918i −0.994840 0.101459i \(-0.967649\pi\)
0.994840 0.101459i \(-0.0323511\pi\)
\(240\) 0 0
\(241\) −5.50000 9.52628i −0.0228216 0.0395281i 0.854389 0.519634i \(-0.173932\pi\)
−0.877211 + 0.480106i \(0.840598\pi\)
\(242\) 94.0000 162.813i 0.388430 0.672780i
\(243\) 0 0
\(244\) 164.000 284.056i 0.672131 1.16417i
\(245\) −122.500 212.176i −0.500000 0.866025i
\(246\) 0 0
\(247\) 384.000 + 221.703i 1.55466 + 0.897581i
\(248\) 132.000 76.2102i 0.532258 0.307299i
\(249\) 0 0
\(250\) 250.000 1.00000
\(251\) 36.3731i 0.144913i −0.997372 0.0724563i \(-0.976916\pi\)
0.997372 0.0724563i \(-0.0230838\pi\)
\(252\) 0 0
\(253\) 108.000 0.426877
\(254\) 218.238i 0.859206i
\(255\) 0 0
\(256\) 256.000 1.00000
\(257\) 29.0000 50.2295i 0.112840 0.195445i −0.804074 0.594529i \(-0.797338\pi\)
0.916914 + 0.399084i \(0.130672\pi\)
\(258\) 0 0
\(259\) −476.000 −1.83784
\(260\) 160.000 277.128i 0.615385 1.06588i
\(261\) 0 0
\(262\) −27.0000 15.5885i −0.103053 0.0594979i
\(263\) 351.000 202.650i 1.33460 0.770532i 0.348600 0.937272i \(-0.386657\pi\)
0.986001 + 0.166740i \(0.0533239\pi\)
\(264\) 0 0
\(265\) −365.000 −1.37736
\(266\) 387.979i 1.45857i
\(267\) 0 0
\(268\) 276.000 159.349i 1.02985 0.594585i
\(269\) 222.500 + 385.381i 0.827138 + 1.43264i 0.900275 + 0.435322i \(0.143366\pi\)
−0.0731371 + 0.997322i \(0.523301\pi\)
\(270\) 0 0
\(271\) −307.500 177.535i −1.13469 0.655111i −0.189577 0.981866i \(-0.560712\pi\)
−0.945109 + 0.326754i \(0.894045\pi\)
\(272\) 32.0000 + 55.4256i 0.117647 + 0.203771i
\(273\) 0 0
\(274\) 74.0000 + 128.172i 0.270073 + 0.467780i
\(275\) 0 0
\(276\) 0 0
\(277\) 128.000 + 221.703i 0.462094 + 0.800370i 0.999065 0.0432305i \(-0.0137650\pi\)
−0.536971 + 0.843601i \(0.680432\pi\)
\(278\) 339.482i 1.22116i
\(279\) 0 0
\(280\) 280.000 1.00000
\(281\) 278.000 0.989324 0.494662 0.869085i \(-0.335292\pi\)
0.494662 + 0.869085i \(0.335292\pi\)
\(282\) 0 0
\(283\) 15.0000 8.66025i 0.0530035 0.0306016i −0.473264 0.880921i \(-0.656924\pi\)
0.526268 + 0.850319i \(0.323591\pi\)
\(284\) 290.985i 1.02459i
\(285\) 0 0
\(286\) 144.000 83.1384i 0.503497 0.290694i
\(287\) −140.000 242.487i −0.487805 0.844903i
\(288\) 0 0
\(289\) 136.500 236.425i 0.472318 0.818079i
\(290\) −185.000 + 320.429i −0.637931 + 1.10493i
\(291\) 0 0
\(292\) 188.000 + 325.626i 0.643836 + 1.11516i
\(293\) −61.0000 −0.208191 −0.104096 0.994567i \(-0.533195\pi\)
−0.104096 + 0.994567i \(0.533195\pi\)
\(294\) 0 0
\(295\) 147.224i 0.499065i
\(296\) 272.000 471.118i 0.918919 1.59161i
\(297\) 0 0
\(298\) −166.000 + 287.520i −0.557047 + 0.964834i
\(299\) −288.000 166.277i −0.963211 0.556110i
\(300\) 0 0
\(301\) 147.000 84.8705i 0.488372 0.281962i
\(302\) −243.000 + 140.296i −0.804636 + 0.464557i
\(303\) 0 0
\(304\) −384.000 221.703i −1.26316 0.729285i
\(305\) 205.000 + 355.070i 0.672131 + 1.16417i
\(306\) 0 0
\(307\) 436.477i 1.42175i 0.703319 + 0.710874i \(0.251701\pi\)
−0.703319 + 0.710874i \(0.748299\pi\)
\(308\) 126.000 + 72.7461i 0.409091 + 0.236189i
\(309\) 0 0
\(310\) 190.526i 0.614599i
\(311\) 132.000 76.2102i 0.424437 0.245049i −0.272537 0.962145i \(-0.587863\pi\)
0.696974 + 0.717096i \(0.254529\pi\)
\(312\) 0 0
\(313\) −116.500 + 201.784i −0.372204 + 0.644677i −0.989904 0.141737i \(-0.954731\pi\)
0.617700 + 0.786414i \(0.288065\pi\)
\(314\) −52.0000 90.0666i −0.165605 0.286836i
\(315\) 0 0
\(316\) −30.0000 17.3205i −0.0949367 0.0548117i
\(317\) −53.5000 + 92.6647i −0.168770 + 0.292318i −0.937988 0.346669i \(-0.887313\pi\)
0.769218 + 0.638987i \(0.220646\pi\)
\(318\) 0 0
\(319\) −166.500 + 96.1288i −0.521944 + 0.301344i
\(320\) −160.000 + 277.128i −0.500000 + 0.866025i
\(321\) 0 0
\(322\) 290.985i 0.903679i
\(323\) 110.851i 0.343193i
\(324\) 0 0
\(325\) 0 0
\(326\) −132.000 76.2102i −0.404908 0.233774i
\(327\) 0 0
\(328\) 320.000 0.975610
\(329\) 315.233i 0.958156i
\(330\) 0 0
\(331\) −354.000 204.382i −1.06949 0.617468i −0.141445 0.989946i \(-0.545175\pi\)
−0.928041 + 0.372478i \(0.878508\pi\)
\(332\) 533.472i 1.60684i
\(333\) 0 0
\(334\) 339.482i 1.01641i
\(335\) 398.372i 1.18917i
\(336\) 0 0
\(337\) 149.000 0.442136 0.221068 0.975258i \(-0.429046\pi\)
