Properties

Label 252.2.bf.c.19.1
Level $252$
Weight $2$
Character 252.19
Analytic conductor $2.012$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [252,2,Mod(19,252)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(252, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("252.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 252.19
Dual form 252.2.bf.c.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(1.00000 - 1.73205i) q^{4} +(-2.44949 - 1.41421i) q^{5} +(0.500000 + 2.59808i) q^{7} +2.82843i q^{8} +4.00000 q^{10} +(4.89898 - 2.82843i) q^{11} -5.19615i q^{13} +(-2.44949 - 2.82843i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(2.44949 - 1.41421i) q^{17} +(2.50000 - 4.33013i) q^{19} +(-4.89898 + 2.82843i) q^{20} +(-4.00000 + 6.92820i) q^{22} +(2.44949 + 1.41421i) q^{23} +(1.50000 + 2.59808i) q^{25} +(3.67423 + 6.36396i) q^{26} +(5.00000 + 1.73205i) q^{28} +(-0.500000 - 0.866025i) q^{31} +(4.89898 + 2.82843i) q^{32} +(-2.00000 + 3.46410i) q^{34} +(2.44949 - 7.07107i) q^{35} +(-2.50000 + 4.33013i) q^{37} +7.07107i q^{38} +(4.00000 - 6.92820i) q^{40} -5.65685i q^{41} +5.19615i q^{43} -11.3137i q^{44} -4.00000 q^{46} +(-2.44949 + 4.24264i) q^{47} +(-6.50000 + 2.59808i) q^{49} +(-3.67423 - 2.12132i) q^{50} +(-9.00000 - 5.19615i) q^{52} +(-2.44949 - 4.24264i) q^{53} -16.0000 q^{55} +(-7.34847 + 1.41421i) q^{56} +(2.44949 + 4.24264i) q^{59} +(6.00000 + 3.46410i) q^{61} +(1.22474 + 0.707107i) q^{62} -8.00000 q^{64} +(-7.34847 + 12.7279i) q^{65} +(7.50000 - 4.33013i) q^{67} -5.65685i q^{68} +(2.00000 + 10.3923i) q^{70} -2.82843i q^{71} +(1.50000 - 0.866025i) q^{73} -7.07107i q^{74} +(-5.00000 - 8.66025i) q^{76} +(9.79796 + 11.3137i) q^{77} +(-1.50000 - 0.866025i) q^{79} +11.3137i q^{80} +(4.00000 + 6.92820i) q^{82} -14.6969 q^{83} -8.00000 q^{85} +(-3.67423 - 6.36396i) q^{86} +(8.00000 + 13.8564i) q^{88} +(-9.79796 - 5.65685i) q^{89} +(13.5000 - 2.59808i) q^{91} +(4.89898 - 2.82843i) q^{92} -6.92820i q^{94} +(-12.2474 + 7.07107i) q^{95} +(6.12372 - 7.77817i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 2 q^{7} + 16 q^{10} - 8 q^{16} + 10 q^{19} - 16 q^{22} + 6 q^{25} + 20 q^{28} - 2 q^{31} - 8 q^{34} - 10 q^{37} + 16 q^{40} - 16 q^{46} - 26 q^{49} - 36 q^{52} - 64 q^{55} + 24 q^{61} - 32 q^{64}+ \cdots + 54 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.866025 + 0.500000i
\(3\) 0 0
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) −2.44949 1.41421i −1.09545 0.632456i −0.160424 0.987048i \(-0.551286\pi\)
−0.935021 + 0.354593i \(0.884620\pi\)
\(6\) 0 0
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) 4.00000 1.26491
\(11\) 4.89898 2.82843i 1.47710 0.852803i 0.477432 0.878668i \(-0.341568\pi\)
0.999665 + 0.0258656i \(0.00823419\pi\)
\(12\) 0 0
\(13\) 5.19615i 1.44115i −0.693375 0.720577i \(-0.743877\pi\)
0.693375 0.720577i \(-0.256123\pi\)
\(14\) −2.44949 2.82843i −0.654654 0.755929i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 2.44949 1.41421i 0.594089 0.342997i −0.172624 0.984988i \(-0.555225\pi\)
0.766712 + 0.641991i \(0.221891\pi\)
\(18\) 0 0
\(19\) 2.50000 4.33013i 0.573539 0.993399i −0.422659 0.906289i \(-0.638903\pi\)
0.996199 0.0871106i \(-0.0277634\pi\)
\(20\) −4.89898 + 2.82843i −1.09545 + 0.632456i
\(21\) 0 0
\(22\) −4.00000 + 6.92820i −0.852803 + 1.47710i
\(23\) 2.44949 + 1.41421i 0.510754 + 0.294884i 0.733144 0.680074i \(-0.238052\pi\)
−0.222390 + 0.974958i \(0.571386\pi\)
\(24\) 0 0
\(25\) 1.50000 + 2.59808i 0.300000 + 0.519615i
\(26\) 3.67423 + 6.36396i 0.720577 + 1.24808i
\(27\) 0 0
\(28\) 5.00000 + 1.73205i 0.944911 + 0.327327i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −0.500000 0.866025i −0.0898027 0.155543i 0.817625 0.575751i \(-0.195290\pi\)
−0.907428 + 0.420208i \(0.861957\pi\)
\(32\) 4.89898 + 2.82843i 0.866025 + 0.500000i
\(33\) 0 0
\(34\) −2.00000 + 3.46410i −0.342997 + 0.594089i
\(35\) 2.44949 7.07107i 0.414039 1.19523i
\(36\) 0 0
\(37\) −2.50000 + 4.33013i −0.410997 + 0.711868i −0.994999 0.0998840i \(-0.968153\pi\)
0.584002 + 0.811752i \(0.301486\pi\)
\(38\) 7.07107i 1.14708i
\(39\) 0 0
\(40\) 4.00000 6.92820i 0.632456 1.09545i
\(41\) 5.65685i 0.883452i −0.897150 0.441726i \(-0.854366\pi\)
0.897150 0.441726i \(-0.145634\pi\)
\(42\) 0 0
\(43\) 5.19615i 0.792406i 0.918163 + 0.396203i \(0.129672\pi\)
−0.918163 + 0.396203i \(0.870328\pi\)
\(44\) 11.3137i 1.70561i
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) −2.44949 + 4.24264i −0.357295 + 0.618853i −0.987508 0.157569i \(-0.949634\pi\)
0.630213 + 0.776422i \(0.282968\pi\)
\(48\) 0 0
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) −3.67423 2.12132i −0.519615 0.300000i
\(51\) 0 0
\(52\) −9.00000 5.19615i −1.24808 0.720577i
\(53\) −2.44949 4.24264i −0.336463 0.582772i 0.647302 0.762234i \(-0.275897\pi\)
−0.983765 + 0.179463i \(0.942564\pi\)
\(54\) 0 0
\(55\) −16.0000 −2.15744
