Properties

Label 84.3.l.b
Level $84$
Weight $3$
Character orbit 84.l
Analytic conductor $2.289$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [84,3,Mod(67,84)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(84, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("84.67"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 84.l (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.28883422063\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + (\zeta_{6} - 2) q^{3} + 4 q^{4} + ( - 5 \zeta_{6} + 5) q^{5} + (2 \zeta_{6} - 4) q^{6} + 7 \zeta_{6} q^{7} + 8 q^{8} + ( - 3 \zeta_{6} + 3) q^{9} + ( - 10 \zeta_{6} + 10) q^{10} + (3 \zeta_{6} - 6) q^{11}+ \cdots + (18 \zeta_{6} - 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 3 q^{3} + 8 q^{4} + 5 q^{5} - 6 q^{6} + 7 q^{7} + 16 q^{8} + 3 q^{9} + 10 q^{10} - 9 q^{11} - 12 q^{12} - 32 q^{13} + 14 q^{14} + 32 q^{16} - 4 q^{17} + 6 q^{18} - 48 q^{19} + 20 q^{20}+ \cdots - 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(-1\) \(-1 + \zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 0.866025i
0.500000 + 0.866025i
2.00000 −1.50000 0.866025i 4.00000 2.50000 + 4.33013i −3.00000 1.73205i 3.50000 6.06218i 8.00000 1.50000 + 2.59808i 5.00000 + 8.66025i
79.1 2.00000 −1.50000 + 0.866025i 4.00000 2.50000 4.33013i −3.00000 + 1.73205i 3.50000 + 6.06218i 8.00000 1.50000 2.59808i 5.00000 8.66025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
28.g odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 84.3.l.b yes 2
3.b odd 2 1 252.3.y.a 2
4.b odd 2 1 84.3.l.a 2
7.c even 3 1 84.3.l.a 2
7.c even 3 1 588.3.g.a 2
7.d odd 6 1 588.3.g.c 2
12.b even 2 1 252.3.y.b 2
21.h odd 6 1 252.3.y.b 2
28.f even 6 1 588.3.g.c 2
28.g odd 6 1 inner 84.3.l.b yes 2
28.g odd 6 1 588.3.g.a 2
84.n even 6 1 252.3.y.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.3.l.a 2 4.b odd 2 1
84.3.l.a 2 7.c even 3 1
84.3.l.b yes 2 1.a even 1 1 trivial
84.3.l.b yes 2 28.g odd 6 1 inner
252.3.y.a 2 3.b odd 2 1
252.3.y.a 2 84.n even 6 1
252.3.y.b 2 12.b even 2 1
252.3.y.b 2 21.h odd 6 1
588.3.g.a 2 7.c even 3 1
588.3.g.a 2 28.g odd 6 1
588.3.g.c 2 7.d odd 6 1
588.3.g.c 2 28.f even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(84, [\chi])\):

\( T_{5}^{2} - 5T_{5} + 25 \) Copy content Toggle raw display
\( T_{11}^{2} + 9T_{11} + 27 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$7$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$11$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$13$ \( (T + 16)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$19$ \( T^{2} + 48T + 768 \) Copy content Toggle raw display
$23$ \( T^{2} + 36T + 432 \) Copy content Toggle raw display
$29$ \( (T - 37)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 33T + 363 \) Copy content Toggle raw display
$37$ \( T^{2} + 68T + 4624 \) Copy content Toggle raw display
$41$ \( (T - 40)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 588 \) Copy content Toggle raw display
$47$ \( T^{2} - 78T + 2028 \) Copy content Toggle raw display
$53$ \( T^{2} + 73T + 5329 \) Copy content Toggle raw display
$59$ \( T^{2} - 51T + 867 \) Copy content Toggle raw display
$61$ \( T^{2} - 82T + 6724 \) Copy content Toggle raw display
$67$ \( T^{2} - 138T + 6348 \) Copy content Toggle raw display
$71$ \( T^{2} + 5292 \) Copy content Toggle raw display
$73$ \( T^{2} - 94T + 8836 \) Copy content Toggle raw display
$79$ \( T^{2} + 15T + 75 \) Copy content Toggle raw display
$83$ \( T^{2} + 17787 \) Copy content Toggle raw display
$89$ \( T^{2} + 58T + 3364 \) Copy content Toggle raw display
$97$ \( (T - 47)^{2} \) Copy content Toggle raw display
show more
show less