0.221068 + 0.975258i \(0.429046\pi\)
\(338\) −174.000 −0.514793
\(339\) 0 0
\(340\) −80.0000 −0.235294
\(341\) −49.5000 + 85.7365i −0.145161 + 0.251427i
\(342\) 0 0
\(343\) −343.000 −1.00000
\(344\) 193.990i 0.563924i
\(345\) 0 0
\(346\) 26.0000 45.0333i 0.0751445 0.130154i
\(347\) 330.000 190.526i 0.951009 0.549065i 0.0576145 0.998339i \(-0.481651\pi\)
0.893394 + 0.449274i \(0.148317\pi\)
\(348\) 0 0
\(349\) −394.000 −1.12894 −0.564470 0.825454i \(-0.690919\pi\)
−0.564470 + 0.825454i \(0.690919\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −144.000 + 83.1384i −0.409091 + 0.236189i
\(353\) 128.000 + 221.703i 0.362606 + 0.628052i 0.988389 0.151945i \(-0.0485537\pi\)
−0.625783 + 0.779997i \(0.715220\pi\)
\(354\) 0 0
\(355\) −315.000 181.865i −0.887324 0.512297i
\(356\) 116.000 200.918i 0.325843 0.564376i
\(357\) 0 0
\(358\) 516.000 297.913i 1.44134 0.832158i
\(359\) −339.000 195.722i −0.944290 0.545186i −0.0529873 0.998595i \(-0.516874\pi\)
−0.891302 + 0.453409i \(0.850208\pi\)
\(360\) 0 0
\(361\) 203.500 + 352.472i 0.563712 + 0.976378i
\(362\) 32.0000 0.0883978
\(363\) 0 0
\(364\) −224.000 387.979i −0.615385 1.06588i
\(365\) −470.000 −1.28767
\(366\) 0 0
\(367\) 256.500 148.090i 0.698910 0.403516i −0.108031 0.994147i \(-0.534455\pi\)
0.806941 + 0.590632i \(0.201121\pi\)
\(368\) 288.000 + 166.277i 0.782609 + 0.451839i
\(369\) 0 0
\(370\) 340.000 + 588.897i 0.918919 + 1.59161i
\(371\) −255.500 + 442.539i −0.688679 + 1.19283i
\(372\) 0 0
\(373\) −328.000 + 568.113i −0.879357 + 1.52309i −0.0273083 + 0.999627i \(0.508694\pi\)
−0.852048 + 0.523463i \(0.824640\pi\)
\(374\) −36.0000 20.7846i −0.0962567 0.0555738i
\(375\) 0 0
\(376\) 312.000 + 180.133i 0.829787 + 0.479078i
\(377\) 592.000 1.57029
\(378\) 0 0
\(379\) 290.985i 0.767769i −0.923381 0.383885i \(-0.874586\pi\)
0.923381 0.383885i \(-0.125414\pi\)
\(380\) 480.000 277.128i 1.26316 0.729285i
\(381\) 0 0
\(382\) −624.000 360.267i −1.63351 0.943106i
\(383\) 171.000 + 98.7269i 0.446475 + 0.257773i 0.706340 0.707872i \(-0.250345\pi\)
−0.259865 + 0.965645i \(0.583678\pi\)
\(384\) 0 0
\(385\) −157.500 + 90.9327i −0.409091 + 0.236189i
\(386\) −151.000 261.540i −0.391192 0.677564i
\(387\) 0 0
\(388\) 188.000 0.484536
\(389\) −205.000 355.070i −0.526992 0.912777i −0.999505 0.0314537i \(-0.989986\pi\)
0.472513 0.881324i \(-0.343347\pi\)
\(390\) 0 0
\(391\) 83.1384i 0.212630i
\(392\) 196.000 339.482i 0.500000 0.866025i
\(393\) 0 0
\(394\) −556.000 −1.41117
\(395\) 37.5000 21.6506i 0.0949367 0.0548117i
\(396\) 0 0
\(397\) −106.000 + 183.597i −0.267003 + 0.462462i −0.968086 0.250617i \(-0.919367\pi\)
0.701084 + 0.713079i \(0.252700\pi\)
\(398\) −240.000 + 138.564i −0.603015 + 0.348151i
\(399\) 0 0
\(400\) 0 0
\(401\) −232.000 + 401.836i −0.578554 + 1.00208i 0.417092 + 0.908864i \(0.363049\pi\)
−0.995646 + 0.0932200i \(0.970284\pi\)
\(402\) 0 0
\(403\) 264.000 152.420i 0.655087 0.378215i
\(404\) 260.000 + 450.333i 0.643564 + 1.11469i
\(405\) 0 0
\(406\) 259.000 + 448.601i 0.637931 + 1.10493i
\(407\) 353.338i 0.868153i
\(408\) 0 0
\(409\) −257.500 446.003i −0.629584 1.09047i −0.987635 0.156770i \(-0.949892\pi\)
0.358051 0.933702i \(-0.383441\pi\)
\(410\) −200.000 + 346.410i −0.487805 + 0.844903i
\(411\) 0 0
\(412\) 72.0000 + 41.5692i 0.174757 + 0.100896i
\(413\) −178.500 103.057i −0.432203 0.249533i
\(414\) 0 0
\(415\) 577.500 + 333.420i 1.39157 + 0.803421i
\(416\) 512.000 1.23077
\(417\) 0 0
\(418\) 288.000 0.688995
\(419\) 96.9948i 0.231491i 0.993279 + 0.115746i \(0.0369257\pi\)
−0.993279 + 0.115746i \(0.963074\pi\)
\(420\) 0 0
\(421\) 170.000 0.403800 0.201900 0.979406i \(-0.435288\pi\)
0.201900 + 0.979406i \(0.435288\pi\)
\(422\) 242.487i 0.574614i
\(423\) 0 0
\(424\) −292.000 505.759i −0.688679 1.19283i
\(425\) 0 0
\(426\) 0 0
\(427\) 574.000 1.34426
\(428\) 282.000 + 162.813i 0.658879 + 0.380404i
\(429\) 0 0
\(430\) −210.000 121.244i −0.488372 0.281962i
\(431\) −6.00000 + 3.46410i −0.0139211 + 0.00803736i −0.506944 0.861979i \(-0.669225\pi\)
0.493023 + 0.870016i \(0.335892\pi\)
\(432\) 0 0