\(56\) −7.34847 + 1.41421i −0.981981 + 0.188982i
\(57\) 0 0
\(58\) 0 0
\(59\) 2.44949 + 4.24264i 0.318896 + 0.552345i 0.980258 0.197722i \(-0.0633545\pi\)
−0.661362 + 0.750067i \(0.730021\pi\)
\(60\) 0 0
\(61\) 6.00000 + 3.46410i 0.768221 + 0.443533i 0.832240 0.554416i \(-0.187058\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 1.22474 + 0.707107i 0.155543 + 0.0898027i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −7.34847 + 12.7279i −0.911465 + 1.57870i
\(66\) 0 0
\(67\) 7.50000 4.33013i 0.916271 0.529009i 0.0338274 0.999428i \(-0.489230\pi\)
0.882443 + 0.470418i \(0.155897\pi\)
\(68\) 5.65685i 0.685994i
\(69\) 0 0
\(70\) 2.00000 + 10.3923i 0.239046 + 1.24212i
\(71\) 2.82843i 0.335673i −0.985815 0.167836i \(-0.946322\pi\)
0.985815 0.167836i \(-0.0536780\pi\)
\(72\) 0 0
\(73\) 1.50000 0.866025i 0.175562 0.101361i −0.409644 0.912245i \(-0.634347\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 7.07107i 0.821995i
\(75\) 0 0
\(76\) −5.00000 8.66025i −0.573539 0.993399i
\(77\) 9.79796 + 11.3137i 1.11658 + 1.28932i
\(78\) 0 0
\(79\) −1.50000 0.866025i −0.168763 0.0974355i 0.413239 0.910622i \(-0.364397\pi\)
−0.582003 + 0.813187i \(0.697731\pi\)
\(80\) 11.3137i 1.26491i
\(81\) 0 0
\(82\) 4.00000 + 6.92820i 0.441726 + 0.765092i
\(83\) −14.6969 −1.61320 −0.806599 0.591099i \(-0.798694\pi\)
−0.806599 + 0.591099i \(0.798694\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) −3.67423 6.36396i −0.396203 0.686244i
\(87\) 0 0
\(88\) 8.00000 + 13.8564i 0.852803 + 1.47710i
\(89\) −9.79796 5.65685i −1.03858 0.599625i −0.119150 0.992876i \(-0.538017\pi\)
−0.919431 + 0.393251i \(0.871350\pi\)
\(90\) 0 0
\(91\) 13.5000 2.59808i 1.41518 0.272352i
\(92\) 4.89898 2.82843i 0.510754 0.294884i
\(93\) 0 0
\(94\) 6.92820i 0.714590i
\(95\) −12.2474 + 7.07107i −1.25656 + 0.725476i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 6.12372 7.77817i 0.618590 0.785714i
\(99\) 0 0
\(100\) 6.00000 0.600000
\(101\) 9.79796 5.65685i 0.974933 0.562878i 0.0741967 0.997244i \(-0.476361\pi\)
0.900737 + 0.434366i \(0.143027\pi\)
\(102\) 0 0
\(103\) −0.500000 + 0.866025i −0.0492665 + 0.0853320i −0.889607 0.456727i \(-0.849022\pi\)
0.840341 + 0.542059i \(0.182355\pi\)
\(104\) 14.6969 1.44115
\(105\) 0 0
\(106\) 6.00000 + 3.46410i 0.582772 + 0.336463i
\(107\) 2.44949 + 1.41421i 0.236801 + 0.136717i 0.613706 0.789535i \(-0.289678\pi\)
−0.376905 + 0.926252i \(0.623012\pi\)
\(108\) 0 0
\(109\) −2.50000 4.33013i −0.239457 0.414751i 0.721102 0.692829i \(-0.243636\pi\)
−0.960558 + 0.278078i \(0.910303\pi\)
\(110\) 19.5959 11.3137i 1.86840 1.07872i
\(111\) 0 0
\(112\) 8.00000 6.92820i 0.755929 0.654654i
\(113\) 14.6969 1.38257 0.691286 0.722581i \(-0.257045\pi\)
0.691286 + 0.722581i \(0.257045\pi\)
\(114\) 0 0
\(115\) −4.00000 6.92820i −0.373002 0.646058i
\(116\) 0 0
\(117\) 0 0
\(118\) −6.00000 3.46410i −0.552345 0.318896i
\(119\) 4.89898 + 5.65685i 0.449089 + 0.518563i
\(120\) 0 0
\(121\) 10.5000 18.1865i 0.954545 1.65332i
\(122\) −9.79796 −0.887066
\(123\) 0 0
\(124\) −2.00000 −0.179605
\(125\) 5.65685i 0.505964i
\(126\) 0 0
\(127\) 15.5885i 1.38325i 0.722256 + 0.691626i \(0.243105\pi\)
−0.722256 + 0.691626i \(0.756895\pi\)
\(128\) 9.79796 5.65685i 0.866025 0.500000i
\(129\) 0 0
\(130\) 20.7846i 1.82293i
\(131\) −9.79796 + 16.9706i −0.856052 + 1.48272i 0.0196143 + 0.999808i \(0.493756\pi\)
−0.875666 + 0.482917i \(0.839577\pi\)
\(132\) 0 0
\(133\) 12.5000 + 4.33013i 1.08389 + 0.375470i
\(134\) −6.12372 + 10.6066i −0.529009 + 0.916271i
\(135\) 0 0
\(136\) 4.00000 + 6.92820i 0.342997 + 0.594089i
\(137\) 4.89898 + 8.48528i 0.418548 + 0.724947i 0.995794 0.0916241i \(-0.0292058\pi\)
−0.577246 + 0.816571i \(0.695872\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) −9.79796 11.3137i −0.828079 0.956183i
\(141\) 0 0
\(142\) 2.00000 + 3.46410i 0.167836 + 0.290701i
\(143\) −14.6969 25.4558i −1.22902 2.12872i
\(144\) 0 0
\(145\) 0 0
\(146\) −1.22474 + 2.12132i −0.101361 + 0.175562i
\(147\) 0 0
\(148\) 5.00000 + 8.66025i 0.410997 + 0.711868i
\(149\) −4.89898 + 8.48528i −0.401340 + 0.695141i −0.993888 0.110394i \(-0.964789\pi\)
0.592548 + 0.805535i \(0.298122\pi\)
\(150\) 0 0
\(151\) −15.0000 + 8.66025i −1.22068 + 0.704761i −0.965064 0.262016i \(-0.915613\pi\)
−0.255619 + 0.966778i \(0.582279\pi\)
\(152\) 12.2474 + 7.07107i 0.993399 + 0.573539i
\(153\) 0 0
\(154\) −20.0000 6.92820i −1.61165 0.558291i
\(155\) 2.82843i 0.227185i
\(156\) 0 0
\(157\) 6.00000 3.46410i 0.478852 0.276465i −0.241086 0.970504i \(-0.577504\pi\)
0.719938 + 0.694038i \(0.244170\pi\)
\(158\) 2.44949 0.194871
\(159\) 0 0
\(160\) −8.00000 13.8564i −0.632456 1.09545i
\(161\) −2.44949 + 7.07107i −0.193047 + 0.557278i
\(162\) 0 0
\(163\) 3.00000 + 1.73205i 0.234978 + 0.135665i 0.612866 0.790186i \(-0.290016\pi\)
−0.377888 + 0.925851i \(0.623350\pi\)
\(164\) −9.79796 5.65685i −0.765092 0.441726i
\(165\) 0 0
