Properties

Label 588.3.g.a.295.1
Level $588$
Weight $3$
Character 588.295
Analytic conductor $16.022$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2,0,-4,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 295.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 588.295
Dual form 588.3.g.a.295.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} -1.73205i q^{3} +(-2.00000 + 3.46410i) q^{4} -5.00000 q^{5} +(-3.00000 + 1.73205i) q^{6} +8.00000 q^{8} -3.00000 q^{9} +(5.00000 + 8.66025i) q^{10} -5.19615i q^{11} +(6.00000 + 3.46410i) q^{12} -16.0000 q^{13} +8.66025i q^{15} +(-8.00000 - 13.8564i) q^{16} +4.00000 q^{17} +(3.00000 + 5.19615i) q^{18} +27.7128i q^{19} +(10.0000 - 17.3205i) q^{20} +(-9.00000 + 5.19615i) q^{22} +20.7846i q^{23} -13.8564i q^{24} +(16.0000 + 27.7128i) q^{26} +5.19615i q^{27} +37.0000 q^{29} +(15.0000 - 8.66025i) q^{30} -19.0526i q^{31} +(-16.0000 + 27.7128i) q^{32} -9.00000 q^{33} +(-4.00000 - 6.92820i) q^{34} +(6.00000 - 10.3923i) q^{36} +68.0000 q^{37} +(48.0000 - 27.7128i) q^{38} +27.7128i q^{39} -40.0000 q^{40} +40.0000 q^{41} -24.2487i q^{43} +(18.0000 + 10.3923i) q^{44} +15.0000 q^{45} +(36.0000 - 20.7846i) q^{46} -45.0333i q^{47} +(-24.0000 + 13.8564i) q^{48} -6.92820i q^{51} +(32.0000 - 55.4256i) q^{52} +73.0000 q^{53} +(9.00000 - 5.19615i) q^{54} +25.9808i q^{55} +48.0000 q^{57} +(-37.0000 - 64.0859i) q^{58} +29.4449i q^{59} +(-30.0000 - 17.3205i) q^{60} -82.0000 q^{61} +(-33.0000 + 19.0526i) q^{62} +64.0000 q^{64} +80.0000 q^{65} +(9.00000 + 15.5885i) q^{66} +79.6743i q^{67} +(-8.00000 + 13.8564i) q^{68} +36.0000 q^{69} -72.7461i q^{71} -24.0000 q^{72} -94.0000 q^{73} +(-68.0000 - 117.779i) q^{74} +(-96.0000 - 55.4256i) q^{76} +(48.0000 - 27.7128i) q^{78} +8.66025i q^{79} +(40.0000 + 69.2820i) q^{80} +9.00000 q^{81} +(-40.0000 - 69.2820i) q^{82} +133.368i q^{83} -20.0000 q^{85} +(-42.0000 + 24.2487i) q^{86} -64.0859i q^{87} -41.5692i q^{88} +58.0000 q^{89} +(-15.0000 - 25.9808i) q^{90} +(-72.0000 - 41.5692i) q^{92} -33.0000 q^{93} +(-78.0000 + 45.0333i) q^{94} -138.564i q^{95} +(48.0000 + 27.7128i) q^{96} +47.0000 q^{97} +15.5885i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 4 q^{4} - 10 q^{5} - 6 q^{6} + 16 q^{8} - 6 q^{9} + 10 q^{10} + 12 q^{12} - 32 q^{13} - 16 q^{16} + 8 q^{17} + 6 q^{18} + 20 q^{20} - 18 q^{22} + 32 q^{26} + 74 q^{29} + 30 q^{30} - 32 q^{32}+ \cdots + 94 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.500000 0.866025i
\(3\) 1.73205i 0.577350i
\(4\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(5\) −5.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(6\) −3.00000 + 1.73205i −0.500000 + 0.288675i
\(7\) 0 0
\(8\) 8.00000 1.00000
\(9\) −3.00000 −0.333333
\(10\) 5.00000 + 8.66025i 0.500000 + 0.866025i
\(11\) 5.19615i 0.472377i −0.971707 0.236189i \(-0.924102\pi\)
0.971707 0.236189i \(-0.0758984\pi\)
\(12\) 6.00000 + 3.46410i 0.500000 + 0.288675i
\(13\) −16.0000 −1.23077 −0.615385 0.788227i \(-0.710999\pi\)
−0.615385 + 0.788227i \(0.710999\pi\)
\(14\) 0 0
\(15\) 8.66025i 0.577350i
\(16\) −8.00000 13.8564i −0.500000 0.866025i
\(17\) 4.00000 0.235294 0.117647 0.993055i \(-0.462465\pi\)
0.117647 + 0.993055i \(0.462465\pi\)
\(18\) 3.00000 + 5.19615i 0.166667 + 0.288675i
\(19\) 27.7128i 1.45857i 0.684211 + 0.729285i \(0.260147\pi\)
−0.684211 + 0.729285i \(0.739853\pi\)
\(20\) 10.0000 17.3205i 0.500000 0.866025i
\(21\) 0 0
\(22\) −9.00000 + 5.19615i −0.409091 + 0.236189i
\(23\) 20.7846i 0.903679i 0.892099 + 0.451839i \(0.149232\pi\)
−0.892099 + 0.451839i \(0.850768\pi\)
\(24\) 13.8564i 0.577350i
\(25\) 0 0
\(26\) 16.0000 + 27.7128i 0.615385 + 1.06588i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 37.0000 1.27586 0.637931 0.770093i \(-0.279790\pi\)
0.637931 + 0.770093i \(0.279790\pi\)
\(30\) 15.0000 8.66025i 0.500000 0.288675i
\(31\) 19.0526i 0.614599i −0.951613 0.307299i \(-0.900575\pi\)
0.951613 0.307299i \(-0.0994253\pi\)
\(32\) −16.0000 + 27.7128i −0.500000 + 0.866025i
\(33\) −9.00000 −0.272727
\(34\) −4.00000 6.92820i −0.117647 0.203771i
\(35\) 0 0
\(36\) 6.00000 10.3923i 0.166667 0.288675i
\(37\) 68.0000 1.83784 0.918919 0.394446i \(-0.129064\pi\)
0.918919 + 0.394446i \(0.129064\pi\)
\(38\) 48.0000 27.7128i 1.26316 0.729285i
\(39\) 27.7128i 0.710585i
\(40\) −40.0000 −1.00000
\(41\) 40.0000 0.975610 0.487805 0.872953i \(-0.337798\pi\)
0.487805 + 0.872953i \(0.337798\pi\)
\(42\) 0 0
\(43\) 24.2487i 0.563924i −0.959426 0.281962i \(-0.909015\pi\)
0.959426 0.281962i \(-0.0909851\pi\)
\(44\) 18.0000 + 10.3923i 0.409091 + 0.236189i
\(45\) 15.0000 0.333333
\(46\) 36.0000 20.7846i 0.782609 0.451839i
\(47\) 45.0333i 0.958156i −0.877772 0.479078i \(-0.840971\pi\)
0.877772 0.479078i \(-0.159029\pi\)
\(48\) −24.0000 + 13.8564i −0.500000 + 0.288675i
\(49\) 0 0
\(50\) 0 0
\(51\) 6.92820i 0.135847i
\(52\) 32.0000 55.4256i 0.615385 1.06588i
\(53\) 73.0000 1.37736 0.688679 0.725066i \(-0.258191\pi\)
0.688679 + 0.725066i \(0.258191\pi\)
\(54\) 9.00000 5.19615i 0.166667 0.0962250i
\(55\) 25.9808i 0.472377i
\(56\) 0 0
\(57\) 48.0000 0.842105
\(58\) −37.0000 64.0859i −0.637931 1.10493i
\(59\) 29.4449i 0.499065i 0.968366 + 0.249533i \(0.0802770\pi\)
−0.968366 + 0.249533i \(0.919723\pi\)
\(60\) −30.0000 17.3205i −0.500000 0.288675i
\(61\) −82.0000 −1.34426 −0.672131 0.740432i \(-0.734621\pi\)
−0.672131 + 0.740432i \(0.734621\pi\)
\(62\) −33.0000 + 19.0526i −0.532258 + 0.307299i
\(63\) 0 0
\(64\) 64.0000 1.00000
\(65\) 80.0000 1.23077
\(66\) 9.00000 + 15.5885i 0.136364 + 0.236189i
\(67\) 79.6743i 1.18917i 0.804033 + 0.594585i \(0.202683\pi\)
−0.804033 + 0.594585i \(0.797317\pi\)
\(68\) −8.00000 + 13.8564i −0.117647 + 0.203771i
\(69\) 36.0000 0.521739
\(70\) 0 0
\(71\) 72.7461i 1.02459i −0.858809 0.512297i \(-0.828795\pi\)
0.858809 0.512297i \(-0.171205\pi\)
\(72\) −24.0000 −0.333333
\(73\) −94.0000 −1.28767 −0.643836 0.765164i \(-0.722658\pi\)