\(433\) −226.000 −0.521940 −0.260970 0.965347i \(-0.584042\pi\)
−0.260970 + 0.965347i \(0.584042\pi\)
\(434\) 231.000 + 133.368i 0.532258 + 0.307299i
\(435\) 0 0
\(436\) −244.000 422.620i −0.559633 0.969313i
\(437\) −288.000 498.831i −0.659039 1.14149i
\(438\) 0 0
\(439\) 154.500 + 89.2006i 0.351936 + 0.203190i 0.665538 0.746364i \(-0.268202\pi\)
−0.313602 + 0.949555i \(0.601536\pi\)
\(440\) 207.846i 0.472377i
\(441\) 0 0
\(442\) 64.0000 + 110.851i 0.144796 + 0.250795i
\(443\) −538.500 310.903i −1.21558 0.701813i −0.251607 0.967829i \(-0.580959\pi\)
−0.963968 + 0.266017i \(0.914292\pi\)
\(444\) 0 0
\(445\) 145.000 + 251.147i 0.325843 + 0.564376i
\(446\) 24.2487i 0.0543693i
\(447\) 0 0
\(448\) 224.000 + 387.979i 0.500000 + 0.866025i
\(449\) −520.000 −1.15813 −0.579065 0.815282i \(-0.696582\pi\)
−0.579065 + 0.815282i \(0.696582\pi\)
\(450\) 0 0
\(451\) −180.000 + 103.923i −0.399113 + 0.230428i
\(452\) −64.0000 −0.141593
\(453\) 0 0
\(454\) 261.000 150.688i 0.574890 0.331913i
\(455\) 560.000 1.23077
\(456\) 0 0
\(457\) 18.5000 32.0429i 0.0404814 0.0701158i −0.845075 0.534648i \(-0.820444\pi\)
0.885556 + 0.464532i \(0.153778\pi\)
\(458\) 212.000 367.195i 0.462882 0.801735i
\(459\) 0 0
\(460\) −360.000 + 207.846i −0.782609 + 0.451839i
\(461\) −250.000 −0.542299 −0.271150 0.962537i \(-0.587404\pi\)
−0.271150 + 0.962537i \(0.587404\pi\)
\(462\) 0 0
\(463\) 339.482i 0.733222i −0.930374 0.366611i \(-0.880518\pi\)
0.930374 0.366611i \(-0.119482\pi\)
\(464\) −592.000 −1.27586
\(465\) 0 0
\(466\) 212.000 367.195i 0.454936 0.787972i
\(467\) −690.000 398.372i −1.47752 0.853044i −0.477839 0.878448i \(-0.658580\pi\)
−0.999677 + 0.0254033i \(0.991913\pi\)
\(468\) 0 0
\(469\) 483.000 + 278.860i 1.02985 + 0.594585i
\(470\) −390.000 + 225.167i −0.829787 + 0.479078i
\(471\) 0 0
\(472\) 204.000 117.779i 0.432203 0.249533i
\(473\) −63.0000 109.119i −0.133192 0.230696i
\(474\) 0 0
\(475\) 0 0
\(476\) −56.0000 + 96.9948i −0.117647 + 0.203771i
\(477\) 0 0
\(478\) 96.9948i 0.202918i
\(479\) 153.000 88.3346i 0.319415 0.184415i −0.331717 0.943379i \(-0.607628\pi\)
0.651132 + 0.758965i \(0.274294\pi\)
\(480\) 0 0
\(481\) 544.000 942.236i 1.13098 1.95891i
\(482\) 11.0000 + 19.0526i 0.0228216 + 0.0395281i
\(483\) 0 0
\(484\) −188.000 + 325.626i −0.388430 + 0.672780i
\(485\) −117.500 + 203.516i −0.242268 + 0.419621i
\(486\) 0 0
\(487\) 268.500 155.019i 0.551335 0.318313i −0.198325 0.980136i \(-0.563550\pi\)
0.749660 + 0.661823i \(0.230217\pi\)
\(488\) −328.000 + 568.113i −0.672131 + 1.16417i
\(489\) 0 0
\(490\) 245.000 + 424.352i 0.500000 + 0.866025i
\(491\) 230.363i 0.469171i −0.972096 0.234585i \(-0.924627\pi\)
0.972096 0.234585i \(-0.0753732\pi\)
\(492\) 0 0
\(493\) −74.0000 128.172i −0.150101 0.259983i
\(494\) −768.000 443.405i −1.55466 0.897581i
\(495\) 0 0
\(496\) −264.000 + 152.420i −0.532258 + 0.307299i
\(497\) −441.000 + 254.611i −0.887324 + 0.512297i
\(498\) 0 0
\(499\) −207.000 119.512i −0.414830 0.239502i 0.278033 0.960571i \(-0.410318\pi\)
−0.692863 + 0.721069i \(0.743651\pi\)
\(500\) −500.000 −1.00000
\(501\) 0 0
\(502\) 72.7461i 0.144913i
\(503\) 872.954i 1.73549i 0.497006 + 0.867747i \(0.334433\pi\)
−0.497006 + 0.867747i \(0.665567\pi\)
\(504\) 0 0
\(505\) −650.000 −1.28713
\(506\) −216.000 −0.426877
\(507\) 0 0
\(508\) 436.477i 0.859206i
\(509\) 270.500 468.520i 0.531434 0.920471i −0.467893 0.883785i \(-0.654987\pi\)
0.999327 0.0366857i \(-0.0116800\pi\)
\(510\) 0 0
\(511\) −329.000 + 569.845i −0.643836 + 1.11516i
\(512\) −512.000 −1.00000
\(513\) 0 0
\(514\) −58.0000 + 100.459i −0.112840 + 0.195445i
\(515\) −90.0000 + 51.9615i −0.174757 + 0.100896i
\(516\) 0 0
\(517\) −234.000 −0.452611
\(518\) 952.000 1.83784
\(519\) 0 0
\(520\) −320.000 + 554.256i −0.615385 + 1.06588i
\(521\) 275.000 + 476.314i 0.527831 + 0.914230i 0.999474 + 0.0324405i \(0.0103279\pi\)
−0.471643 + 0.881790i \(0.656339\pi\)
\(522\) 0 0
\(523\) −528.000 304.841i −1.00956 0.582870i −0.0984974 0.995137i \(-0.531404\pi\)
−0.911063 + 0.412267i \(0.864737\pi\)
\(524\) 54.0000 + 31.1769i 0.103053 + 0.0594979i
\(525\) 0 0
\(526\) −702.000 + 405.300i −1.33460 + 0.770532i
