Properties

Label 252.3.y.a
Level $252$
Weight $3$
Character orbit 252.y
Analytic conductor $6.867$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,3,Mod(163,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.163"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 252.y (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.86650266188\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + 4 q^{4} + (5 \zeta_{6} - 5) q^{5} + 7 \zeta_{6} q^{7} - 8 q^{8} + ( - 10 \zeta_{6} + 10) q^{10} + ( - 3 \zeta_{6} + 6) q^{11} - 16 q^{13} - 14 \zeta_{6} q^{14} + 16 q^{16} + 4 \zeta_{6} q^{17} + \cdots + ( - 98 \zeta_{6} + 98) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{2} + 8 q^{4} - 5 q^{5} + 7 q^{7} - 16 q^{8} + 10 q^{10} + 9 q^{11} - 32 q^{13} - 14 q^{14} + 32 q^{16} + 4 q^{17} - 48 q^{19} - 20 q^{20} - 18 q^{22} + 36 q^{23} + 64 q^{26} + 28 q^{28} - 74 q^{29}+ \cdots + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
163.1
0.500000 + 0.866025i
0.500000 0.866025i
−2.00000 0 4.00000 −2.50000 + 4.33013i 0 3.50000 + 6.06218i −8.00000 0 5.00000 8.66025i
235.1 −2.00000 0 4.00000 −2.50000 4.33013i 0 3.50000 6.06218i −8.00000 0 5.00000 + 8.66025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.g odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 252.3.y.a 2
3.b odd 2 1 84.3.l.b yes 2
4.b odd 2 1 252.3.y.b 2
7.c even 3 1 252.3.y.b 2
12.b even 2 1 84.3.l.a 2
21.g even 6 1 588.3.g.c 2
21.h odd 6 1 84.3.l.a 2
21.h odd 6 1 588.3.g.a 2
28.g odd 6 1 inner 252.3.y.a 2
84.j odd 6 1 588.3.g.c 2
84.n even 6 1 84.3.l.b yes 2
84.n even 6 1 588.3.g.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.3.l.a 2 12.b even 2 1
84.3.l.a 2 21.h odd 6 1
84.3.l.b yes 2 3.b odd 2 1
84.3.l.b yes 2 84.n even 6 1
252.3.y.a 2 1.a even 1 1 trivial
252.3.y.a 2 28.g odd 6 1 inner
252.3.y.b 2 4.b odd 2 1
252.3.y.b 2 7.c even 3 1
588.3.g.a 2 21.h odd 6 1
588.3.g.a 2 84.n even 6 1
588.3.g.c 2 21.g even 6 1
588.3.g.c 2 84.j odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(252, [\chi])\):

\( T_{5}^{2} + 5T_{5} + 25 \) Copy content Toggle raw display
\( T_{11}^{2} - 9T_{11} + 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$11$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$13$ \( (T + 16)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$19$ \( T^{2} + 48T + 768 \) Copy content Toggle raw display
$23$ \( T^{2} - 36T + 432 \) Copy content Toggle raw display
$29$ \( (T + 37)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 33T + 363 \) Copy content Toggle raw display
$37$ \( T^{2} + 68T + 4624 \) Copy content Toggle raw display
$41$ \( (T + 40)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 588 \) Copy content Toggle raw display
$47$ \( T^{2} + 78T + 2028 \) Copy content Toggle raw display
$53$ \( T^{2} - 73T + 5329 \) Copy content Toggle raw display
$59$ \( T^{2} + 51T + 867 \) Copy content Toggle raw display
$61$ \( T^{2} - 82T + 6724 \) Copy content Toggle raw display
$67$ \( T^{2} - 138T + 6348 \) Copy content Toggle raw display
$71$ \( T^{2} + 5292 \) Copy content Toggle raw display
$73$ \( T^{2} - 94T + 8836 \) Copy content Toggle raw display
$79$ \( T^{2} + 15T + 75 \) Copy content Toggle raw display
$83$ \( T^{2} + 17787 \) Copy content Toggle raw display
$89$ \( T^{2} - 58T + 3364 \) Copy content Toggle raw display
$97$ \( (T - 47)^{2} \) Copy content Toggle raw display
show more
show less