−0.643836 + 0.765164i \(0.722658\pi\)
\(74\) −68.0000 117.779i −0.918919 1.59161i
\(75\) 0 0
\(76\) −96.0000 55.4256i −1.26316 0.729285i
\(77\) 0 0
\(78\) 48.0000 27.7128i 0.615385 0.355292i
\(79\) 8.66025i 0.109623i 0.998497 + 0.0548117i \(0.0174559\pi\)
−0.998497 + 0.0548117i \(0.982544\pi\)
\(80\) 40.0000 + 69.2820i 0.500000 + 0.866025i
\(81\) 9.00000 0.111111
\(82\) −40.0000 69.2820i −0.487805 0.844903i
\(83\) 133.368i 1.60684i 0.595411 + 0.803421i \(0.296989\pi\)
−0.595411 + 0.803421i \(0.703011\pi\)
\(84\) 0 0
\(85\) −20.0000 −0.235294
\(86\) −42.0000 + 24.2487i −0.488372 + 0.281962i
\(87\) 64.0859i 0.736619i
\(88\) 41.5692i 0.472377i
\(89\) 58.0000 0.651685 0.325843 0.945424i \(-0.394352\pi\)
0.325843 + 0.945424i \(0.394352\pi\)
\(90\) −15.0000 25.9808i −0.166667 0.288675i
\(91\) 0 0
\(92\) −72.0000 41.5692i −0.782609 0.451839i
\(93\) −33.0000 −0.354839
\(94\) −78.0000 + 45.0333i −0.829787 + 0.479078i
\(95\) 138.564i 1.45857i
\(96\) 48.0000 + 27.7128i 0.500000 + 0.288675i
\(97\) 47.0000 0.484536 0.242268 0.970209i \(-0.422109\pi\)
0.242268 + 0.970209i \(0.422109\pi\)
\(98\) 0 0
\(99\) 15.5885i 0.157459i
\(100\) 0 0
\(101\) 130.000 1.28713 0.643564 0.765392i \(-0.277455\pi\)
0.643564 + 0.765392i \(0.277455\pi\)
\(102\) −12.0000 + 6.92820i −0.117647 + 0.0679236i
\(103\) 20.7846i 0.201792i −0.994897 0.100896i \(-0.967829\pi\)
0.994897 0.100896i \(-0.0321710\pi\)
\(104\) −128.000 −1.23077
\(105\) 0 0
\(106\) −73.0000 126.440i −0.688679 1.19283i
\(107\) 81.4064i 0.760807i 0.924821 + 0.380404i \(0.124215\pi\)
−0.924821 + 0.380404i \(0.875785\pi\)
\(108\) −18.0000 10.3923i −0.166667 0.0962250i
\(109\) 122.000 1.11927 0.559633 0.828741i \(-0.310942\pi\)
0.559633 + 0.828741i \(0.310942\pi\)
\(110\) 45.0000 25.9808i 0.409091 0.236189i
\(111\) 117.779i 1.06108i
\(112\) 0 0
\(113\) 16.0000 0.141593 0.0707965 0.997491i \(-0.477446\pi\)
0.0707965 + 0.997491i \(0.477446\pi\)
\(114\) −48.0000 83.1384i −0.421053 0.729285i
\(115\) 103.923i 0.903679i
\(116\) −74.0000 + 128.172i −0.637931 + 1.10493i
\(117\) 48.0000 0.410256
\(118\) 51.0000 29.4449i 0.432203 0.249533i
\(119\) 0 0
\(120\) 69.2820i 0.577350i
\(121\) 94.0000 0.776860
\(122\) 82.0000 + 142.028i 0.672131 + 1.16417i
\(123\) 69.2820i 0.563269i
\(124\) 66.0000 + 38.1051i 0.532258 + 0.307299i
\(125\) 125.000 1.00000
\(126\) 0 0
\(127\) 109.119i 0.859206i 0.903018 + 0.429603i \(0.141347\pi\)
−0.903018 + 0.429603i \(0.858653\pi\)
\(128\) −64.0000 110.851i −0.500000 0.866025i
\(129\) −42.0000 −0.325581
\(130\) −80.0000 138.564i −0.615385 1.06588i
\(131\) 15.5885i 0.118996i 0.998228 + 0.0594979i \(0.0189500\pi\)
−0.998228 + 0.0594979i \(0.981050\pi\)
\(132\) 18.0000 31.1769i 0.136364 0.236189i
\(133\) 0 0
\(134\) 138.000 79.6743i 1.02985 0.594585i
\(135\) 25.9808i 0.192450i
\(136\) 32.0000 0.235294
\(137\) −74.0000 −0.540146 −0.270073 0.962840i \(-0.587048\pi\)
−0.270073 + 0.962840i \(0.587048\pi\)
\(138\) −36.0000 62.3538i −0.260870 0.451839i
\(139\) 169.741i 1.22116i 0.791955 + 0.610579i \(0.209063\pi\)
−0.791955 + 0.610579i \(0.790937\pi\)
\(140\) 0 0
\(141\) −78.0000 −0.553191
\(142\) −126.000 + 72.7461i −0.887324 + 0.512297i
\(143\) 83.1384i 0.581388i
\(144\) 24.0000 + 41.5692i 0.166667 + 0.288675i
\(145\) −185.000 −1.27586
\(146\) 94.0000 + 162.813i 0.643836 + 1.11516i
\(147\) 0 0
\(148\) −136.000 + 235.559i −0.918919 + 1.59161i
\(149\) 166.000 1.11409 0.557047 0.830481i \(-0.311934\pi\)
0.557047 + 0.830481i \(0.311934\pi\)
\(150\) 0 0
\(151\) 140.296i 0.929113i 0.885543 + 0.464557i \(0.153786\pi\)
−0.885543 + 0.464557i \(0.846214\pi\)
\(152\) 221.703i 1.45857i
\(153\) −12.0000 −0.0784314
\(154\) 0 0
\(155\) 95.2628i 0.614599i
\(156\) −96.0000 55.4256i −0.615385 0.355292i
\(157\) −52.0000 −0.331210 −0.165605 0.986192i \(-0.552958\pi\)
−0.165605 + 0.986192i \(0.552958\pi\)
\(158\) 15.0000 8.66025i 0.0949367 0.0548117i
\(159\) 126.440i 0.795218i
\(160\) 80.0000 138.564i 0.500000 0.866025i
\(161\) 0 0
\(162\) −9.00000 15.5885i −0.0555556 0.0962250i
\(163\) 76.2102i 0.467547i −0.972291 0.233774i \(-0.924893\pi\)
0.972291 0.233774i \(-0.0751075\pi\)
\(164\) −80.0000 + 138.564i −0.487805 + 0.844903i
\(165\) 45.0000 0.272727
\(166\) 231.000 133.368i 1.39157 0.803421i
\(167\) 169.741i 1.01641i −0.861235 0.508207i \(-0.830309\pi\)
0.861235 0.508207i \(-0.169691\pi\)
\(168\) 0 0
\(169\) 87.0000 0.514793
\(170\) 20.0000 + 34.6410i 0.117647 + 0.203771i
\(171\) 83.1384i 0.486190i
\(172\) 84.0000 + 48.4974i 0.488372 + 0.281962i
\(173\) −26.0000 −0.150289 −0.0751445 0.997173i \(-0.523942\pi\)
−0.0751445 + 0.997173i \(0.523942\pi\)
\(174\) −111.000 + 64.0859i −0.637931 + 0.368310i
\(175\) 0 0
\(176\) −72.0000 + 41.5692i −0.409091 + 0.236189i
\(177\) 51.0000 0.288136
\(178\) −58.0000 100.459i −0.325843 0.564376i
\(179\) 297.913i 1.66432i 0.554538 + 0.832158i \(0.312895\pi\)
−0.554538 + 0.832158i \(0.687105\pi\)
\(180\) −30.0000 + 51.9615i −0.166667 + 0.288675i
\(181\) −16.0000 −0.0883978 −0.0441989 0.999023i \(-0.514074\pi\)
−0.0441989 + 0.999023i \(0.514074\pi\)
\(182\) 0 0
\(183\) 142.028i 0.776110i
\(184\) 166.277i 0.903679i
\(185\) −340.000 −1.83784
\(186\) 33.0000 + 57.1577i 0.177419 + 0.307299i
\(187\) 20.7846i 0.111148i
\(188\) 156.000 + 90.0666i 0.829787 + 0.479078i
\(189\) 0 0
\(190\) −240.000 + 138.564i −1.26316 + 0.729285i
\(191\) 360.267i 1.88621i 0.332492 + 0.943106i \(0.392111\pi\)
−0.332492 + 0.943106i \(0.607889\pi\)
\(192\) 110.851i 0.577350i
\(193\) −151.000 −0.782383 −0.391192 0.920309i \(-0.627937\pi\)
−0.391192 + 0.920309i \(0.627937\pi\)
\(194\) −47.0000 81.4064i −0.242268 0.419621i
\(195\) 138.564i 0.710585i
\(196\) 0 0
\(197\) −278.000 −1.41117 −0.705584 0.708627i \(-0.749315\pi\)
−0.705584 + 0.708627i \(0.749315\pi\)
\(198\) 27.0000 15.5885i 0.136364 0.0787296i
\(199\) 138.564i 0.696302i 0.937438 + 0.348151i \(0.113190\pi\)
−0.937438 + 0.348151i \(0.886810\pi\)