\(527\) −66.0000 38.1051i −0.125237 0.0723057i
\(528\) 0 0
\(529\) −48.5000 84.0045i −0.0916824 0.158799i
\(530\) 730.000 1.37736
\(531\) 0 0
\(532\) 775.959i 1.45857i
\(533\) 640.000 1.20075
\(534\) 0 0
\(535\) −352.500 + 203.516i −0.658879 + 0.380404i
\(536\) −552.000 + 318.697i −1.02985 + 0.594585i
\(537\) 0 0
\(538\) −445.000 770.763i −0.827138 1.43264i
\(539\) 254.611i 0.472377i
\(540\) 0 0
\(541\) 155.000 268.468i 0.286506 0.496244i −0.686467 0.727161i \(-0.740839\pi\)
0.972973 + 0.230917i \(0.0741727\pi\)
\(542\) 615.000 + 355.070i 1.13469 + 0.655111i
\(543\) 0 0
\(544\) −64.0000 110.851i −0.117647 0.203771i
\(545\) 610.000 1.11927
\(546\) 0 0
\(547\) 630.466i 1.15259i 0.817242 + 0.576295i \(0.195502\pi\)
−0.817242 + 0.576295i \(0.804498\pi\)
\(548\) −148.000 256.344i −0.270073 0.467780i
\(549\) 0 0
\(550\) 0 0
\(551\) 888.000 + 512.687i 1.61162 + 0.930466i
\(552\) 0 0
\(553\) 60.6218i 0.109623i
\(554\) −256.000 443.405i −0.462094 0.800370i
\(555\) 0 0
\(556\) 678.964i 1.22116i
\(557\) 267.500 + 463.324i 0.480251 + 0.831820i 0.999743 0.0226556i \(-0.00721212\pi\)
−0.519492 + 0.854475i \(0.673879\pi\)
\(558\) 0 0
\(559\) 387.979i 0.694060i
\(560\) −560.000 −1.00000
\(561\) 0 0
\(562\) −556.000 −0.989324
\(563\) 604.500 349.008i 1.07371 0.619908i 0.144519 0.989502i \(-0.453837\pi\)
0.929193 + 0.369594i \(0.120503\pi\)
\(564\) 0 0
\(565\) 40.0000 69.2820i 0.0707965 0.122623i
\(566\) −30.0000 + 17.3205i −0.0530035 + 0.0306016i
\(567\) 0 0
\(568\) 581.969i 1.02459i
\(569\) 356.000 616.610i 0.625659 1.08367i −0.362754 0.931885i \(-0.618163\pi\)
0.988413 0.151788i \(-0.0485032\pi\)
\(570\) 0 0
\(571\) −57.0000 + 32.9090i −0.0998249 + 0.0576339i −0.549081 0.835769i \(-0.685022\pi\)
0.449256 + 0.893403i \(0.351689\pi\)
\(572\) −288.000 + 166.277i −0.503497 + 0.290694i
\(573\) 0 0
\(574\) 280.000 + 484.974i 0.487805 + 0.844903i
\(575\) 0 0
\(576\) 0 0
\(577\) 78.5000 + 135.966i 0.136049 + 0.235643i 0.925998 0.377530i \(-0.123226\pi\)
−0.789949 + 0.613173i \(0.789893\pi\)
\(578\) −273.000 + 472.850i −0.472318 + 0.818079i
\(579\) 0 0
\(580\) 370.000 640.859i 0.637931 1.10493i
\(581\) 808.500 466.788i 1.39157 0.803421i
\(582\) 0 0
\(583\) 328.500 + 189.660i 0.563465 + 0.325317i
\(584\) −376.000 651.251i −0.643836 1.11516i
\(585\) 0 0
\(586\) 122.000 0.208191
\(587\) 788.083i 1.34256i −0.741204 0.671280i \(-0.765745\pi\)
0.741204 0.671280i \(-0.234255\pi\)
\(588\) 0 0
\(589\) 528.000 0.896435
\(590\) 294.449i 0.499065i
\(591\) 0 0
\(592\) −544.000 + 942.236i −0.918919 + 1.59161i
\(593\) −34.0000 + 58.8897i −0.0573356 + 0.0993081i −0.893269 0.449523i \(-0.851594\pi\)
0.835933 + 0.548832i \(0.184927\pi\)
\(594\) 0 0
\(595\) −70.0000 121.244i −0.117647 0.203771i
\(596\) 332.000 575.041i 0.557047 0.964834i
\(597\) 0 0
\(598\) 576.000 + 332.554i 0.963211 + 0.556110i
\(599\) −237.000 + 136.832i −0.395659 + 0.228434i −0.684609 0.728910i \(-0.740027\pi\)
0.288950 + 0.957344i \(0.406694\pi\)
\(600\) 0 0
\(601\) 971.000 1.61564 0.807820 0.589429i \(-0.200647\pi\)
0.807820 + 0.589429i \(0.200647\pi\)
\(602\) −294.000 + 169.741i −0.488372 + 0.281962i
\(603\) 0 0
\(604\) 486.000 280.592i 0.804636 0.464557i
\(605\) −235.000 407.032i −0.388430 0.672780i
\(606\) 0 0
\(607\) −76.5000 44.1673i −0.126030 0.0727633i 0.435660 0.900111i \(-0.356515\pi\)
−0.561689 + 0.827348i \(0.689848\pi\)
\(608\) 768.000 + 443.405i 1.26316 + 0.729285i
\(609\) 0 0
\(610\) −410.000 710.141i −0.672131 1.16417i
\(611\) 624.000 + 360.267i 1.02128 + 0.589634i
\(612\) 0 0
\(613\) −418.000 723.997i −0.681892 1.18107i −0.974403 0.224810i \(-0.927824\pi\)
0.292510 0.956262i \(-0.405509\pi\)
\(614\) 872.954i 1.42175i
\(615\) 0 0
\(616\) −252.000 145.492i −0.409091 0.236189i
\(617\) −394.000 −0.638574 −0.319287 0.947658i \(-0.603443\pi\)
−0.319287 + 0.947658i \(0.603443\pi\)
\(618\) 0 0
\(619\) 603.000 348.142i 0.974152 0.562427i 0.0736524 0.997284i \(-0.476534\pi\)
0.900499 + 0.434857i \(0.143201\pi\)
\(620\) 381.051i 0.614599i
\(621\) 0 0
\(622\) −264.000 + 152.420i −0.424437 + 0.245049i
\(623\) 406.000 0.651685
\(624\) 0 0