\(166\) 18.0000 10.3923i 1.39707 0.806599i
\(167\) 14.6969 1.13728 0.568642 0.822585i \(-0.307469\pi\)
0.568642 + 0.822585i \(0.307469\pi\)
\(168\) 0 0
\(169\) −14.0000 −1.07692
\(170\) 9.79796 5.65685i 0.751469 0.433861i
\(171\) 0 0
\(172\) 9.00000 + 5.19615i 0.686244 + 0.396203i
\(173\) −17.1464 9.89949i −1.30362 0.752645i −0.322596 0.946537i \(-0.604555\pi\)
−0.981023 + 0.193892i \(0.937889\pi\)
\(174\) 0 0
\(175\) −6.00000 + 5.19615i −0.453557 + 0.392792i
\(176\) −19.5959 11.3137i −1.47710 0.852803i
\(177\) 0 0
\(178\) 16.0000 1.19925
\(179\) −2.44949 + 1.41421i −0.183083 + 0.105703i −0.588741 0.808322i \(-0.700376\pi\)
0.405657 + 0.914025i \(0.367043\pi\)
\(180\) 0 0
\(181\) 5.19615i 0.386227i 0.981176 + 0.193113i \(0.0618586\pi\)
−0.981176 + 0.193113i \(0.938141\pi\)
\(182\) −14.6969 + 12.7279i −1.08941 + 0.943456i
\(183\) 0 0
\(184\) −4.00000 + 6.92820i −0.294884 + 0.510754i
\(185\) 12.2474 7.07107i 0.900450 0.519875i
\(186\) 0 0
\(187\) 8.00000 13.8564i 0.585018 1.01328i
\(188\) 4.89898 + 8.48528i 0.357295 + 0.618853i
\(189\) 0 0
\(190\) 10.0000 17.3205i 0.725476 1.25656i
\(191\) 17.1464 + 9.89949i 1.24067 + 0.716302i 0.969231 0.246153i \(-0.0791665\pi\)
0.271441 + 0.962455i \(0.412500\pi\)
\(192\) 0 0
\(193\) 3.50000 + 6.06218i 0.251936 + 0.436365i 0.964059 0.265689i \(-0.0855996\pi\)
−0.712123 + 0.702055i \(0.752266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −2.00000 + 13.8564i −0.142857 + 0.989743i
\(197\) −14.6969 −1.04711 −0.523557 0.851991i \(-0.675395\pi\)
−0.523557 + 0.851991i \(0.675395\pi\)
\(198\) 0 0
\(199\) −2.00000 3.46410i −0.141776 0.245564i 0.786389 0.617731i \(-0.211948\pi\)
−0.928166 + 0.372168i \(0.878615\pi\)
\(200\) −7.34847 + 4.24264i −0.519615 + 0.300000i
\(201\) 0 0
\(202\) −8.00000 + 13.8564i −0.562878 + 0.974933i
\(203\) 0 0
\(204\) 0 0
\(205\) −8.00000 + 13.8564i −0.558744 + 0.967773i
\(206\) 1.41421i 0.0985329i
\(207\) 0 0
\(208\) −18.0000 + 10.3923i −1.24808 + 0.720577i
\(209\) 28.2843i 1.95646i
\(210\) 0 0
\(211\) 10.3923i 0.715436i −0.933830 0.357718i \(-0.883555\pi\)
0.933830 0.357718i \(-0.116445\pi\)
\(212\) −9.79796 −0.672927
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) 7.34847 12.7279i 0.501161 0.868037i
\(216\) 0 0
\(217\) 2.00000 1.73205i 0.135769 0.117579i
\(218\) 6.12372 + 3.53553i 0.414751 + 0.239457i
\(219\) 0 0
\(220\) −16.0000 + 27.7128i −1.07872 + 1.86840i
\(221\) −7.34847 12.7279i −0.494312 0.856173i
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) −4.89898 + 14.1421i −0.327327 + 0.944911i
\(225\) 0 0
\(226\) −18.0000 + 10.3923i −1.19734 + 0.691286i
\(227\) −4.89898 8.48528i −0.325157 0.563188i 0.656387 0.754424i \(-0.272084\pi\)
−0.981544 + 0.191236i \(0.938750\pi\)
\(228\) 0 0
\(229\) −16.5000 9.52628i −1.09035 0.629514i −0.156681 0.987649i \(-0.550079\pi\)
−0.933670 + 0.358135i \(0.883413\pi\)
\(230\) 9.79796 + 5.65685i 0.646058 + 0.373002i
\(231\) 0 0
\(232\) 0 0
\(233\) −12.2474 + 21.2132i −0.802357 + 1.38972i 0.115704 + 0.993284i \(0.463088\pi\)
−0.918061 + 0.396439i \(0.870246\pi\)
\(234\) 0 0
\(235\) 12.0000 6.92820i 0.782794 0.451946i
\(236\) 9.79796 0.637793
\(237\) 0 0
\(238\) −10.0000 3.46410i −0.648204 0.224544i
\(239\) 11.3137i 0.731823i −0.930650 0.365911i \(-0.880757\pi\)
0.930650 0.365911i \(-0.119243\pi\)
\(240\) 0 0
\(241\) −12.0000 + 6.92820i −0.772988 + 0.446285i −0.833939 0.551856i \(-0.813920\pi\)
0.0609515 + 0.998141i \(0.480586\pi\)
\(242\) 29.6985i 1.90909i
\(243\) 0 0
\(244\) 12.0000 6.92820i 0.768221 0.443533i
\(245\) 19.5959 + 2.82843i 1.25194 + 0.180702i
\(246\) 0 0
\(247\) −22.5000 12.9904i −1.43164 0.826558i
\(248\) 2.44949 1.41421i 0.155543 0.0898027i
\(249\) 0 0
\(250\) −4.00000 6.92820i −0.252982 0.438178i
\(251\) 14.6969 0.927663 0.463831 0.885924i \(-0.346474\pi\)
0.463831 + 0.885924i \(0.346474\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) −11.0227 19.0919i −0.691626 1.19793i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −2.44949 1.41421i −0.152795 0.0882162i 0.421653 0.906757i \(-0.361450\pi\)
−0.574448 + 0.818541i \(0.694783\pi\)
\(258\) 0 0
\(259\) −12.5000 4.33013i −0.776712 0.269061i
\(260\) 14.6969 + 25.4558i 0.911465 + 1.57870i
\(261\) 0 0
\(262\) 27.7128i 1.71210i
\(263\) 4.89898 2.82843i 0.302084 0.174408i −0.341295 0.939956i \(-0.610865\pi\)
0.643379 + 0.765548i \(0.277532\pi\)
\(264\) 0 0
\(265\) 13.8564i 0.851192i
\(266\) −18.3712 + 3.53553i −1.12641 + 0.216777i
\(267\) 0 0
\(268\) 17.3205i 1.05802i
\(269\) 9.79796 5.65685i 0.597392 0.344904i −0.170623 0.985336i \(-0.554578\pi\)
0.768015 + 0.640432i \(0.221245\pi\)
\(270\) 0 0
\(271\) −14.0000 + 24.2487i −0.850439 + 1.47300i 0.0303728 + 0.999539i \(0.490331\pi\)
−0.880812 + 0.473466i \(0.843003\pi\)
\(272\) −9.79796 5.65685i −0.594089 0.342997i
\(273\) 0 0
\(274\) −12.0000 6.92820i −0.724947 0.418548i
\(275\) 14.6969 + 8.48528i 0.886259 + 0.511682i