\(200\) 0 0
\(201\) 138.000 0.686567
\(202\) −130.000 225.167i −0.643564 1.11469i
\(203\) 0 0
\(204\) 24.0000 + 13.8564i 0.117647 + 0.0679236i
\(205\) −200.000 −0.975610
\(206\) −36.0000 + 20.7846i −0.174757 + 0.100896i
\(207\) 62.3538i 0.301226i
\(208\) 128.000 + 221.703i 0.615385 + 1.06588i
\(209\) 144.000 0.688995
\(210\) 0 0
\(211\) 121.244i 0.574614i −0.957839 0.287307i \(-0.907240\pi\)
0.957839 0.287307i \(-0.0927600\pi\)
\(212\) −146.000 + 252.879i −0.688679 + 1.19283i
\(213\) −126.000 −0.591549
\(214\) 141.000 81.4064i 0.658879 0.380404i
\(215\) 121.244i 0.563924i
\(216\) 41.5692i 0.192450i
\(217\) 0 0
\(218\) −122.000 211.310i −0.559633 0.969313i
\(219\) 162.813i 0.743437i
\(220\) −90.0000 51.9615i −0.409091 0.236189i
\(221\) −64.0000 −0.289593
\(222\) −204.000 + 117.779i −0.918919 + 0.530538i
\(223\) 12.1244i 0.0543693i 0.999630 + 0.0271847i \(0.00865421\pi\)
−0.999630 + 0.0271847i \(0.991346\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −16.0000 27.7128i −0.0707965 0.122623i
\(227\) 150.688i 0.663826i 0.943310 + 0.331913i \(0.107694\pi\)
−0.943310 + 0.331913i \(0.892306\pi\)
\(228\) −96.0000 + 166.277i −0.421053 + 0.729285i
\(229\) 212.000 0.925764 0.462882 0.886420i \(-0.346815\pi\)
0.462882 + 0.886420i \(0.346815\pi\)
\(230\) −180.000 + 103.923i −0.782609 + 0.451839i
\(231\) 0 0
\(232\) 296.000 1.27586
\(233\) −212.000 −0.909871 −0.454936 0.890524i \(-0.650338\pi\)
−0.454936 + 0.890524i \(0.650338\pi\)
\(234\) −48.0000 83.1384i −0.205128 0.355292i
\(235\) 225.167i 0.958156i
\(236\) −102.000 58.8897i −0.432203 0.249533i
\(237\) 15.0000 0.0632911
\(238\) 0 0
\(239\) 48.4974i 0.202918i 0.994840 + 0.101459i \(0.0323511\pi\)
−0.994840 + 0.101459i \(0.967649\pi\)
\(240\) 120.000 69.2820i 0.500000 0.288675i
\(241\) 11.0000 0.0456432 0.0228216 0.999740i \(-0.492735\pi\)
0.0228216 + 0.999740i \(0.492735\pi\)
\(242\) −94.0000 162.813i −0.388430 0.672780i
\(243\) 15.5885i 0.0641500i
\(244\) 164.000 284.056i 0.672131 1.16417i
\(245\) 0 0
\(246\) −120.000 + 69.2820i −0.487805 + 0.281634i
\(247\) 443.405i 1.79516i
\(248\) 152.420i 0.614599i
\(249\) 231.000 0.927711
\(250\) −125.000 216.506i −0.500000 0.866025i
\(251\) 36.3731i 0.144913i 0.997372 + 0.0724563i \(0.0230838\pi\)
−0.997372 + 0.0724563i \(0.976916\pi\)
\(252\) 0 0
\(253\) 108.000 0.426877
\(254\) 189.000 109.119i 0.744094 0.429603i
\(255\) 34.6410i 0.135847i
\(256\) −128.000 + 221.703i −0.500000 + 0.866025i
\(257\) 58.0000 0.225681 0.112840 0.993613i \(-0.464005\pi\)
0.112840 + 0.993613i \(0.464005\pi\)
\(258\) 42.0000 + 72.7461i 0.162791 + 0.281962i
\(259\) 0 0
\(260\) −160.000 + 277.128i −0.615385 + 1.06588i
\(261\) −111.000 −0.425287
\(262\) 27.0000 15.5885i 0.103053 0.0594979i
\(263\) 405.300i 1.54106i −0.637401 0.770532i \(-0.719991\pi\)
0.637401 0.770532i \(-0.280009\pi\)
\(264\) −72.0000 −0.272727
\(265\) −365.000 −1.37736
\(266\) 0 0
\(267\) 100.459i 0.376251i
\(268\) −276.000 159.349i −1.02985 0.594585i
\(269\) 445.000 1.65428 0.827138 0.562000i \(-0.189968\pi\)
0.827138 + 0.562000i \(0.189968\pi\)
\(270\) −45.0000 + 25.9808i −0.166667 + 0.0962250i
\(271\) 355.070i 1.31022i 0.755532 + 0.655111i \(0.227378\pi\)
−0.755532 + 0.655111i \(0.772622\pi\)
\(272\) −32.0000 55.4256i −0.117647 0.203771i
\(273\) 0 0
\(274\) 74.0000 + 128.172i 0.270073 + 0.467780i
\(275\) 0 0
\(276\) −72.0000 + 124.708i −0.260870 + 0.451839i
\(277\) −256.000 −0.924188 −0.462094 0.886831i \(-0.652902\pi\)
−0.462094 + 0.886831i \(0.652902\pi\)
\(278\) 294.000 169.741i 1.05755 0.610579i
\(279\) 57.1577i 0.204866i
\(280\) 0 0
\(281\) −278.000 −0.989324 −0.494662 0.869085i \(-0.664708\pi\)
−0.494662 + 0.869085i \(0.664708\pi\)
\(282\) 78.0000 + 135.100i 0.276596 + 0.479078i
\(283\) 17.3205i 0.0612032i 0.999532 + 0.0306016i \(0.00974231\pi\)
−0.999532 + 0.0306016i \(0.990258\pi\)
\(284\) 252.000 + 145.492i 0.887324 + 0.512297i
\(285\) −240.000 −0.842105
\(286\) 144.000 83.1384i 0.503497 0.290694i
\(287\) 0 0
\(288\) 48.0000 83.1384i 0.166667 0.288675i
\(289\) −273.000 −0.944637
\(290\) 185.000 + 320.429i 0.637931 + 1.10493i
\(291\) 81.4064i 0.279747i
\(292\) 188.000 325.626i 0.643836 1.11516i
\(293\) 61.0000 0.208191 0.104096 0.994567i \(-0.466805\pi\)
0.104096 + 0.994567i \(0.466805\pi\)
\(294\) 0 0
\(295\) 147.224i 0.499065i
\(296\) 544.000 1.83784
\(297\) 27.0000 0.0909091
\(298\) −166.000 287.520i −0.557047 0.964834i
\(299\) 332.554i 1.11222i
\(300\) 0 0
\(301\) 0 0
\(302\) 243.000 140.296i 0.804636 0.464557i
\(303\) 225.167i 0.743124i
\(304\) 384.000 221.703i 1.26316 0.729285i
\(305\) 410.000 1.34426
\(306\) 12.0000 + 20.7846i 0.0392157 + 0.0679236i
\(307\) 436.477i 1.42175i 0.703319 + 0.710874i \(0.251701\pi\)
−0.703319 + 0.710874i \(0.748299\pi\)
\(308\) 0 0
\(309\) −36.0000 −0.116505
\(310\) 165.000 95.2628i 0.532258 0.307299i
\(311\) 152.420i 0.490098i −0.969511 0.245049i \(-0.921196\pi\)
0.969511 0.245049i \(-0.0788040\pi\)
\(312\) 221.703i 0.710585i
\(313\) 233.000 0.744409 0.372204 0.928151i \(-0.378602\pi\)
0.372204 + 0.928151i \(0.378602\pi\)
\(314\) 52.0000 + 90.0666i 0.165605 + 0.286836i
\(315\) 0 0
\(316\) −30.0000 17.3205i −0.0949367 0.0548117i
\(317\) −107.000 −0.337539 −0.168770 0.985656i \(-0.553979\pi\)
−0.168770 + 0.985656i \(0.553979\pi\)
\(318\) −219.000 + 126.440i −0.688679 + 0.397609i
\(319\) 192.258i 0.602689i
\(320\) −320.000 −1.00000
\(321\) 141.000 0.439252
\(322\) 0 0
\(323\) 110.851i 0.343193i
\(324\) −18.0000 + 31.1769i −0.0555556 + 0.0962250i
\(325\) 0 0
\(326\) −132.000 + 76.2102i −0.404908 + 0.233774i
\(327\) 211.310i 0.646209i
\(328\) 320.000 0.975610
\(329\) 0 0
\(330\) −45.0000 77.9423i −0.136364 0.236189i
\(331\) 408.764i 1.23494i 0.786596 + 0.617468i \(0.211842\pi\)
−0.786596 + 0.617468i \(0.788158\pi\)
\(332\) −462.000 266.736i −1.39157 0.803421i
\(333\) −204.000 −0.612613
\(334\) −294.000 + 169.741i −0.880240 + 0.508207i