\(625\) 312.500 541.266i 0.500000 0.866025i
\(626\) 233.000 403.568i 0.372204 0.644677i
\(627\) 0 0
\(628\) 104.000 + 180.133i 0.165605 + 0.286836i
\(629\) −272.000 −0.432432
\(630\) 0 0
\(631\) 254.611i 0.403505i 0.979437 + 0.201752i \(0.0646636\pi\)
−0.979437 + 0.201752i \(0.935336\pi\)
\(632\) 60.0000 + 34.6410i 0.0949367 + 0.0548117i
\(633\) 0 0
\(634\) 107.000 185.329i 0.168770 0.292318i
\(635\) −472.500 272.798i −0.744094 0.429603i
\(636\) 0 0
\(637\) 392.000 678.964i 0.615385 1.06588i
\(638\) 333.000 192.258i 0.521944 0.301344i
\(639\) 0 0
\(640\) 320.000 554.256i 0.500000 0.866025i
\(641\) 89.0000 + 154.153i 0.138846 + 0.240488i 0.927060 0.374913i \(-0.122328\pi\)
−0.788214 + 0.615401i \(0.788994\pi\)
\(642\) 0 0
\(643\) 266.736i 0.414830i −0.978253 0.207415i \(-0.933495\pi\)
0.978253 0.207415i \(-0.0665051\pi\)
\(644\) 581.969i 0.903679i
\(645\) 0 0
\(646\) 221.703i 0.343193i
\(647\) −15.0000 + 8.66025i −0.0231839 + 0.0133852i −0.511547 0.859255i \(-0.670927\pi\)
0.488363 + 0.872640i \(0.337594\pi\)
\(648\) 0 0
\(649\) −76.5000 + 132.502i −0.117874 + 0.204163i
\(650\) 0 0
\(651\) 0 0
\(652\) 264.000 + 152.420i 0.404908 + 0.233774i
\(653\) −368.500 + 638.261i −0.564319 + 0.977428i 0.432794 + 0.901493i \(0.357528\pi\)
−0.997113 + 0.0759356i \(0.975806\pi\)
\(654\) 0 0
\(655\) −67.5000 + 38.9711i −0.103053 + 0.0594979i
\(656\) −640.000 −0.975610
\(657\) 0 0
\(658\) 630.466i 0.958156i
\(659\) 678.964i 1.03029i −0.857102 0.515147i \(-0.827737\pi\)
0.857102 0.515147i \(-0.172263\pi\)
\(660\) 0 0
\(661\) 341.000 + 590.629i 0.515885 + 0.893539i 0.999830 + 0.0184406i \(0.00587016\pi\)
−0.483945 + 0.875098i \(0.660797\pi\)
\(662\) 708.000 + 408.764i 1.06949 + 0.617468i
\(663\) 0 0
\(664\) 1066.94i 1.60684i
\(665\) 840.000 + 484.974i 1.26316 + 0.729285i
\(666\) 0 0
\(667\) −666.000 384.515i −0.998501 0.576485i
\(668\) 678.964i 1.01641i
\(669\) 0 0
\(670\) 796.743i 1.18917i
\(671\) 426.084i 0.634999i
\(672\) 0 0
\(673\) −1027.00 −1.52600 −0.763001 0.646397i \(-0.776275\pi\)
−0.763001 + 0.646397i \(0.776275\pi\)
\(674\) −298.000 −0.442136
\(675\) 0 0
\(676\) 348.000 0.514793
\(677\) 165.500 286.654i 0.244461 0.423419i −0.717519 0.696539i \(-0.754722\pi\)
0.961980 + 0.273120i \(0.0880557\pi\)
\(678\) 0 0
\(679\) 164.500 + 284.922i 0.242268 + 0.419621i
\(680\) 160.000 0.235294
\(681\) 0 0
\(682\) 99.0000 171.473i 0.145161 0.251427i
\(683\) −226.500 + 130.770i −0.331625 + 0.191464i −0.656562 0.754272i \(-0.727990\pi\)
0.324937 + 0.945736i \(0.394657\pi\)
\(684\) 0 0
\(685\) 370.000 0.540146
\(686\) 686.000 1.00000
\(687\) 0 0
\(688\) 387.979i 0.563924i
\(689\) −584.000 1011.52i −0.847605 1.46810i
\(690\) 0 0
\(691\) 1068.00 + 616.610i 1.54559 + 0.892345i 0.998470 + 0.0552875i \(0.0176075\pi\)
0.547116 + 0.837057i \(0.315726\pi\)
\(692\) −52.0000 + 90.0666i −0.0751445 + 0.130154i
\(693\) 0 0
\(694\) −660.000 + 381.051i −0.951009 + 0.549065i
\(695\) −735.000 424.352i −1.05755 0.610579i
\(696\) 0 0
\(697\) −80.0000 138.564i −0.114778 0.198801i
\(698\) 788.000 1.12894
\(699\) 0 0
\(700\) 0 0
\(701\) 467.000 0.666191 0.333096 0.942893i \(-0.391907\pi\)
0.333096 + 0.942893i \(0.391907\pi\)
\(702\) 0 0
\(703\) 1632.00 942.236i 2.32148 1.34031i
\(704\) 288.000 166.277i 0.409091 0.236189i
\(705\) 0 0
\(706\) −256.000 443.405i −0.362606 0.628052i
\(707\) −455.000 + 788.083i −0.643564 + 1.11469i
\(708\) 0 0
\(709\) −265.000 + 458.993i −0.373766 + 0.647381i −0.990141 0.140071i \(-0.955267\pi\)
0.616376 + 0.787452i \(0.288600\pi\)
\(710\) 630.000 + 363.731i 0.887324 + 0.512297i
\(711\) 0 0
\(712\) −232.000 + 401.836i −0.325843 + 0.564376i
\(713\) −396.000 −0.555400
\(714\) 0 0
\(715\) 415.692i 0.581388i
\(716\) −1032.00 + 595.825i −1.44134 + 0.832158i
\(717\) 0 0
\(718\) 678.000 + 391.443i 0.944290 + 0.545186i
\(719\) −627.000 361.999i −0.872045 0.503475i −0.00401739 0.999992i \(-0.501279\pi\)
−0.868027 + 0.496517i \(0.834612\pi\)
\(720\) 0 0
\(721\) 145.492i 0.201792i
\(722\) −407.000 704.945i −0.563712 0.976378i
\(723\) 0 0
\(724\) −64.0000 −0.0883978
\(725\) 0 0
\(726\) 0 0