\(276\) 0 0
\(277\) −5.50000 9.52628i −0.330463 0.572379i 0.652140 0.758099i \(-0.273872\pi\)
−0.982603 + 0.185720i \(0.940538\pi\)
\(278\) −15.9217 + 9.19239i −0.954919 + 0.551323i
\(279\) 0 0
\(280\) 20.0000 + 6.92820i 1.19523 + 0.414039i
\(281\) 14.6969 0.876746 0.438373 0.898793i \(-0.355555\pi\)
0.438373 + 0.898793i \(0.355555\pi\)
\(282\) 0 0
\(283\) 14.5000 + 25.1147i 0.861936 + 1.49292i 0.870058 + 0.492949i \(0.164081\pi\)
−0.00812260 + 0.999967i \(0.502586\pi\)
\(284\) −4.89898 2.82843i −0.290701 0.167836i
\(285\) 0 0
\(286\) 36.0000 + 20.7846i 2.12872 + 1.22902i
\(287\) 14.6969 2.82843i 0.867533 0.166957i
\(288\) 0 0
\(289\) −4.50000 + 7.79423i −0.264706 + 0.458484i
\(290\) 0 0
\(291\) 0 0
\(292\) 3.46410i 0.202721i
\(293\) 11.3137i 0.660954i 0.943814 + 0.330477i \(0.107210\pi\)
−0.943814 + 0.330477i \(0.892790\pi\)
\(294\) 0 0
\(295\) 13.8564i 0.806751i
\(296\) −12.2474 7.07107i −0.711868 0.410997i
\(297\) 0 0
\(298\) 13.8564i 0.802680i
\(299\) 7.34847 12.7279i 0.424973 0.736075i
\(300\) 0 0
\(301\) −13.5000 + 2.59808i −0.778127 + 0.149751i
\(302\) 12.2474 21.2132i 0.704761 1.22068i
\(303\) 0 0
\(304\) −20.0000 −1.14708
\(305\) −9.79796 16.9706i −0.561029 0.971732i
\(306\) 0 0
\(307\) 1.00000 0.0570730 0.0285365 0.999593i \(-0.490915\pi\)
0.0285365 + 0.999593i \(0.490915\pi\)
\(308\) 29.3939 5.65685i 1.67487 0.322329i
\(309\) 0 0
\(310\) −2.00000 3.46410i −0.113592 0.196748i
\(311\) 9.79796 + 16.9706i 0.555591 + 0.962312i 0.997857 + 0.0654284i \(0.0208414\pi\)
−0.442266 + 0.896884i \(0.645825\pi\)
\(312\) 0 0
\(313\) 19.5000 + 11.2583i 1.10221 + 0.636358i 0.936799 0.349867i \(-0.113773\pi\)
0.165406 + 0.986226i \(0.447107\pi\)
\(314\) −4.89898 + 8.48528i −0.276465 + 0.478852i
\(315\) 0 0
\(316\) −3.00000 + 1.73205i −0.168763 + 0.0974355i
\(317\) 9.79796 16.9706i 0.550308 0.953162i −0.447944 0.894062i \(-0.647844\pi\)
0.998252 0.0591001i \(-0.0188231\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 19.5959 + 11.3137i 1.09545 + 0.632456i
\(321\) 0 0
\(322\) −2.00000 10.3923i −0.111456 0.579141i
\(323\) 14.1421i 0.786889i
\(324\) 0 0
\(325\) 13.5000 7.79423i 0.748845 0.432346i
\(326\) −4.89898 −0.271329
\(327\) 0 0
\(328\) 16.0000 0.883452
\(329\) −12.2474 4.24264i −0.675224 0.233904i
\(330\) 0 0
\(331\) 25.5000 + 14.7224i 1.40161 + 0.809218i 0.994558 0.104188i \(-0.0332244\pi\)
0.407049 + 0.913406i \(0.366558\pi\)
\(332\) −14.6969 + 25.4558i −0.806599 + 1.39707i
\(333\) 0 0
\(334\) −18.0000 + 10.3923i −0.984916 + 0.568642i
\(335\) −24.4949 −1.33830
\(336\) 0 0
\(337\) 29.0000 1.57973 0.789865 0.613280i \(-0.210150\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) 17.1464 9.89949i 0.932643 0.538462i
\(339\) 0 0
\(340\) −8.00000 + 13.8564i −0.433861 + 0.751469i
\(341\) −4.89898 2.82843i −0.265295 0.153168i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) −14.6969 −0.792406
\(345\) 0 0
\(346\) 28.0000 1.50529
\(347\) −2.44949 + 1.41421i −0.131495 + 0.0759190i −0.564305 0.825567i \(-0.690856\pi\)
0.432809 + 0.901486i \(0.357522\pi\)
\(348\) 0 0
\(349\) 20.7846i 1.11257i −0.830990 0.556287i \(-0.812225\pi\)
0.830990 0.556287i \(-0.187775\pi\)
\(350\) 3.67423 10.6066i 0.196396 0.566947i
\(351\) 0 0
\(352\) 32.0000 1.70561
\(353\) −26.9444 + 15.5563i −1.43411 + 0.827981i −0.997431 0.0716387i \(-0.977177\pi\)
−0.436674 + 0.899620i \(0.643844\pi\)
\(354\) 0 0
\(355\) −4.00000 + 6.92820i −0.212298 + 0.367711i
\(356\) −19.5959 + 11.3137i −1.03858 + 0.599625i
\(357\) 0 0
\(358\) 2.00000 3.46410i 0.105703 0.183083i
\(359\) −19.5959 11.3137i −1.03423 0.597115i −0.116039 0.993245i \(-0.537020\pi\)
−0.918194 + 0.396130i \(0.870353\pi\)
\(360\) 0 0
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) −3.67423 6.36396i −0.193113 0.334482i
\(363\) 0 0
\(364\) 9.00000 25.9808i 0.471728 1.36176i
\(365\) −4.89898 −0.256424
\(366\) 0 0
\(367\) 5.50000 + 9.52628i 0.287098 + 0.497268i 0.973116 0.230317i \(-0.0739762\pi\)
−0.686018 + 0.727585i \(0.740643\pi\)
\(368\) 11.3137i 0.589768i
\(369\) 0 0
\(370\) −10.0000 + 17.3205i −0.519875 + 0.900450i
\(371\) 9.79796 8.48528i 0.508685 0.440534i
\(372\) 0 0
\(373\) 0.500000 0.866025i 0.0258890 0.0448411i −0.852791 0.522253i \(-0.825092\pi\)
0.878680 + 0.477412i \(0.158425\pi\)
\(374\) 22.6274i 1.17004i
\(375\) 0 0
\(376\) −12.0000 6.92820i −0.618853 0.357295i
\(377\) 0 0
\(378\) 0 0
\(379\) 36.3731i 1.86836i −0.356803 0.934179i \(-0.616133\pi\)
0.356803 0.934179i \(-0.383867\pi\)
\(380\) 28.2843i 1.45095i
\(381\) 0 0
\(382\) −28.0000 −1.43260
\(383\) −17.1464 + 29.6985i −0.876142 + 1.51752i −0.0205998 + 0.999788i \(0.506558\pi\)
−0.855542 + 0.517734i \(0.826776\pi\)
\(384\) 0 0
\(385\) −8.00000 41.5692i −0.407718 2.11856i
\(386\) −8.57321 4.94975i −0.436365 0.251936i
\(387\) 0 0
\(388\) 0 0
\(389\) 12.2474 + 21.2132i 0.620970 + 1.07555i 0.989305 + 0.145859i \(0.0465946\pi\)