\(335\) 398.372i 1.18917i
\(336\) 0 0
\(337\) 149.000 0.442136 0.221068 0.975258i \(-0.429046\pi\)
0.221068 + 0.975258i \(0.429046\pi\)
\(338\) −87.0000 150.688i −0.257396 0.445824i
\(339\) 27.7128i 0.0817487i
\(340\) 40.0000 69.2820i 0.117647 0.203771i
\(341\) −99.0000 −0.290323
\(342\) −144.000 + 83.1384i −0.421053 + 0.243095i
\(343\) 0 0
\(344\) 193.990i 0.563924i
\(345\) −180.000 −0.521739
\(346\) 26.0000 + 45.0333i 0.0751445 + 0.130154i
\(347\) 381.051i 1.09813i −0.835780 0.549065i \(-0.814984\pi\)
0.835780 0.549065i \(-0.185016\pi\)
\(348\) 222.000 + 128.172i 0.637931 + 0.368310i
\(349\) −394.000 −1.12894 −0.564470 0.825454i \(-0.690919\pi\)
−0.564470 + 0.825454i \(0.690919\pi\)
\(350\) 0 0
\(351\) 83.1384i 0.236862i
\(352\) 144.000 + 83.1384i 0.409091 + 0.236189i
\(353\) 256.000 0.725212 0.362606 0.931942i \(-0.381887\pi\)
0.362606 + 0.931942i \(0.381887\pi\)
\(354\) −51.0000 88.3346i −0.144068 0.249533i
\(355\) 363.731i 1.02459i
\(356\) −116.000 + 200.918i −0.325843 + 0.564376i
\(357\) 0 0
\(358\) 516.000 297.913i 1.44134 0.832158i
\(359\) 391.443i 1.09037i −0.838315 0.545186i \(-0.816459\pi\)
0.838315 0.545186i \(-0.183541\pi\)
\(360\) 120.000 0.333333
\(361\) −407.000 −1.12742
\(362\) 16.0000 + 27.7128i 0.0441989 + 0.0765547i
\(363\) 162.813i 0.448520i
\(364\) 0 0
\(365\) 470.000 1.28767
\(366\) 246.000 142.028i 0.672131 0.388055i
\(367\) 296.181i 0.807032i 0.914973 + 0.403516i \(0.132212\pi\)
−0.914973 + 0.403516i \(0.867788\pi\)
\(368\) 288.000 166.277i 0.782609 0.451839i
\(369\) −120.000 −0.325203
\(370\) 340.000 + 588.897i 0.918919 + 1.59161i
\(371\) 0 0
\(372\) 66.0000 114.315i 0.177419 0.307299i
\(373\) 656.000 1.75871 0.879357 0.476164i \(-0.157973\pi\)
0.879357 + 0.476164i \(0.157973\pi\)
\(374\) −36.0000 + 20.7846i −0.0962567 + 0.0555738i
\(375\) 216.506i 0.577350i
\(376\) 360.267i 0.958156i
\(377\) −592.000 −1.57029
\(378\) 0 0
\(379\) 290.985i 0.767769i −0.923381 0.383885i \(-0.874586\pi\)
0.923381 0.383885i \(-0.125414\pi\)
\(380\) 480.000 + 277.128i 1.26316 + 0.729285i
\(381\) 189.000 0.496063
\(382\) 624.000 360.267i 1.63351 0.943106i
\(383\) 197.454i 0.515545i 0.966206 + 0.257773i \(0.0829885\pi\)
−0.966206 + 0.257773i \(0.917011\pi\)
\(384\) −192.000 + 110.851i −0.500000 + 0.288675i
\(385\) 0 0
\(386\) 151.000 + 261.540i 0.391192 + 0.677564i
\(387\) 72.7461i 0.187975i
\(388\) −94.0000 + 162.813i −0.242268 + 0.419621i
\(389\) −410.000 −1.05398 −0.526992 0.849870i \(-0.676680\pi\)
−0.526992 + 0.849870i \(0.676680\pi\)
\(390\) −240.000 + 138.564i −0.615385 + 0.355292i
\(391\) 83.1384i 0.212630i
\(392\) 0 0
\(393\) 27.0000 0.0687023
\(394\) 278.000 + 481.510i 0.705584 + 1.22211i
\(395\) 43.3013i 0.109623i
\(396\) −54.0000 31.1769i −0.136364 0.0787296i
\(397\) 212.000 0.534005 0.267003 0.963696i \(-0.413967\pi\)
0.267003 + 0.963696i \(0.413967\pi\)
\(398\) 240.000 138.564i 0.603015 0.348151i
\(399\) 0 0
\(400\) 0 0
\(401\) −464.000 −1.15711 −0.578554 0.815644i \(-0.696383\pi\)
−0.578554 + 0.815644i \(0.696383\pi\)
\(402\) −138.000 239.023i −0.343284 0.594585i
\(403\) 304.841i 0.756429i
\(404\) −260.000 + 450.333i −0.643564 + 1.11469i
\(405\) −45.0000 −0.111111
\(406\) 0 0
\(407\) 353.338i 0.868153i
\(408\) 55.4256i 0.135847i
\(409\) 515.000 1.25917 0.629584 0.776932i \(-0.283225\pi\)
0.629584 + 0.776932i \(0.283225\pi\)
\(410\) 200.000 + 346.410i 0.487805 + 0.844903i
\(411\) 128.172i 0.311853i
\(412\) 72.0000 + 41.5692i 0.174757 + 0.100896i
\(413\) 0 0
\(414\) −108.000 + 62.3538i −0.260870 + 0.150613i
\(415\) 666.840i 1.60684i
\(416\) 256.000 443.405i 0.615385 1.06588i
\(417\) 294.000 0.705036
\(418\) −144.000 249.415i −0.344498 0.596687i
\(419\) 96.9948i 0.231491i −0.993279 0.115746i \(-0.963074\pi\)
0.993279 0.115746i \(-0.0369257\pi\)
\(420\) 0 0
\(421\) 170.000 0.403800 0.201900 0.979406i \(-0.435288\pi\)
0.201900 + 0.979406i \(0.435288\pi\)
\(422\) −210.000 + 121.244i −0.497630 + 0.287307i
\(423\) 135.100i 0.319385i
\(424\) 584.000 1.37736
\(425\) 0 0
\(426\) 126.000 + 218.238i 0.295775 + 0.512297i
\(427\) 0 0
\(428\) −282.000 162.813i −0.658879 0.380404i
\(429\) 144.000 0.335664
\(430\) 210.000 121.244i 0.488372 0.281962i
\(431\) 6.92820i 0.0160747i 0.999968 + 0.00803736i \(0.00255840\pi\)
−0.999968 + 0.00803736i \(0.997442\pi\)
\(432\) 72.0000 41.5692i 0.166667 0.0962250i
\(433\) −226.000 −0.521940 −0.260970 0.965347i \(-0.584042\pi\)
−0.260970 + 0.965347i \(0.584042\pi\)
\(434\) 0 0
\(435\) 320.429i 0.736619i
\(436\) −244.000 + 422.620i −0.559633 + 0.969313i
\(437\) −576.000 −1.31808
\(438\) 282.000 162.813i 0.643836 0.371719i
\(439\) 178.401i 0.406381i −0.979139 0.203190i \(-0.934869\pi\)
0.979139 0.203190i \(-0.0651311\pi\)
\(440\) 207.846i 0.472377i
\(441\) 0 0
\(442\) 64.0000 + 110.851i 0.144796 + 0.250795i
\(443\) 621.806i 1.40363i −0.712361 0.701813i \(-0.752374\pi\)
0.712361 0.701813i \(-0.247626\pi\)
\(444\) 408.000 + 235.559i 0.918919 + 0.530538i
\(445\) −290.000 −0.651685
\(446\) 21.0000 12.1244i 0.0470852 0.0271847i
\(447\) 287.520i 0.643222i
\(448\) 0 0
\(449\) 520.000 1.15813 0.579065 0.815282i \(-0.303418\pi\)
0.579065 + 0.815282i \(0.303418\pi\)
\(450\) 0 0
\(451\) 207.846i 0.460856i
\(452\) −32.0000 + 55.4256i −0.0707965 + 0.122623i
\(453\) 243.000 0.536424
\(454\) 261.000 150.688i 0.574890 0.331913i
\(455\) 0 0
\(456\) 384.000 0.842105
\(457\) −37.0000 −0.0809628 −0.0404814 0.999180i \(-0.512889\pi\)
−0.0404814 + 0.999180i \(0.512889\pi\)
\(458\) −212.000 367.195i −0.462882 0.801735i
\(459\) 20.7846i 0.0452824i
\(460\) 360.000 + 207.846i 0.782609 + 0.451839i
\(461\) 250.000 0.542299 0.271150 0.962537i \(-0.412596\pi\)
0.271150 + 0.962537i \(0.412596\pi\)
\(462\) 0 0
\(463\) 339.482i 0.733222i −0.930374 0.366611i \(-0.880518\pi\)
0.930374 0.366611i \(-0.119482\pi\)
\(464\) −296.000 512.687i −0.637931 1.10493i
\(465\) 165.000 0.354839
\(466\) 212.000 + 367.195i 0.454936 + 0.787972i