\(727\) 60.6218i 0.0833862i −0.999130 0.0416931i \(-0.986725\pi\)
0.999130 0.0416931i \(-0.0132752\pi\)
\(728\) 448.000 + 775.959i 0.615385 + 1.06588i
\(729\) 0 0
\(730\) 940.000 1.28767
\(731\) 84.0000 48.4974i 0.114911 0.0663439i
\(732\) 0 0
\(733\) 293.000 507.491i 0.399727 0.692348i −0.593965 0.804491i \(-0.702438\pi\)
0.993692 + 0.112143i \(0.0357715\pi\)
\(734\) −513.000 + 296.181i −0.698910 + 0.403516i
\(735\) 0 0
\(736\) −576.000 332.554i −0.782609 0.451839i
\(737\) 207.000 358.535i 0.280868 0.486478i
\(738\) 0 0
\(739\) 111.000 64.0859i 0.150203 0.0867197i −0.423015 0.906123i \(-0.639028\pi\)
0.573218 + 0.819403i \(0.305695\pi\)
\(740\) −680.000 1177.79i −0.918919 1.59161i
\(741\) 0 0
\(742\) 511.000 885.078i 0.688679 1.19283i
\(743\) 24.2487i 0.0326362i 0.999867 + 0.0163181i \(0.00519445\pi\)
−0.999867 + 0.0163181i \(0.994806\pi\)
\(744\) 0 0
\(745\) 415.000 + 718.801i 0.557047 + 0.964834i
\(746\) 656.000 1136.23i 0.879357 1.52309i
\(747\) 0 0
\(748\) 72.0000 + 41.5692i 0.0962567 + 0.0555738i
\(749\) 569.845i 0.760807i
\(750\) 0 0
\(751\) −490.500 283.190i −0.653129 0.377084i 0.136525 0.990637i \(-0.456407\pi\)
−0.789654 + 0.613552i \(0.789740\pi\)
\(752\) −624.000 360.267i −0.829787 0.479078i
\(753\) 0 0
\(754\) −1184.00 −1.57029
\(755\) 701.481i 0.929113i
\(756\) 0 0
\(757\) −250.000 −0.330251 −0.165125 0.986273i \(-0.552803\pi\)
−0.165125 + 0.986273i \(0.552803\pi\)
\(758\) 581.969i 0.767769i
\(759\) 0 0
\(760\) −960.000 + 554.256i −1.26316 + 0.729285i
\(761\) −160.000 + 277.128i −0.210250 + 0.364163i −0.951793 0.306742i \(-0.900761\pi\)
0.741543 + 0.670905i \(0.234094\pi\)
\(762\) 0 0
\(763\) 427.000 739.586i 0.559633 0.969313i
\(764\) 1248.00 + 720.533i 1.63351 + 0.943106i
\(765\) 0 0
\(766\) −342.000 197.454i −0.446475 0.257773i
\(767\) 408.000 235.559i 0.531943 0.307117i
\(768\) 0 0
\(769\) 425.000 0.552666 0.276333 0.961062i \(-0.410881\pi\)
0.276333 + 0.961062i \(0.410881\pi\)
\(770\) 315.000 181.865i 0.409091 0.236189i
\(771\) 0 0
\(772\) 302.000 + 523.079i 0.391192 + 0.677564i
\(773\) 65.0000 + 112.583i 0.0840880 + 0.145645i 0.905002 0.425407i \(-0.139869\pi\)
−0.820914 + 0.571051i \(0.806536\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −376.000 −0.484536
\(777\) 0 0
\(778\) 410.000 + 710.141i 0.526992 + 0.912777i
\(779\) 960.000 + 554.256i 1.23235 + 0.711497i
\(780\) 0 0
\(781\) 189.000 + 327.358i 0.241997 + 0.419152i
\(782\) 166.277i 0.212630i
\(783\) 0 0
\(784\) −392.000 + 678.964i −0.500000 + 0.866025i
\(785\) −260.000 −0.331210
\(786\) 0 0
\(787\) −867.000 + 500.563i −1.10165 + 0.636039i −0.936654 0.350255i \(-0.886095\pi\)
−0.164997 + 0.986294i \(0.552762\pi\)
\(788\) 1112.00 1.41117
\(789\) 0 0
\(790\) −75.0000 + 43.3013i −0.0949367 + 0.0548117i
\(791\) −56.0000 96.9948i −0.0707965 0.122623i
\(792\) 0 0
\(793\) −656.000 + 1136.23i −0.827238 + 1.43282i
\(794\) 212.000 367.195i 0.267003 0.462462i
\(795\) 0 0
\(796\) 480.000 277.128i 0.603015 0.348151i
\(797\) −439.000 −0.550816 −0.275408 0.961327i \(-0.588813\pi\)
−0.275408 + 0.961327i \(0.588813\pi\)
\(798\) 0 0
\(799\) 180.133i 0.225448i
\(800\) 0 0
\(801\) 0 0
\(802\) 464.000 803.672i 0.578554 1.00208i
\(803\) 423.000 + 244.219i 0.526775 + 0.304133i
\(804\) 0 0
\(805\) −630.000 363.731i −0.782609 0.451839i
\(806\) −528.000 + 304.841i −0.655087 + 0.378215i
\(807\) 0 0
\(808\) −520.000 900.666i −0.643564 1.11469i
\(809\) −520.000 900.666i −0.642769 1.11331i −0.984812 0.173624i \(-0.944452\pi\)
0.342043 0.939684i \(-0.388881\pi\)
\(810\) 0 0
\(811\) 1236.68i 1.52489i 0.647054 + 0.762444i \(0.276001\pi\)
−0.647054 + 0.762444i \(0.723999\pi\)
\(812\) −518.000 897.202i −0.637931 1.10493i
\(813\) 0 0
\(814\) 706.677i 0.868153i
\(815\) −330.000 + 190.526i −0.404908 + 0.233774i
\(816\) 0 0
\(817\) −336.000 + 581.969i −0.411261 + 0.712324i
\(818\) 515.000 + 892.006i 0.629584 + 1.09047i
\(819\) 0 0
\(820\) 400.000 692.820i 0.487805 0.844903i
\(821\) 72.5000 125.574i 0.0883069 0.152952i −0.818489 0.574523i \(-0.805188\pi\)
0.906796 + 0.421571i \(0.138521\pi\)
\(822\) 0 0
\(823\) −1254.00 + 723.997i −1.52369 + 0.879705i −0.524087 + 0.851665i \(0.675593\pi\)