−0.368335 + 0.929693i \(0.620072\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) −7.34847 18.3848i −0.371154 0.928571i
\(393\) 0 0
\(394\) 18.0000 10.3923i 0.906827 0.523557i
\(395\) 2.44949 + 4.24264i 0.123247 + 0.213470i
\(396\) 0 0
\(397\) −25.5000 14.7224i −1.27981 0.738898i −0.302995 0.952992i \(-0.597987\pi\)
−0.976813 + 0.214094i \(0.931320\pi\)
\(398\) 4.89898 + 2.82843i 0.245564 + 0.141776i
\(399\) 0 0
\(400\) 6.00000 10.3923i 0.300000 0.519615i
\(401\) 2.44949 4.24264i 0.122322 0.211867i −0.798361 0.602179i \(-0.794299\pi\)
0.920683 + 0.390312i \(0.127633\pi\)
\(402\) 0 0
\(403\) −4.50000 + 2.59808i −0.224161 + 0.129419i
\(404\) 22.6274i 1.12576i
\(405\) 0 0
\(406\) 0 0
\(407\) 28.2843i 1.40200i
\(408\) 0 0
\(409\) −25.5000 + 14.7224i −1.26089 + 0.727977i −0.973247 0.229759i \(-0.926206\pi\)
−0.287646 + 0.957737i \(0.592873\pi\)
\(410\) 22.6274i 1.11749i
\(411\) 0 0
\(412\) 1.00000 + 1.73205i 0.0492665 + 0.0853320i
\(413\) −9.79796 + 8.48528i −0.482126 + 0.417533i
\(414\) 0 0
\(415\) 36.0000 + 20.7846i 1.76717 + 1.02028i
\(416\) 14.6969 25.4558i 0.720577 1.24808i
\(417\) 0 0
\(418\) 20.0000 + 34.6410i 0.978232 + 1.69435i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 23.0000 1.12095 0.560476 0.828171i \(-0.310618\pi\)
0.560476 + 0.828171i \(0.310618\pi\)
\(422\) 7.34847 + 12.7279i 0.357718 + 0.619586i
\(423\) 0 0
\(424\) 12.0000 6.92820i 0.582772 0.336463i
\(425\) 7.34847 + 4.24264i 0.356453 + 0.205798i
\(426\) 0 0
\(427\) −6.00000 + 17.3205i −0.290360 + 0.838198i
\(428\) 4.89898 2.82843i 0.236801 0.136717i
\(429\) 0 0
\(430\) 20.7846i 1.00232i
\(431\) 12.2474 7.07107i 0.589939 0.340601i −0.175134 0.984545i \(-0.556036\pi\)
0.765073 + 0.643943i \(0.222703\pi\)
\(432\) 0 0
\(433\) 5.19615i 0.249711i −0.992175 0.124856i \(-0.960153\pi\)
0.992175 0.124856i \(-0.0398468\pi\)
\(434\) −1.22474 + 3.53553i −0.0587896 + 0.169711i
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) 12.2474 7.07107i 0.585875 0.338255i
\(438\) 0 0
\(439\) −2.00000 + 3.46410i −0.0954548 + 0.165333i −0.909798 0.415051i \(-0.863764\pi\)
0.814344 + 0.580383i \(0.197097\pi\)
\(440\) 45.2548i 2.15744i
\(441\) 0 0
\(442\) 18.0000 + 10.3923i 0.856173 + 0.494312i
\(443\) −26.9444 15.5563i −1.28017 0.739104i −0.303288 0.952899i \(-0.598084\pi\)
−0.976879 + 0.213795i \(0.931418\pi\)
\(444\) 0 0
\(445\) 16.0000 + 27.7128i 0.758473 + 1.31371i
\(446\) −4.89898 + 2.82843i −0.231973 + 0.133930i
\(447\) 0 0
\(448\) −4.00000 20.7846i −0.188982 0.981981i
\(449\) 14.6969 0.693591 0.346796 0.937941i \(-0.387270\pi\)
0.346796 + 0.937941i \(0.387270\pi\)
\(450\) 0 0
\(451\) −16.0000 27.7128i −0.753411 1.30495i
\(452\) 14.6969 25.4558i 0.691286 1.19734i
\(453\) 0 0
\(454\) 12.0000 + 6.92820i 0.563188 + 0.325157i
\(455\) −36.7423 12.7279i −1.72251 0.596694i
\(456\) 0 0
\(457\) 3.50000 6.06218i 0.163723 0.283577i −0.772478 0.635042i \(-0.780983\pi\)
0.936201 + 0.351465i \(0.114316\pi\)
\(458\) 26.9444 1.25903
\(459\) 0 0
\(460\) −16.0000 −0.746004
\(461\) 11.3137i 0.526932i 0.964669 + 0.263466i \(0.0848657\pi\)
−0.964669 + 0.263466i \(0.915134\pi\)
\(462\) 0 0
\(463\) 5.19615i 0.241486i −0.992684 0.120743i \(-0.961472\pi\)
0.992684 0.120743i \(-0.0385276\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 34.6410i 1.60471i
\(467\) −2.44949 + 4.24264i −0.113349 + 0.196326i −0.917119 0.398615i \(-0.869491\pi\)
0.803770 + 0.594941i \(0.202824\pi\)
\(468\) 0 0
\(469\) 15.0000 + 17.3205i 0.692636 + 0.799787i
\(470\) −9.79796 + 16.9706i −0.451946 + 0.782794i
\(471\) 0 0
\(472\) −12.0000 + 6.92820i −0.552345 + 0.318896i
\(473\) 14.6969 + 25.4558i 0.675766 + 1.17046i
\(474\) 0 0
\(475\) 15.0000 0.688247
\(476\) 14.6969 2.82843i 0.673633 0.129641i
\(477\) 0 0
\(478\) 8.00000 + 13.8564i 0.365911 + 0.633777i
\(479\) 17.1464 + 29.6985i 0.783440 + 1.35696i 0.929926 + 0.367746i \(0.119870\pi\)
−0.146486 + 0.989213i \(0.546796\pi\)
\(480\) 0 0
\(481\) 22.5000 + 12.9904i 1.02591 + 0.592310i
\(482\) 9.79796 16.9706i 0.446285 0.772988i
\(483\) 0 0
\(484\) −21.0000 36.3731i −0.954545 1.65332i
\(485\) 0 0
\(486\) 0 0
\(487\) −19.5000 + 11.2583i −0.883629 + 0.510164i −0.871853 0.489767i \(-0.837082\pi\)
−0.0117760 + 0.999931i \(0.503749\pi\)
\(488\) −9.79796 + 16.9706i −0.443533 + 0.768221i
\(489\) 0 0
\(490\) −26.0000 + 10.3923i −1.17456 + 0.469476i
\(491\) 5.65685i 0.255290i 0.991820 + 0.127645i \(0.0407419\pi\)
−0.991820 + 0.127645i \(0.959258\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 36.7423 1.65312
\(495\) 0 0
\(496\) −2.00000 + 3.46410i −0.0898027 + 0.155543i
\(497\) 7.34847 1.41421i 0.329624 0.0634361i
\(498\) 0 0
\(499\) −28.5000 16.4545i −1.27584 0.736604i −0.299755 0.954016i \(-0.596905\pi\)
−0.976080 + 0.217412i \(0.930238\pi\)
\(500\) 9.79796 + 5.65685i 0.438178 + 0.252982i
\(501\) 0 0
\(502\) −18.0000 + 10.3923i −0.803379 + 0.463831i