\(467\) 796.743i 1.70609i −0.521839 0.853044i \(-0.674754\pi\)
0.521839 0.853044i \(-0.325246\pi\)
\(468\) −96.0000 + 166.277i −0.205128 + 0.355292i
\(469\) 0 0
\(470\) 390.000 225.167i 0.829787 0.479078i
\(471\) 90.0666i 0.191224i
\(472\) 235.559i 0.499065i
\(473\) −126.000 −0.266385
\(474\) −15.0000 25.9808i −0.0316456 0.0548117i
\(475\) 0 0
\(476\) 0 0
\(477\) −219.000 −0.459119
\(478\) 84.0000 48.4974i 0.175732 0.101459i
\(479\) 176.669i 0.368829i −0.982849 0.184415i \(-0.940961\pi\)
0.982849 0.184415i \(-0.0590389\pi\)
\(480\) −240.000 138.564i −0.500000 0.288675i
\(481\) −1088.00 −2.26195
\(482\) −11.0000 19.0526i −0.0228216 0.0395281i
\(483\) 0 0
\(484\) −188.000 + 325.626i −0.388430 + 0.672780i
\(485\) −235.000 −0.484536
\(486\) −27.0000 + 15.5885i −0.0555556 + 0.0320750i
\(487\) 310.037i 0.636626i 0.947986 + 0.318313i \(0.103116\pi\)
−0.947986 + 0.318313i \(0.896884\pi\)
\(488\) −656.000 −1.34426
\(489\) −132.000 −0.269939
\(490\) 0 0
\(491\) 230.363i 0.469171i 0.972096 + 0.234585i \(0.0753732\pi\)
−0.972096 + 0.234585i \(0.924627\pi\)
\(492\) 240.000 + 138.564i 0.487805 + 0.281634i
\(493\) 148.000 0.300203
\(494\) −768.000 + 443.405i −1.55466 + 0.897581i
\(495\) 77.9423i 0.157459i
\(496\) −264.000 + 152.420i −0.532258 + 0.307299i
\(497\) 0 0
\(498\) −231.000 400.104i −0.463855 0.803421i
\(499\) 239.023i 0.479004i 0.970896 + 0.239502i \(0.0769842\pi\)
−0.970896 + 0.239502i \(0.923016\pi\)
\(500\) −250.000 + 433.013i −0.500000 + 0.866025i
\(501\) −294.000 −0.586826
\(502\) 63.0000 36.3731i 0.125498 0.0724563i
\(503\) 872.954i 1.73549i −0.497006 0.867747i \(-0.665567\pi\)
0.497006 0.867747i \(-0.334433\pi\)
\(504\) 0 0
\(505\) −650.000 −1.28713
\(506\) −108.000 187.061i −0.213439 0.369687i
\(507\) 150.688i 0.297216i
\(508\) −378.000 218.238i −0.744094 0.429603i
\(509\) 541.000 1.06287 0.531434 0.847100i \(-0.321653\pi\)
0.531434 + 0.847100i \(0.321653\pi\)
\(510\) 60.0000 34.6410i 0.117647 0.0679236i
\(511\) 0 0
\(512\) 512.000 1.00000
\(513\) −144.000 −0.280702
\(514\) −58.0000 100.459i −0.112840 0.195445i
\(515\) 103.923i 0.201792i
\(516\) 84.0000 145.492i 0.162791 0.281962i
\(517\) −234.000 −0.452611
\(518\) 0 0
\(519\) 45.0333i 0.0867694i
\(520\) 640.000 1.23077
\(521\) 550.000 1.05566 0.527831 0.849349i \(-0.323005\pi\)
0.527831 + 0.849349i \(0.323005\pi\)
\(522\) 111.000 + 192.258i 0.212644 + 0.368310i
\(523\) 609.682i 1.16574i 0.812566 + 0.582870i \(0.198070\pi\)
−0.812566 + 0.582870i \(0.801930\pi\)
\(524\) −54.0000 31.1769i −0.103053 0.0594979i
\(525\) 0 0
\(526\) −702.000 + 405.300i −1.33460 + 0.770532i
\(527\) 76.2102i 0.144611i
\(528\) 72.0000 + 124.708i 0.136364 + 0.236189i
\(529\) 97.0000 0.183365
\(530\) 365.000 + 632.199i 0.688679 + 1.19283i
\(531\) 88.3346i 0.166355i
\(532\) 0 0
\(533\) −640.000 −1.20075
\(534\) −174.000 + 100.459i −0.325843 + 0.188125i
\(535\) 407.032i 0.760807i
\(536\) 637.395i 1.18917i
\(537\) 516.000 0.960894
\(538\) −445.000 770.763i −0.827138 1.43264i
\(539\) 0 0
\(540\) 90.0000 + 51.9615i 0.166667 + 0.0962250i
\(541\) −310.000 −0.573013 −0.286506 0.958078i \(-0.592494\pi\)
−0.286506 + 0.958078i \(0.592494\pi\)
\(542\) 615.000 355.070i 1.13469 0.655111i
\(543\) 27.7128i 0.0510365i
\(544\) −64.0000 + 110.851i −0.117647 + 0.203771i
\(545\) −610.000 −1.11927
\(546\) 0 0
\(547\) 630.466i 1.15259i 0.817242 + 0.576295i \(0.195502\pi\)
−0.817242 + 0.576295i \(0.804498\pi\)
\(548\) 148.000 256.344i 0.270073 0.467780i
\(549\) 246.000 0.448087
\(550\) 0 0
\(551\) 1025.37i 1.86093i
\(552\) 288.000 0.521739
\(553\) 0 0
\(554\) 256.000 + 443.405i 0.462094 + 0.800370i
\(555\) 588.897i 1.06108i
\(556\) −588.000 339.482i −1.05755 0.610579i
\(557\) 535.000 0.960503 0.480251 0.877131i \(-0.340545\pi\)
0.480251 + 0.877131i \(0.340545\pi\)
\(558\) 99.0000 57.1577i 0.177419 0.102433i
\(559\) 387.979i 0.694060i
\(560\) 0 0
\(561\) −36.0000 −0.0641711
\(562\) 278.000 + 481.510i 0.494662 + 0.856780i
\(563\) 698.016i 1.23982i −0.784674 0.619908i \(-0.787170\pi\)
0.784674 0.619908i \(-0.212830\pi\)
\(564\) 156.000 270.200i 0.276596 0.479078i
\(565\) −80.0000 −0.141593
\(566\) 30.0000 17.3205i 0.0530035 0.0306016i
\(567\) 0 0
\(568\) 581.969i 1.02459i
\(569\) 712.000 1.25132 0.625659 0.780097i \(-0.284830\pi\)
0.625659 + 0.780097i \(0.284830\pi\)
\(570\) 240.000 + 415.692i 0.421053 + 0.729285i
\(571\) 65.8179i 0.115268i −0.998338 0.0576339i \(-0.981644\pi\)
0.998338 0.0576339i \(-0.0183556\pi\)
\(572\) −288.000 166.277i −0.503497 0.290694i
\(573\) 624.000 1.08901
\(574\) 0 0
\(575\) 0 0
\(576\) −192.000 −0.333333
\(577\) −157.000 −0.272097 −0.136049 0.990702i \(-0.543440\pi\)
−0.136049 + 0.990702i \(0.543440\pi\)
\(578\) 273.000 + 472.850i 0.472318 + 0.818079i
\(579\) 261.540i 0.451709i
\(580\) 370.000 640.859i 0.637931 1.10493i
\(581\) 0 0
\(582\) −141.000 + 81.4064i −0.242268 + 0.139874i
\(583\) 379.319i 0.650633i
\(584\) −752.000 −1.28767
\(585\) −240.000 −0.410256
\(586\) −61.0000 105.655i −0.104096 0.180299i
\(587\) 788.083i 1.34256i 0.741204 + 0.671280i \(0.234255\pi\)
−0.741204 + 0.671280i \(0.765745\pi\)
\(588\) 0 0
\(589\) 528.000 0.896435
\(590\) −255.000 + 147.224i −0.432203 + 0.249533i
\(591\) 481.510i 0.814738i
\(592\) −544.000 942.236i −0.918919 1.59161i
\(593\) −68.0000 −0.114671 −0.0573356 0.998355i \(-0.518260\pi\)
−0.0573356 + 0.998355i \(0.518260\pi\)
\(594\) −27.0000 46.7654i −0.0454545 0.0787296i
\(595\) 0 0
\(596\) −332.000 + 575.041i −0.557047 + 0.964834i
\(597\) 240.000 0.402010
\(598\) −576.000 + 332.554i −0.963211 + 0.556110i
\(599\) 273.664i 0.456868i 0.973559 + 0.228434i \(0.0733605\pi\)
−0.973559 + 0.228434i \(0.926639\pi\)
\(600\) 0 0
\(601\) 971.000 1.61564 0.807820 0.589429i \(-0.200647\pi\)
0.807820 + 0.589429i \(0.200647\pi\)
\(602\) 0 0
\(603\) 239.023i 0.396390i
\(604\) −486.000 280.592i −0.804636 0.464557i
\(605\) −470.000 −0.776860