−0.999607 + 0.0280403i \(0.991073\pi\)
\(824\) −144.000 83.1384i −0.174757 0.100896i
\(825\) 0 0
\(826\) 357.000 + 206.114i 0.432203 + 0.249533i
\(827\) 545.596i 0.659729i 0.944028 + 0.329865i \(0.107003\pi\)
−0.944028 + 0.329865i \(0.892997\pi\)
\(828\) 0 0
\(829\) −184.000 318.697i −0.221954 0.384436i 0.733447 0.679746i \(-0.237910\pi\)
−0.955401 + 0.295311i \(0.904577\pi\)
\(830\) −1155.00 666.840i −1.39157 0.803421i
\(831\) 0 0
\(832\) −1024.00 −1.23077
\(833\) −196.000 −0.235294
\(834\) 0 0
\(835\) −735.000 424.352i −0.880240 0.508207i
\(836\) −576.000 −0.688995
\(837\) 0 0
\(838\) 193.990i 0.231491i
\(839\) 921.451i 1.09827i 0.835733 + 0.549136i \(0.185043\pi\)
−0.835733 + 0.549136i \(0.814957\pi\)
\(840\) 0 0
\(841\) 528.000 0.627824
\(842\) −340.000 −0.403800
\(843\) 0 0
\(844\) 484.974i 0.574614i
\(845\) −217.500 + 376.721i −0.257396 + 0.445824i
\(846\) 0 0
\(847\) −658.000 −0.776860
\(848\) 584.000 + 1011.52i 0.688679 + 1.19283i
\(849\) 0 0
\(850\) 0 0
\(851\) −1224.00 + 706.677i −1.43831 + 0.830407i
\(852\) 0 0
\(853\) −1150.00 −1.34818 −0.674091 0.738648i \(-0.735465\pi\)
−0.674091 + 0.738648i \(0.735465\pi\)
\(854\) −1148.00 −1.34426
\(855\) 0 0
\(856\) −564.000 325.626i −0.658879 0.380404i
\(857\) 107.000 + 185.329i 0.124854 + 0.216254i 0.921676 0.387961i \(-0.126820\pi\)
−0.796822 + 0.604214i \(0.793487\pi\)
\(858\) 0 0
\(859\) 711.000 + 410.496i 0.827707 + 0.477877i 0.853067 0.521802i \(-0.174740\pi\)
−0.0253602 + 0.999678i \(0.508073\pi\)
\(860\) 420.000 + 242.487i 0.488372 + 0.281962i
\(861\) 0 0
\(862\) 12.0000 6.92820i 0.0139211 0.00803736i
\(863\) −339.000 195.722i −0.392816 0.226792i 0.290564 0.956856i \(-0.406157\pi\)
−0.683379 + 0.730063i \(0.739491\pi\)
\(864\) 0 0
\(865\) −65.0000 112.583i −0.0751445 0.130154i
\(866\) 452.000 0.521940
\(867\) 0 0
\(868\) −462.000 266.736i −0.532258 0.307299i
\(869\) −45.0000 −0.0517837
\(870\) 0 0
\(871\) −1104.00 + 637.395i −1.26751 + 0.731796i
\(872\) 488.000 + 845.241i 0.559633 + 0.969313i
\(873\) 0 0
\(874\) 576.000 + 997.661i 0.659039 + 1.14149i
\(875\) −437.500 757.772i −0.500000 0.866025i
\(876\) 0 0
\(877\) −160.000 + 277.128i −0.182440 + 0.315996i −0.942711 0.333611i \(-0.891733\pi\)
0.760271 + 0.649606i \(0.225066\pi\)
\(878\) −309.000 178.401i −0.351936 0.203190i
\(879\) 0 0
\(880\) 415.692i 0.472377i
\(881\) −502.000 −0.569807 −0.284904 0.958556i \(-0.591962\pi\)
−0.284904 + 0.958556i \(0.591962\pi\)
\(882\) 0 0
\(883\) 290.985i 0.329541i 0.986332 + 0.164770i \(0.0526883\pi\)
−0.986332 + 0.164770i \(0.947312\pi\)
\(884\) −128.000 221.703i −0.144796 0.250795i
\(885\) 0 0
\(886\) 1077.00 + 621.806i 1.21558 + 0.701813i
\(887\) 234.000 + 135.100i 0.263811 + 0.152311i 0.626072 0.779766i \(-0.284662\pi\)
−0.362261 + 0.932077i \(0.617995\pi\)
\(888\) 0 0
\(889\) −661.500 + 381.917i −0.744094 + 0.429603i
\(890\) −290.000 502.295i −0.325843 0.564376i
\(891\) 0 0
\(892\) 48.4974i 0.0543693i
\(893\) 624.000 + 1080.80i 0.698768 + 1.21030i
\(894\) 0 0
\(895\) 1489.56i 1.66432i
\(896\) −448.000 775.959i −0.500000 0.866025i
\(897\) 0 0
\(898\) 1040.00 1.15813
\(899\) 610.500 352.472i 0.679088 0.392072i
\(900\) 0 0
\(901\) −146.000 + 252.879i −0.162042 + 0.280665i
\(902\) 360.000 207.846i 0.399113 0.230428i
\(903\) 0 0
\(904\) 128.000 0.141593
\(905\) 40.0000 69.2820i 0.0441989 0.0765547i
\(906\) 0 0
\(907\) −162.000 + 93.5307i −0.178611 + 0.103121i −0.586640 0.809848i \(-0.699550\pi\)
0.408029 + 0.912969i \(0.366216\pi\)
\(908\) −522.000 + 301.377i −0.574890 + 0.331913i
\(909\) 0 0
\(910\) −1120.00 −1.23077
\(911\) 1624.66i 1.78338i −0.452642 0.891692i \(-0.649518\pi\)
0.452642 0.891692i \(-0.350482\pi\)
\(912\) 0 0
\(913\) −346.500 600.156i −0.379518 0.657345i
\(914\) −37.0000 + 64.0859i −0.0404814 + 0.0701158i
\(915\) 0 0
\(916\) −424.000 + 734.390i −0.462882 + 0.801735i
\(917\) 109.119i 0.118996i
\(918\) 0 0
\(919\) 66.0000 + 38.1051i 0.0718172 + 0.0414637i 0.535479 0.844549i \(-0.320131\pi\)
−0.463661 + 0.886012i \(0.653465\pi\)
\(920\) 720.000 415.692i 0.782609 0.451839i
\(921\) 0 0