\(503\) −29.3939 −1.31061 −0.655304 0.755365i \(-0.727460\pi\)
−0.655304 + 0.755365i \(0.727460\pi\)
\(504\) 0 0
\(505\) −32.0000 −1.42398
\(506\) −19.5959 + 11.3137i −0.871145 + 0.502956i
\(507\) 0 0
\(508\) 27.0000 + 15.5885i 1.19793 + 0.691626i
\(509\) 26.9444 + 15.5563i 1.19429 + 0.689523i 0.959276 0.282469i \(-0.0911535\pi\)
0.235013 + 0.971992i \(0.424487\pi\)
\(510\) 0 0
\(511\) 3.00000 + 3.46410i 0.132712 + 0.153243i
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) 4.00000 0.176432
\(515\) 2.44949 1.41421i 0.107937 0.0623177i
\(516\) 0 0
\(517\) 27.7128i 1.21881i
\(518\) 18.3712 3.53553i 0.807183 0.155342i
\(519\) 0 0
\(520\) −36.0000 20.7846i −1.57870 0.911465i
\(521\) 9.79796 5.65685i 0.429256 0.247831i −0.269773 0.962924i \(-0.586949\pi\)
0.699030 + 0.715093i \(0.253615\pi\)
\(522\) 0 0
\(523\) −15.5000 + 26.8468i −0.677768 + 1.17393i 0.297884 + 0.954602i \(0.403719\pi\)
−0.975652 + 0.219326i \(0.929614\pi\)
\(524\) 19.5959 + 33.9411i 0.856052 + 1.48272i
\(525\) 0 0
\(526\) −4.00000 + 6.92820i −0.174408 + 0.302084i
\(527\) −2.44949 1.41421i −0.106701 0.0616041i
\(528\) 0 0
\(529\) −7.50000 12.9904i −0.326087 0.564799i
\(530\) −9.79796 16.9706i −0.425596 0.737154i
\(531\) 0 0
\(532\) 20.0000 17.3205i 0.867110 0.750939i
\(533\) −29.3939 −1.27319
\(534\) 0 0
\(535\) −4.00000 6.92820i −0.172935 0.299532i
\(536\) 12.2474 + 21.2132i 0.529009 + 0.916271i
\(537\) 0 0
\(538\) −8.00000 + 13.8564i −0.344904 + 0.597392i
\(539\) −24.4949 + 31.1127i −1.05507 + 1.34012i
\(540\) 0 0
\(541\) −11.5000 + 19.9186i −0.494424 + 0.856367i −0.999979 0.00642713i \(-0.997954\pi\)
0.505556 + 0.862794i \(0.331288\pi\)
\(542\) 39.5980i 1.70088i
\(543\) 0 0
\(544\) 16.0000 0.685994
\(545\) 14.1421i 0.605783i
\(546\) 0 0
\(547\) 10.3923i 0.444343i 0.975008 + 0.222171i \(0.0713145\pi\)
−0.975008 + 0.222171i \(0.928686\pi\)
\(548\) 19.5959 0.837096
\(549\) 0 0
\(550\) −24.0000 −1.02336
\(551\) 0 0
\(552\) 0 0
\(553\) 1.50000 4.33013i 0.0637865 0.184136i
\(554\) 13.4722 + 7.77817i 0.572379 + 0.330463i
\(555\) 0 0
\(556\) 13.0000 22.5167i 0.551323 0.954919i
\(557\) −9.79796 16.9706i −0.415153 0.719066i 0.580292 0.814409i \(-0.302939\pi\)
−0.995444 + 0.0953429i \(0.969605\pi\)
\(558\) 0 0
\(559\) 27.0000 1.14198
\(560\) −29.3939 + 5.65685i −1.24212 + 0.239046i
\(561\) 0 0
\(562\) −18.0000 + 10.3923i −0.759284 + 0.438373i
\(563\) −12.2474 21.2132i −0.516168 0.894030i −0.999824 0.0187714i \(-0.994025\pi\)
0.483655 0.875259i \(-0.339309\pi\)
\(564\) 0 0
\(565\) −36.0000 20.7846i −1.51453 0.874415i
\(566\) −35.5176 20.5061i −1.49292 0.861936i
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) 9.79796 16.9706i 0.410752 0.711443i −0.584220 0.811595i \(-0.698600\pi\)
0.994972 + 0.100152i \(0.0319329\pi\)
\(570\) 0 0
\(571\) −10.5000 + 6.06218i −0.439411 + 0.253694i −0.703348 0.710846i \(-0.748312\pi\)
0.263937 + 0.964540i \(0.414979\pi\)
\(572\) −58.7878 −2.45804
\(573\) 0 0
\(574\) −16.0000 + 13.8564i −0.667827 + 0.578355i
\(575\) 8.48528i 0.353861i
\(576\) 0 0
\(577\) −7.50000 + 4.33013i −0.312229 + 0.180266i −0.647924 0.761705i \(-0.724362\pi\)
0.335694 + 0.941971i \(0.391029\pi\)
\(578\) 12.7279i 0.529412i
\(579\) 0 0
\(580\) 0 0
\(581\) −7.34847 38.1838i −0.304866 1.58413i
\(582\) 0 0
\(583\) −24.0000 13.8564i −0.993978 0.573874i
\(584\) 2.44949 + 4.24264i 0.101361 + 0.175562i
\(585\) 0 0
\(586\) −8.00000 13.8564i −0.330477 0.572403i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −5.00000 −0.206021
\(590\) 9.79796 + 16.9706i 0.403376 + 0.698667i
\(591\) 0 0
\(592\) 20.0000 0.821995
\(593\) 34.2929 + 19.7990i 1.40824 + 0.813047i 0.995218 0.0976747i \(-0.0311405\pi\)
0.413020 + 0.910722i \(0.364474\pi\)
\(594\) 0 0
\(595\) −4.00000 20.7846i −0.163984 0.852086i
\(596\) 9.79796 + 16.9706i 0.401340 + 0.695141i
\(597\) 0 0
\(598\) 20.7846i 0.849946i
\(599\) 19.5959 11.3137i 0.800668 0.462266i −0.0430370 0.999073i \(-0.513703\pi\)
0.843705 + 0.536808i \(0.180370\pi\)
\(600\) 0 0
\(601\) 25.9808i 1.05978i 0.848067 + 0.529889i \(0.177766\pi\)
−0.848067 + 0.529889i \(0.822234\pi\)
\(602\) 14.6969 12.7279i 0.599002 0.518751i
\(603\) 0 0
\(604\) 34.6410i 1.40952i
\(605\) −51.4393 + 29.6985i −2.09130 + 1.20742i
\(606\) 0 0
\(607\) 23.5000 40.7032i 0.953836 1.65209i 0.216825 0.976210i \(-0.430430\pi\)
0.737011 0.675881i \(-0.236237\pi\)
\(608\) 24.4949 14.1421i 0.993399 0.573539i
\(609\) 0 0
\(610\) 24.0000 + 13.8564i 0.971732 + 0.561029i
\(611\) 22.0454 + 12.7279i 0.891862 + 0.514917i
\(612\) 0 0
\(613\) −7.00000 12.1244i −0.282727 0.489698i 0.689328 0.724449i \(-0.257906\pi\)
−0.972056 + 0.234751i \(0.924572\pi\)
\(614\) −1.22474 + 0.707107i −0.0494267 + 0.0285365i
\(615\) 0 0
\(616\) −32.0000 + 27.7128i −1.28932 + 1.11658i
\(617\) −29.3939 −1.18335 −0.591676 0.806176i \(-0.701534\pi\)
−0.591676 + 0.806176i \(0.701534\pi\)
\(618\) 0 0