\(606\) −390.000 + 225.167i −0.643564 + 0.371562i
\(607\) 88.3346i 0.145527i 0.997349 + 0.0727633i \(0.0231818\pi\)
−0.997349 + 0.0727633i \(0.976818\pi\)
\(608\) −768.000 443.405i −1.26316 0.729285i
\(609\) 0 0
\(610\) −410.000 710.141i −0.672131 1.16417i
\(611\) 720.533i 1.17927i
\(612\) 24.0000 41.5692i 0.0392157 0.0679236i
\(613\) 836.000 1.36378 0.681892 0.731453i \(-0.261157\pi\)
0.681892 + 0.731453i \(0.261157\pi\)
\(614\) 756.000 436.477i 1.23127 0.710874i
\(615\) 346.410i 0.563269i
\(616\) 0 0
\(617\) 394.000 0.638574 0.319287 0.947658i \(-0.396557\pi\)
0.319287 + 0.947658i \(0.396557\pi\)
\(618\) 36.0000 + 62.3538i 0.0582524 + 0.100896i
\(619\) 696.284i 1.12485i 0.826847 + 0.562427i \(0.190132\pi\)
−0.826847 + 0.562427i \(0.809868\pi\)
\(620\) −330.000 190.526i −0.532258 0.307299i
\(621\) −108.000 −0.173913
\(622\) −264.000 + 152.420i −0.424437 + 0.245049i
\(623\) 0 0
\(624\) 384.000 221.703i 0.615385 0.355292i
\(625\) −625.000 −1.00000
\(626\) −233.000 403.568i −0.372204 0.644677i
\(627\) 249.415i 0.397792i
\(628\) 104.000 180.133i 0.165605 0.286836i
\(629\) 272.000 0.432432
\(630\) 0 0
\(631\) 254.611i 0.403505i 0.979437 + 0.201752i \(0.0646636\pi\)
−0.979437 + 0.201752i \(0.935336\pi\)
\(632\) 69.2820i 0.109623i
\(633\) −210.000 −0.331754
\(634\) 107.000 + 185.329i 0.168770 + 0.292318i
\(635\) 545.596i 0.859206i
\(636\) 438.000 + 252.879i 0.688679 + 0.397609i
\(637\) 0 0
\(638\) −333.000 + 192.258i −0.521944 + 0.301344i
\(639\) 218.238i 0.341531i
\(640\) 320.000 + 554.256i 0.500000 + 0.866025i
\(641\) 178.000 0.277691 0.138846 0.990314i \(-0.455661\pi\)
0.138846 + 0.990314i \(0.455661\pi\)
\(642\) −141.000 244.219i −0.219626 0.380404i
\(643\) 266.736i 0.414830i −0.978253 0.207415i \(-0.933495\pi\)
0.978253 0.207415i \(-0.0665051\pi\)
\(644\) 0 0
\(645\) 210.000 0.325581
\(646\) 192.000 110.851i 0.297214 0.171596i
\(647\) 17.3205i 0.0267705i 0.999910 + 0.0133852i \(0.00426078\pi\)
−0.999910 + 0.0133852i \(0.995739\pi\)
\(648\) 72.0000 0.111111
\(649\) 153.000 0.235747
\(650\) 0 0
\(651\) 0 0
\(652\) 264.000 + 152.420i 0.404908 + 0.233774i
\(653\) −737.000 −1.12864 −0.564319 0.825557i \(-0.690861\pi\)
−0.564319 + 0.825557i \(0.690861\pi\)
\(654\) −366.000 + 211.310i −0.559633 + 0.323104i
\(655\) 77.9423i 0.118996i
\(656\) −320.000 554.256i −0.487805 0.844903i
\(657\) 282.000 0.429224
\(658\) 0 0
\(659\) 678.964i 1.03029i 0.857102 + 0.515147i \(0.172263\pi\)
−0.857102 + 0.515147i \(0.827737\pi\)
\(660\) −90.0000 + 155.885i −0.136364 + 0.236189i
\(661\) −682.000 −1.03177 −0.515885 0.856658i \(-0.672537\pi\)
−0.515885 + 0.856658i \(0.672537\pi\)
\(662\) 708.000 408.764i 1.06949 0.617468i
\(663\) 110.851i 0.167196i
\(664\) 1066.94i 1.60684i
\(665\) 0 0
\(666\) 204.000 + 353.338i 0.306306 + 0.530538i
\(667\) 769.031i 1.15297i
\(668\) 588.000 + 339.482i 0.880240 + 0.508207i
\(669\) 21.0000 0.0313901
\(670\) −690.000 + 398.372i −1.02985 + 0.594585i
\(671\) 426.084i 0.634999i
\(672\) 0 0
\(673\) −1027.00 −1.52600 −0.763001 0.646397i \(-0.776275\pi\)
−0.763001 + 0.646397i \(0.776275\pi\)
\(674\) −149.000 258.076i −0.221068 0.382901i
\(675\) 0 0
\(676\) −174.000 + 301.377i −0.257396 + 0.445824i
\(677\) 331.000 0.488922 0.244461 0.969659i \(-0.421389\pi\)
0.244461 + 0.969659i \(0.421389\pi\)
\(678\) −48.0000 + 27.7128i −0.0707965 + 0.0408744i
\(679\) 0 0
\(680\) −160.000 −0.235294
\(681\) 261.000 0.383260
\(682\) 99.0000 + 171.473i 0.145161 + 0.251427i
\(683\) 261.540i 0.382928i 0.981500 + 0.191464i \(0.0613235\pi\)
−0.981500 + 0.191464i \(0.938677\pi\)
\(684\) 288.000 + 166.277i 0.421053 + 0.243095i
\(685\) 370.000 0.540146
\(686\) 0 0
\(687\) 367.195i 0.534490i
\(688\) −336.000 + 193.990i −0.488372 + 0.281962i
\(689\) −1168.00 −1.69521
\(690\) 180.000 + 311.769i 0.260870 + 0.451839i
\(691\) 1233.22i 1.78469i −0.451355 0.892345i \(-0.649059\pi\)
0.451355 0.892345i \(-0.350941\pi\)
\(692\) 52.0000 90.0666i 0.0751445 0.130154i
\(693\) 0 0
\(694\) −660.000 + 381.051i −0.951009 + 0.549065i
\(695\) 848.705i 1.22116i
\(696\) 512.687i 0.736619i
\(697\) 160.000 0.229555
\(698\) 394.000 + 682.428i 0.564470 + 0.977691i
\(699\) 367.195i 0.525314i
\(700\) 0 0
\(701\) −467.000 −0.666191 −0.333096 0.942893i \(-0.608093\pi\)
−0.333096 + 0.942893i \(0.608093\pi\)
\(702\) −144.000 + 83.1384i −0.205128 + 0.118431i
\(703\) 1884.47i 2.68061i
\(704\) 332.554i 0.472377i
\(705\) 390.000 0.553191
\(706\) −256.000 443.405i −0.362606 0.628052i
\(707\) 0 0
\(708\) −102.000 + 176.669i −0.144068 + 0.249533i
\(709\) 530.000 0.747532 0.373766 0.927523i \(-0.378066\pi\)
0.373766 + 0.927523i \(0.378066\pi\)
\(710\) 630.000 363.731i 0.887324 0.512297i
\(711\) 25.9808i 0.0365412i
\(712\) 464.000 0.651685
\(713\) 396.000 0.555400
\(714\) 0 0
\(715\) 415.692i 0.581388i
\(716\) −1032.00 595.825i −1.44134 0.832158i
\(717\) 84.0000 0.117155
\(718\) −678.000 + 391.443i −0.944290 + 0.545186i
\(719\) 723.997i 1.00695i −0.864010 0.503475i \(-0.832055\pi\)
0.864010 0.503475i \(-0.167945\pi\)
\(720\) −120.000 207.846i −0.166667 0.288675i
\(721\) 0 0
\(722\) 407.000 + 704.945i 0.563712 + 0.976378i
\(723\) 19.0526i 0.0263521i
\(724\) 32.0000 55.4256i 0.0441989 0.0765547i
\(725\) 0 0
\(726\) −282.000 + 162.813i −0.388430 + 0.224260i
\(727\) 60.6218i 0.0833862i −0.999130 0.0416931i \(-0.986725\pi\)
0.999130 0.0416931i \(-0.0132752\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) −470.000 814.064i −0.643836 1.11516i
\(731\) 96.9948i 0.132688i
\(732\) −492.000 284.056i −0.672131 0.388055i
\(733\) −586.000 −0.799454 −0.399727 0.916634i \(-0.630895\pi\)
−0.399727 + 0.916634i \(0.630895\pi\)
\(734\) 513.000 296.181i 0.698910 0.403516i
\(735\) 0 0
\(736\) −576.000 332.554i −0.782609 0.451839i
\(737\) 414.000 0.561737
\(738\) 120.000 + 207.846i 0.162602 + 0.281634i
\(739\) 128.172i 0.173439i 0.996233 + 0.0867197i \(0.0276385\pi\)
−0.996233 + 0.0867197i \(0.972362\pi\)