\(922\) 500.000 0.542299
\(923\) 1163.94i 1.26104i
\(924\) 0 0
\(925\) 0 0
\(926\) 678.964i 0.733222i
\(927\) 0 0
\(928\) 1184.00 1.27586
\(929\) −643.000 + 1113.71i −0.692142 + 1.19883i 0.278993 + 0.960293i \(0.410000\pi\)
−0.971135 + 0.238532i \(0.923334\pi\)
\(930\) 0 0
\(931\) 1176.00 678.964i 1.26316 0.729285i
\(932\) −424.000 + 734.390i −0.454936 + 0.787972i
\(933\) 0 0
\(934\) 1380.00 + 796.743i 1.47752 + 0.853044i
\(935\) −90.0000 + 51.9615i −0.0962567 + 0.0555738i
\(936\) 0 0
\(937\) 1727.00 1.84312 0.921558 0.388240i \(-0.126917\pi\)
0.921558 + 0.388240i \(0.126917\pi\)
\(938\) −966.000 557.720i −1.02985 0.594585i
\(939\) 0 0
\(940\) 780.000 450.333i 0.829787 0.479078i
\(941\) 201.500 + 349.008i 0.214134 + 0.370891i 0.953004 0.302957i \(-0.0979738\pi\)
−0.738870 + 0.673848i \(0.764640\pi\)
\(942\) 0 0
\(943\) −720.000 415.692i −0.763521 0.440819i
\(944\) −408.000 + 235.559i −0.432203 + 0.249533i
\(945\) 0 0
\(946\) 126.000 + 218.238i 0.133192 + 0.230696i
\(947\) 816.000 + 471.118i 0.861668 + 0.497484i 0.864571 0.502511i \(-0.167590\pi\)
−0.00290222 + 0.999996i \(0.500924\pi\)
\(948\) 0 0
\(949\) −752.000 1302.50i −0.792413 1.37250i
\(950\) 0 0
\(951\) 0 0
\(952\) 112.000 193.990i 0.117647 0.203771i
\(953\) −730.000 −0.766002 −0.383001 0.923748i \(-0.625109\pi\)
−0.383001 + 0.923748i \(0.625109\pi\)
\(954\) 0 0
\(955\) −1560.00 + 900.666i −1.63351 + 0.943106i
\(956\) 193.990i 0.202918i
\(957\) 0 0
\(958\) −306.000 + 176.669i −0.319415 + 0.184415i
\(959\) 259.000 448.601i 0.270073 0.467780i
\(960\) 0 0
\(961\) −299.000 + 517.883i −0.311134 + 0.538900i
\(962\) −1088.00 + 1884.47i −1.13098 + 1.95891i
\(963\) 0 0
\(964\) −22.0000 38.1051i −0.0228216 0.0395281i
\(965\) −755.000 −0.782383
\(966\) 0 0
\(967\) 157.617i 0.162995i −0.996674 0.0814977i \(-0.974030\pi\)
0.996674 0.0814977i \(-0.0259703\pi\)
\(968\) 376.000 651.251i 0.388430 0.672780i
\(969\) 0 0
\(970\) 235.000 407.032i 0.242268 0.419621i
\(971\) 790.500 + 456.395i 0.814109 + 0.470026i 0.848381 0.529386i \(-0.177578\pi\)
−0.0342717 + 0.999413i \(0.510911\pi\)
\(972\) 0 0
\(973\) −1029.00 + 594.093i −1.05755 + 0.610579i
\(974\) −537.000 + 310.037i −0.551335 + 0.318313i
\(975\) 0 0
\(976\) 656.000 1136.23i 0.672131 1.16417i
\(977\) 173.000 + 299.645i 0.177073 + 0.306699i 0.940877 0.338749i \(-0.110004\pi\)
−0.763804 + 0.645448i \(0.776671\pi\)
\(978\) 0 0
\(979\) 301.377i 0.307842i
\(980\) −490.000 848.705i −0.500000 0.866025i
\(981\) 0 0
\(982\) 460.726i 0.469171i
\(983\) −666.000 + 384.515i −0.677518 + 0.391165i −0.798919 0.601438i \(-0.794595\pi\)
0.121401 + 0.992604i \(0.461261\pi\)
\(984\) 0 0
\(985\) −695.000 + 1203.78i −0.705584 + 1.22211i
\(986\) 148.000 + 256.344i 0.150101 + 0.259983i
\(987\) 0 0
\(988\) 1536.00 + 886.810i 1.55466 + 0.897581i
\(989\) 252.000 436.477i 0.254803 0.441331i
\(990\) 0 0
\(991\) 961.500 555.122i 0.970232 0.560164i 0.0709251 0.997482i \(-0.477405\pi\)
0.899307 + 0.437318i \(0.144072\pi\)
\(992\) 528.000 304.841i 0.532258 0.307299i
\(993\) 0 0
\(994\) 882.000 509.223i 0.887324 0.512297i
\(995\) 692.820i 0.696302i
\(996\) 0 0
\(997\) 215.000 + 372.391i 0.215647 + 0.373511i 0.953473 0.301480i \(-0.0974806\pi\)
−0.737826 + 0.674991i \(0.764147\pi\)
\(998\) 414.000 + 239.023i 0.414830 + 0.239502i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.3.y.a.163.1 2
3.2 odd 2 84.3.l.b.79.1 yes 2
4.3 odd 2 252.3.y.b.163.1 2
7.4 even 3 252.3.y.b.235.1 2
12.11 even 2 84.3.l.a.79.1 yes 2
21.2 odd 6 588.3.g.a.295.1 2
21.5 even 6 588.3.g.c.295.1 2
21.11 odd 6 84.3.l.a.67.1 2
28.11 odd 6 inner 252.3.y.a.235.1 2
84.11 even 6 84.3.l.b.67.1 yes 2
84.23 even 6 588.3.g.a.295.2 2
84.47 odd 6 588.3.g.c.295.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.l.a.67.1 2 21.11 odd 6
84.3.l.a.79.1 yes 2 12.11 even 2
84.3.l.b.67.1 yes 2 84.11 even 6
84.3.l.b.79.1 yes 2 3.2 odd 2
252.3.y.a.163.1 2 1.1 even 1 trivial
252.3.y.a.235.1 2 28.11 odd 6 inner
252.3.y.b.163.1 2 4.3 odd 2
252.3.y.b.235.1 2 7.4 even 3
588.3.g.a.295.1 2 21.2 odd 6
588.3.g.a.295.2 2 84.23 even 6
588.3.g.c.295.1 2 21.5 even 6
588.3.g.c.295.2 2 84.47 odd 6