\(619\) 14.5000 + 25.1147i 0.582804 + 1.00945i 0.995145 + 0.0984169i \(0.0313779\pi\)
−0.412341 + 0.911030i \(0.635289\pi\)
\(620\) 4.89898 + 2.82843i 0.196748 + 0.113592i
\(621\) 0 0
\(622\) −24.0000 13.8564i −0.962312 0.555591i
\(623\) 9.79796 28.2843i 0.392547 1.13319i
\(624\) 0 0
\(625\) 15.5000 26.8468i 0.620000 1.07387i
\(626\) −31.8434 −1.27272
\(627\) 0 0
\(628\) 13.8564i 0.552931i
\(629\) 14.1421i 0.563884i
\(630\) 0 0
\(631\) 10.3923i 0.413711i −0.978371 0.206856i \(-0.933677\pi\)
0.978371 0.206856i \(-0.0663230\pi\)
\(632\) 2.44949 4.24264i 0.0974355 0.168763i
\(633\) 0 0
\(634\) 27.7128i 1.10062i
\(635\) 22.0454 38.1838i 0.874845 1.51528i
\(636\) 0 0
\(637\) 13.5000 + 33.7750i 0.534889 + 1.33821i
\(638\) 0 0
\(639\) 0 0
\(640\) −32.0000 −1.26491
\(641\) −2.44949 4.24264i −0.0967490 0.167574i 0.813588 0.581442i \(-0.197511\pi\)
−0.910337 + 0.413867i \(0.864178\pi\)
\(642\) 0 0
\(643\) −29.0000 −1.14365 −0.571824 0.820376i \(-0.693764\pi\)
−0.571824 + 0.820376i \(0.693764\pi\)
\(644\) 9.79796 + 11.3137i 0.386094 + 0.445823i
\(645\) 0 0
\(646\) 10.0000 + 17.3205i 0.393445 + 0.681466i
\(647\) 9.79796 + 16.9706i 0.385198 + 0.667182i 0.991797 0.127826i \(-0.0408000\pi\)
−0.606599 + 0.795008i \(0.707467\pi\)
\(648\) 0 0
\(649\) 24.0000 + 13.8564i 0.942082 + 0.543912i
\(650\) −11.0227 + 19.0919i −0.432346 + 0.748845i
\(651\) 0 0
\(652\) 6.00000 3.46410i 0.234978 0.135665i
\(653\) 9.79796 16.9706i 0.383424 0.664109i −0.608125 0.793841i \(-0.708078\pi\)
0.991549 + 0.129732i \(0.0414116\pi\)
\(654\) 0 0
\(655\) 48.0000 27.7128i 1.87552 1.08283i
\(656\) −19.5959 + 11.3137i −0.765092 + 0.441726i
\(657\) 0 0
\(658\) 18.0000 3.46410i 0.701713 0.135045i
\(659\) 14.1421i 0.550899i 0.961315 + 0.275450i \(0.0888267\pi\)
−0.961315 + 0.275450i \(0.911173\pi\)
\(660\) 0 0
\(661\) 28.5000 16.4545i 1.10852 0.640005i 0.170075 0.985431i \(-0.445599\pi\)
0.938446 + 0.345426i \(0.112266\pi\)
\(662\) −41.6413 −1.61844
\(663\) 0 0
\(664\) 41.5692i 1.61320i
\(665\) −24.4949 28.2843i −0.949871 1.09682i
\(666\) 0 0
\(667\) 0 0
\(668\) 14.6969 25.4558i 0.568642 0.984916i
\(669\) 0 0
\(670\) 30.0000 17.3205i 1.15900 0.669150i
\(671\) 39.1918 1.51298
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) −35.5176 + 20.5061i −1.36809 + 0.789865i
\(675\) 0 0
\(676\) −14.0000 + 24.2487i −0.538462 + 0.932643i
\(677\) 4.89898 + 2.82843i 0.188283 + 0.108705i 0.591179 0.806541i \(-0.298663\pi\)
−0.402895 + 0.915246i \(0.631996\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 22.6274i 0.867722i
\(681\) 0 0
\(682\) 8.00000 0.306336
\(683\) −31.8434 + 18.3848i −1.21845 + 0.703474i −0.964587 0.263766i \(-0.915035\pi\)
−0.253866 + 0.967239i \(0.581702\pi\)
\(684\) 0 0
\(685\) 27.7128i 1.05885i
\(686\) 23.2702 + 12.0208i 0.888459 + 0.458957i
\(687\) 0 0
\(688\) 18.0000 10.3923i 0.686244 0.396203i
\(689\) −22.0454 + 12.7279i −0.839863 + 0.484895i
\(690\) 0 0
\(691\) 2.50000 4.33013i 0.0951045 0.164726i −0.814548 0.580097i \(-0.803015\pi\)
0.909652 + 0.415371i \(0.136348\pi\)
\(692\) −34.2929 + 19.7990i −1.30362 + 0.752645i
\(693\) 0 0
\(694\) 2.00000 3.46410i 0.0759190 0.131495i
\(695\) −31.8434 18.3848i −1.20789 0.697374i
\(696\) 0 0
\(697\) −8.00000 13.8564i −0.303022 0.524849i
\(698\) 14.6969 + 25.4558i 0.556287 + 0.963518i
\(699\) 0 0
\(700\) 3.00000 + 15.5885i 0.113389 + 0.589188i
\(701\) 44.0908 1.66529 0.832644 0.553809i \(-0.186826\pi\)
0.832644 + 0.553809i \(0.186826\pi\)
\(702\) 0 0
\(703\) 12.5000 + 21.6506i 0.471446 + 0.816569i
\(704\) −39.1918 + 22.6274i −1.47710 + 0.852803i
\(705\) 0 0
\(706\) 22.0000 38.1051i 0.827981 1.43411i
\(707\) 19.5959 + 22.6274i 0.736980 + 0.850992i
\(708\) 0 0
\(709\) −1.00000 + 1.73205i −0.0375558 + 0.0650485i −0.884192 0.467123i \(-0.845291\pi\)
0.846637 + 0.532172i \(0.178624\pi\)
\(710\) 11.3137i 0.424596i
\(711\) 0 0
\(712\) 16.0000 27.7128i 0.599625 1.03858i
\(713\) 2.82843i 0.105925i
\(714\) 0 0
\(715\) 83.1384i 3.10920i
\(716\) 5.65685i 0.211407i
\(717\) 0 0
\(718\) 32.0000 1.19423
\(719\) 19.5959 33.9411i 0.730804 1.26579i −0.225735 0.974189i \(-0.572478\pi\)
0.956540 0.291602i \(-0.0941882\pi\)
\(720\) 0 0
\(721\) −2.50000 0.866025i −0.0931049 0.0322525i
\(722\) 7.34847 + 4.24264i 0.273482 + 0.157895i
\(723\) 0 0
\(724\) 9.00000 + 5.19615i 0.334482 + 0.193113i
\(725\) 0 0
\(726\) 0 0
\(727\) −17.0000 −0.630495 −0.315248 0.949009i \(-0.602088\pi\)
−0.315248 + 0.949009i \(0.602088\pi\)
\(728\) 7.34847 + 38.1838i 0.272352 + 1.41518i
\(729\) 0 0
\(730\) 6.00000 3.46410i 0.222070 0.128212i
\(731\) 7.34847 + 12.7279i 0.271793 + 0.470759i
\(732\) 0 0
\(733\) −7.50000 4.33013i −0.277019 0.159937i 0.355054 0.934846i \(-0.384462\pi\)
−0.632073 + 0.774909i \(0.717796\pi\)
\(734\) −13.4722 7.77817i −0.497268 0.287098i
\(735\) 0 0
\(736\) 8.00000 + 13.8564i 0.294884 + 0.510754i
\(737\) 24.4949 42.4264i 0.902281 1.56280i
\(738\) 0 0