\(740\) 680.000 1177.79i 0.918919 1.59161i
\(741\) −768.000 −1.03644
\(742\) 0 0
\(743\) 24.2487i 0.0326362i −0.999867 0.0163181i \(-0.994806\pi\)
0.999867 0.0163181i \(-0.00519445\pi\)
\(744\) −264.000 −0.354839
\(745\) −830.000 −1.11409
\(746\) −656.000 1136.23i −0.879357 1.52309i
\(747\) 400.104i 0.535614i
\(748\) 72.0000 + 41.5692i 0.0962567 + 0.0555738i
\(749\) 0 0
\(750\) −375.000 + 216.506i −0.500000 + 0.288675i
\(751\) 566.381i 0.754169i 0.926179 + 0.377084i \(0.123073\pi\)
−0.926179 + 0.377084i \(0.876927\pi\)
\(752\) −624.000 + 360.267i −0.829787 + 0.479078i
\(753\) 63.0000 0.0836653
\(754\) 592.000 + 1025.37i 0.785146 + 1.35991i
\(755\) 701.481i 0.929113i
\(756\) 0 0
\(757\) −250.000 −0.330251 −0.165125 0.986273i \(-0.552803\pi\)
−0.165125 + 0.986273i \(0.552803\pi\)
\(758\) −504.000 + 290.985i −0.664908 + 0.383885i
\(759\) 187.061i 0.246458i
\(760\) 1108.51i 1.45857i
\(761\) −320.000 −0.420499 −0.210250 0.977648i \(-0.567428\pi\)
−0.210250 + 0.977648i \(0.567428\pi\)
\(762\) −189.000 327.358i −0.248031 0.429603i
\(763\) 0 0
\(764\) −1248.00 720.533i −1.63351 0.943106i
\(765\) 60.0000 0.0784314
\(766\) 342.000 197.454i 0.446475 0.257773i
\(767\) 471.118i 0.614234i
\(768\) 384.000 + 221.703i 0.500000 + 0.288675i
\(769\) 425.000 0.552666 0.276333 0.961062i \(-0.410881\pi\)
0.276333 + 0.961062i \(0.410881\pi\)
\(770\) 0 0
\(771\) 100.459i 0.130297i
\(772\) 302.000 523.079i 0.391192 0.677564i
\(773\) 130.000 0.168176 0.0840880 0.996458i \(-0.473202\pi\)
0.0840880 + 0.996458i \(0.473202\pi\)
\(774\) 126.000 72.7461i 0.162791 0.0939873i
\(775\) 0 0
\(776\) 376.000 0.484536
\(777\) 0 0
\(778\) 410.000 + 710.141i 0.526992 + 0.912777i
\(779\) 1108.51i 1.42299i
\(780\) 480.000 + 277.128i 0.615385 + 0.355292i
\(781\) −378.000 −0.483995
\(782\) 144.000 83.1384i 0.184143 0.106315i
\(783\) 192.258i 0.245540i
\(784\) 0 0
\(785\) 260.000 0.331210
\(786\) −27.0000 46.7654i −0.0343511 0.0594979i
\(787\) 1001.13i 1.27208i −0.771657 0.636039i \(-0.780572\pi\)
0.771657 0.636039i \(-0.219428\pi\)
\(788\) 556.000 963.020i 0.705584 1.22211i
\(789\) −702.000 −0.889734
\(790\) −75.0000 + 43.3013i −0.0949367 + 0.0548117i
\(791\) 0 0
\(792\) 124.708i 0.157459i
\(793\) 1312.00 1.65448
\(794\) −212.000 367.195i −0.267003 0.462462i
\(795\) 632.199i 0.795218i
\(796\) −480.000 277.128i −0.603015 0.348151i
\(797\) 439.000 0.550816 0.275408 0.961327i \(-0.411187\pi\)
0.275408 + 0.961327i \(0.411187\pi\)
\(798\) 0 0
\(799\) 180.133i 0.225448i
\(800\) 0 0
\(801\) −174.000 −0.217228
\(802\) 464.000 + 803.672i 0.578554 + 1.00208i
\(803\) 488.438i 0.608267i
\(804\) −276.000 + 478.046i −0.343284 + 0.594585i
\(805\) 0 0
\(806\) 528.000 304.841i 0.655087 0.378215i
\(807\) 770.763i 0.955096i
\(808\) 1040.00 1.28713
\(809\) −1040.00 −1.28554 −0.642769 0.766060i \(-0.722214\pi\)
−0.642769 + 0.766060i \(0.722214\pi\)
\(810\) 45.0000 + 77.9423i 0.0555556 + 0.0962250i
\(811\) 1236.68i 1.52489i 0.647054 + 0.762444i \(0.276001\pi\)
−0.647054 + 0.762444i \(0.723999\pi\)
\(812\) 0 0
\(813\) 615.000 0.756458
\(814\) −612.000 + 353.338i −0.751843 + 0.434077i
\(815\) 381.051i 0.467547i
\(816\) −96.0000 + 55.4256i −0.117647 + 0.0679236i
\(817\) 672.000 0.822521
\(818\) −515.000 892.006i −0.629584 1.09047i
\(819\) 0 0
\(820\) 400.000 692.820i 0.487805 0.844903i
\(821\) 145.000 0.176614 0.0883069 0.996093i \(-0.471854\pi\)
0.0883069 + 0.996093i \(0.471854\pi\)
\(822\) 222.000 128.172i 0.270073 0.155927i
\(823\) 1447.99i 1.75941i −0.475520 0.879705i \(-0.657740\pi\)
0.475520 0.879705i \(-0.342260\pi\)
\(824\) 166.277i 0.201792i
\(825\) 0 0
\(826\) 0 0
\(827\) 545.596i 0.659729i −0.944028 0.329865i \(-0.892997\pi\)
0.944028 0.329865i \(-0.107003\pi\)
\(828\) 216.000 + 124.708i 0.260870 + 0.150613i
\(829\) 368.000 0.443908 0.221954 0.975057i \(-0.428756\pi\)
0.221954 + 0.975057i \(0.428756\pi\)
\(830\) −1155.00 + 666.840i −1.39157 + 0.803421i
\(831\) 443.405i 0.533580i
\(832\) −1024.00 −1.23077
\(833\) 0 0
\(834\) −294.000 509.223i −0.352518 0.610579i
\(835\) 848.705i 1.01641i
\(836\) −288.000 + 498.831i −0.344498 + 0.596687i
\(837\) 99.0000 0.118280
\(838\) −168.000 + 96.9948i −0.200477 + 0.115746i
\(839\) 921.451i 1.09827i −0.835733 0.549136i \(-0.814957\pi\)
0.835733 0.549136i \(-0.185043\pi\)
\(840\) 0 0
\(841\) 528.000 0.627824
\(842\) −170.000 294.449i −0.201900 0.349701i
\(843\) 481.510i 0.571186i
\(844\) 420.000 + 242.487i 0.497630 + 0.287307i
\(845\) −435.000 −0.514793
\(846\) 234.000 135.100i 0.276596 0.159693i
\(847\) 0 0
\(848\) −584.000 1011.52i −0.688679 1.19283i
\(849\) 30.0000 0.0353357
\(850\) 0 0
\(851\) 1413.35i 1.66081i
\(852\) 252.000 436.477i 0.295775 0.512297i
\(853\) −1150.00 −1.34818 −0.674091 0.738648i \(-0.735465\pi\)
−0.674091 + 0.738648i \(0.735465\pi\)
\(854\) 0 0
\(855\) 415.692i 0.486190i
\(856\) 651.251i 0.760807i
\(857\) 214.000 0.249708 0.124854 0.992175i \(-0.460154\pi\)
0.124854 + 0.992175i \(0.460154\pi\)
\(858\) −144.000 249.415i −0.167832 0.290694i
\(859\) 820.992i 0.955753i −0.878427 0.477877i \(-0.841407\pi\)
0.878427 0.477877i \(-0.158593\pi\)
\(860\) −420.000 242.487i −0.488372 0.281962i
\(861\) 0 0
\(862\) 12.0000 6.92820i 0.0139211 0.00803736i
\(863\) 391.443i 0.453585i −0.973943 0.226792i \(-0.927176\pi\)
0.973943 0.226792i \(-0.0728239\pi\)
\(864\) −144.000 83.1384i −0.166667 0.0962250i
\(865\) 130.000 0.150289
\(866\) 226.000 + 391.443i 0.260970 + 0.452013i
\(867\) 472.850i 0.545386i
\(868\) 0 0
\(869\) 45.0000 0.0517837
\(870\) 555.000 320.429i 0.637931 0.368310i
\(871\) 1274.79i 1.46359i
\(872\) 976.000 1.11927
\(873\) −141.000 −0.161512
\(874\) 576.000 + 997.661i 0.659039 + 1.14149i
\(875\) 0 0
\(876\) −564.000 325.626i −0.643836 0.371719i
\(877\) 320.000 0.364880 0.182440 0.983217i \(-0.441600\pi\)
0.182440 + 0.983217i \(0.441600\pi\)
\(878\) −309.000 + 178.401i −0.351936 + 0.203190i
\(879\) 105.655i 0.120199i
\(880\) 360.000 207.846i 0.409091 0.236189i
\(881\) 502.000 0.569807 0.284904 0.958556i \(-0.408038\pi\)
0.284904 + 0.958556i \(0.408038\pi\)
\(882\) 0 0
\(883\) 290.985i 0.329541i 0.986332 + 0.164770i \(0.0526883\pi\)
−0.986332 + 0.164770i \(0.947312\pi\)
\(884\) 128.000 221.703i 0.144796 0.250795i
\(885\) −255.000 −0.288136
\(886\) −1077.00 + 621.806i −1.21558 + 0.701813i
\(887\) 270.200i 0.304622i 0.988333 + 0.152311i \(0.0486716\pi\)
−0.988333 + 0.152311i \(0.951328\pi\)
\(888\) 942.236i 1.06108i
\(889\) 0 0
\(890\) 290.000 + 502.295i 0.325843 + 0.564376i
\(891\) 46.7654i 0.0524864i
\(892\) −42.0000 24.2487i −0.0470852 0.0271847i
\(893\) 1248.00 1.39754
\(894\) −498.000 + 287.520i −0.557047 + 0.321611i
\(895\) 1489.56i 1.66432i
\(896\) 0 0
\(897\) −576.000 −0.642140
\(898\) −520.000 900.666i −0.579065 1.00297i
\(899\) 704.945i 0.784143i
\(900\) 0 0
\(901\) 292.000 0.324084
\(902\) −360.000 + 207.846i −0.399113 + 0.230428i
\(903\) 0 0
\(904\) 128.000 0.141593
\(905\) 80.0000 0.0883978
\(906\) −243.000 420.888i −0.268212 0.464557i
\(907\) 187.061i 0.206242i −0.994669 0.103121i \(-0.967117\pi\)
0.994669 0.103121i \(-0.0328829\pi\)
\(908\) −522.000 301.377i −0.574890 0.331913i
\(909\) −390.000 −0.429043
\(910\) 0 0
\(911\) 1624.66i 1.78338i 0.452642 + 0.891692i \(0.350482\pi\)
−0.452642 + 0.891692i \(0.649518\pi\)
\(912\) −384.000 665.108i −0.421053 0.729285i
\(913\) 693.000 0.759036
\(914\) 37.0000 + 64.0859i 0.0404814 + 0.0701158i
\(915\) 710.141i 0.776110i
\(916\) −424.000 + 734.390i −0.462882 + 0.801735i
\(917\) 0 0
\(918\) 36.0000 20.7846i 0.0392157 0.0226412i
\(919\) 76.2102i 0.0829274i −0.999140 0.0414637i \(-0.986798\pi\)
0.999140 0.0414637i \(-0.0132021\pi\)
\(920\) 831.384i 0.903679i
\(921\) 756.000 0.820847
\(922\) −250.000 433.013i −0.271150 0.469645i
\(923\) 1163.94i 1.26104i
\(924\) 0 0
\(925\) 0 0
\(926\) −588.000 + 339.482i −0.634989 + 0.366611i
\(927\) 62.3538i 0.0672641i
\(928\) −592.000 + 1025.37i −0.637931 + 1.10493i
\(929\) −1286.00 −1.38428 −0.692142 0.721761i \(-0.743333\pi\)
−0.692142 + 0.721761i \(0.743333\pi\)
\(930\) −165.000 285.788i −0.177419 0.307299i
\(931\) 0 0
\(932\) 424.000 734.390i 0.454936 0.787972i
\(933\) −264.000 −0.282958
\(934\) −1380.00 + 796.743i −1.47752 + 0.853044i
\(935\) 103.923i 0.111148i
\(936\) 384.000 0.410256
\(937\) 1727.00 1.84312 0.921558 0.388240i \(-0.126917\pi\)
0.921558 + 0.388240i \(0.126917\pi\)
\(938\) 0 0
\(939\) 403.568i 0.429785i
\(940\) −780.000 450.333i −0.829787 0.479078i
\(941\) 403.000 0.428268 0.214134 0.976804i \(-0.431307\pi\)
0.214134 + 0.976804i \(0.431307\pi\)
\(942\) 156.000 90.0666i 0.165605 0.0956121i
\(943\) 831.384i 0.881638i
\(944\) 408.000 235.559i 0.432203 0.249533i
\(945\) 0 0
\(946\) 126.000 + 218.238i 0.133192 + 0.230696i
\(947\) 942.236i 0.994969i 0.867473 + 0.497484i \(0.165743\pi\)
−0.867473 + 0.497484i \(0.834257\pi\)
\(948\) −30.0000 + 51.9615i −0.0316456 + 0.0548117i
\(949\) 1504.00 1.58483
\(950\) 0 0
\(951\) 185.329i 0.194878i
\(952\) 0 0
\(953\) 730.000 0.766002 0.383001 0.923748i \(-0.374891\pi\)
0.383001 + 0.923748i \(0.374891\pi\)
\(954\) 219.000 + 379.319i 0.229560 + 0.397609i
\(955\) 1801.33i 1.88621i
\(956\) −168.000 96.9948i −0.175732 0.101459i
\(957\) −333.000 −0.347962
\(958\) −306.000 + 176.669i −0.319415 + 0.184415i
\(959\) 0 0
\(960\) 554.256i 0.577350i
\(961\) 598.000 0.622268
\(962\) 1088.00 + 1884.47i 1.13098 + 1.95891i
\(963\) 244.219i 0.253602i
\(964\) −22.0000 + 38.1051i −0.0228216 + 0.0395281i
\(965\) 755.000 0.782383
\(966\) 0 0
\(967\) 157.617i 0.162995i −0.996674 0.0814977i \(-0.974030\pi\)
0.996674 0.0814977i \(-0.0259703\pi\)
\(968\) 752.000 0.776860
\(969\) 192.000 0.198142
\(970\) 235.000 + 407.032i 0.242268 + 0.419621i
\(971\) 912.791i 0.940052i 0.882652 + 0.470026i \(0.155756\pi\)
−0.882652 + 0.470026i \(0.844244\pi\)
\(972\) 54.0000 + 31.1769i 0.0555556 + 0.0320750i
\(973\) 0 0
\(974\) 537.000 310.037i 0.551335 0.318313i
\(975\) 0 0
\(976\) 656.000 + 1136.23i 0.672131 + 1.16417i
\(977\) 346.000 0.354145 0.177073 0.984198i \(-0.443337\pi\)
0.177073 + 0.984198i \(0.443337\pi\)
\(978\) 132.000 + 228.631i 0.134969 + 0.233774i
\(979\) 301.377i 0.307842i
\(980\) 0 0
\(981\) −366.000 −0.373089
\(982\) 399.000 230.363i 0.406314 0.234585i
\(983\) 769.031i 0.782330i 0.920321 + 0.391165i \(0.127928\pi\)
−0.920321 + 0.391165i \(0.872072\pi\)
\(984\) 554.256i 0.563269i
\(985\) 1390.00 1.41117
\(986\) −148.000 256.344i −0.150101 0.259983i
\(987\) 0 0
\(988\) 1536.00 + 886.810i 1.55466 + 0.897581i
\(989\) 504.000 0.509606
\(990\) −135.000 + 77.9423i −0.136364 + 0.0787296i
\(991\) 1110.24i 1.12033i 0.828382 + 0.560164i \(0.189262\pi\)
−0.828382 + 0.560164i \(0.810738\pi\)
\(992\) 528.000 + 304.841i 0.532258 + 0.307299i
\(993\) 708.000 0.712991
\(994\) 0 0
\(995\) 692.820i 0.696302i
\(996\) −462.000 + 800.207i −0.463855 + 0.803421i
\(997\) −430.000 −0.431294 −0.215647 0.976471i \(-0.569186\pi\)
−0.215647 + 0.976471i \(0.569186\pi\)
\(998\) 414.000 239.023i 0.414830 0.239502i
\(999\) 353.338i 0.353692i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.g.a.295.1 2
4.3 odd 2 inner 588.3.g.a.295.2 2
7.2 even 3 84.3.l.a.67.1 2
7.4 even 3 84.3.l.b.79.1 yes 2
7.6 odd 2 588.3.g.c.295.1 2
21.2 odd 6 252.3.y.b.235.1 2
21.11 odd 6 252.3.y.a.163.1 2
28.11 odd 6 84.3.l.a.79.1 yes 2
28.23 odd 6 84.3.l.b.67.1 yes 2
28.27 even 2 588.3.g.c.295.2 2
84.11 even 6 252.3.y.b.163.1 2
84.23 even 6 252.3.y.a.235.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.l.a.67.1 2 7.2 even 3
84.3.l.a.79.1 yes 2 28.11 odd 6
84.3.l.b.67.1 yes 2 28.23 odd 6
84.3.l.b.79.1 yes 2 7.4 even 3
252.3.y.a.163.1 2 21.11 odd 6
252.3.y.a.235.1 2 84.23 even 6
252.3.y.b.163.1 2 84.11 even 6
252.3.y.b.235.1 2 21.2 odd 6
588.3.g.a.295.1 2 1.1 even 1 trivial
588.3.g.a.295.2 2 4.3 odd 2 inner
588.3.g.c.295.1 2 7.6 odd 2
588.3.g.c.295.2 2 28.27 even 2