\(739\) −28.5000 + 16.4545i −1.04839 + 0.605288i −0.922198 0.386718i \(-0.873609\pi\)
−0.126191 + 0.992006i \(0.540275\pi\)
\(740\) 28.2843i 1.03975i
\(741\) 0 0
\(742\) −6.00000 + 17.3205i −0.220267 + 0.635856i
\(743\) 45.2548i 1.66024i −0.557586 0.830119i \(-0.688272\pi\)
0.557586 0.830119i \(-0.311728\pi\)
\(744\) 0 0
\(745\) 24.0000 13.8564i 0.879292 0.507659i
\(746\) 1.41421i 0.0517780i
\(747\) 0 0
\(748\) −16.0000 27.7128i −0.585018 1.01328i
\(749\) −2.44949 + 7.07107i −0.0895024 + 0.258371i
\(750\) 0 0
\(751\) 7.50000 + 4.33013i 0.273679 + 0.158009i 0.630558 0.776142i \(-0.282826\pi\)
−0.356879 + 0.934150i \(0.616159\pi\)
\(752\) 19.5959 0.714590
\(753\) 0 0
\(754\) 0 0
\(755\) 48.9898 1.78292
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 25.7196 + 44.5477i 0.934179 + 1.61805i
\(759\) 0 0
\(760\) −20.0000 34.6410i −0.725476 1.25656i
\(761\) −17.1464 9.89949i −0.621558 0.358856i 0.155918 0.987770i \(-0.450167\pi\)
−0.777475 + 0.628914i \(0.783500\pi\)
\(762\) 0 0
\(763\) 10.0000 8.66025i 0.362024 0.313522i
\(764\) 34.2929 19.7990i 1.24067 0.716302i
\(765\) 0 0
\(766\) 48.4974i 1.75228i
\(767\) 22.0454 12.7279i 0.796014 0.459579i
\(768\) 0 0
\(769\) 15.5885i 0.562134i 0.959688 + 0.281067i \(0.0906883\pi\)
−0.959688 + 0.281067i \(0.909312\pi\)
\(770\) 39.1918 + 45.2548i 1.41238 + 1.63087i
\(771\) 0 0
\(772\) 14.0000 0.503871
\(773\) 9.79796 5.65685i 0.352408 0.203463i −0.313337 0.949642i \(-0.601447\pi\)
0.665745 + 0.746179i \(0.268114\pi\)
\(774\) 0 0
\(775\) 1.50000 2.59808i 0.0538816 0.0933257i
\(776\) 0 0
\(777\) 0 0
\(778\) −30.0000 17.3205i −1.07555 0.620970i
\(779\) −24.4949 14.1421i −0.877621 0.506695i
\(780\) 0 0
\(781\) −8.00000 13.8564i −0.286263 0.495821i
\(782\) −9.79796 + 5.65685i −0.350374 + 0.202289i
\(783\) 0 0
\(784\) 22.0000 + 17.3205i 0.785714 + 0.618590i
\(785\) −19.5959 −0.699408
\(786\) 0 0
\(787\) −8.00000 13.8564i −0.285169 0.493928i 0.687481 0.726202i \(-0.258716\pi\)
−0.972650 + 0.232275i \(0.925383\pi\)
\(788\) −14.6969 + 25.4558i −0.523557 + 0.906827i
\(789\) 0 0
\(790\) −6.00000 3.46410i −0.213470 0.123247i
\(791\) 7.34847 + 38.1838i 0.261281 + 1.35766i
\(792\) 0 0
\(793\) 18.0000 31.1769i 0.639199 1.10712i
\(794\) 41.6413 1.47780
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) 31.1127i 1.10207i −0.834483 0.551034i \(-0.814233\pi\)
0.834483 0.551034i \(-0.185767\pi\)
\(798\) 0 0
\(799\) 13.8564i 0.490204i
\(800\) 16.9706i 0.600000i
\(801\) 0 0
\(802\) 6.92820i 0.244643i
\(803\) 4.89898 8.48528i 0.172881 0.299439i
\(804\) 0 0
\(805\) 16.0000 13.8564i 0.563926 0.488374i
\(806\) 3.67423 6.36396i 0.129419 0.224161i
\(807\) 0 0
\(808\) 16.0000 + 27.7128i 0.562878 + 0.974933i
\(809\) −2.44949 4.24264i −0.0861195 0.149163i 0.819748 0.572724i \(-0.194113\pi\)
−0.905868 + 0.423561i \(0.860780\pi\)
\(810\) 0 0
\(811\) −8.00000 −0.280918 −0.140459 0.990086i \(-0.544858\pi\)
−0.140459 + 0.990086i \(0.544858\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −20.0000 34.6410i −0.701000 1.21417i
\(815\) −4.89898 8.48528i −0.171604 0.297226i
\(816\) 0 0
\(817\) 22.5000 + 12.9904i 0.787175 + 0.454476i
\(818\) 20.8207 36.0624i 0.727977 1.26089i
\(819\) 0 0
\(820\) 16.0000 + 27.7128i 0.558744 + 0.967773i
\(821\) 17.1464 29.6985i 0.598414 1.03648i −0.394641 0.918835i \(-0.629131\pi\)
0.993055 0.117649i \(-0.0375357\pi\)
\(822\) 0 0
\(823\) 39.0000 22.5167i 1.35945 0.784881i 0.369904 0.929070i \(-0.379390\pi\)
0.989550 + 0.144188i \(0.0460571\pi\)
\(824\) −2.44949 1.41421i −0.0853320 0.0492665i
\(825\) 0 0
\(826\) 6.00000 17.3205i 0.208767 0.602658i
\(827\) 2.82843i 0.0983540i −0.998790 0.0491770i \(-0.984340\pi\)
0.998790 0.0491770i \(-0.0156598\pi\)
\(828\) 0 0
\(829\) 28.5000 16.4545i 0.989846 0.571488i 0.0846177 0.996413i \(-0.473033\pi\)
0.905228 + 0.424926i \(0.139700\pi\)
\(830\) −58.7878 −2.04055
\(831\) 0 0
\(832\) 41.5692i 1.44115i
\(833\) −12.2474 + 15.5563i −0.424349 + 0.538996i
\(834\) 0 0
\(835\) −36.0000 20.7846i −1.24583 0.719281i
\(836\) −48.9898 28.2843i −1.69435 0.978232i
\(837\) 0 0
\(838\) 0 0
\(839\) 29.3939 1.01479 0.507395 0.861714i \(-0.330609\pi\)
0.507395 + 0.861714i \(0.330609\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −28.1691 + 16.2635i −0.970772 + 0.560476i
\(843\) 0 0
\(844\) −18.0000 10.3923i −0.619586 0.357718i
\(845\) 34.2929 + 19.7990i 1.17971 + 0.681106i
\(846\) 0 0
\(847\) 52.5000 + 18.1865i 1.80392 + 0.624897i
\(848\) −9.79796 + 16.9706i −0.336463 + 0.582772i
\(849\) 0 0
\(850\) −12.0000 −0.411597
\(851\) −12.2474 + 7.07107i −0.419837 + 0.242393i
\(852\) 0 0
\(853\) 15.5885i 0.533739i −0.963733 0.266869i \(-0.914011\pi\)
0.963733 0.266869i \(-0.0859892\pi\)
\(854\) −4.89898 25.4558i −0.167640 0.871081i
\(855\) 0 0
\(856\) −4.00000 + 6.92820i −0.136717 + 0.236801i
\(857\) −4.89898 + 2.82843i −0.167346 + 0.0966172i −0.581334 0.813665i \(-0.697469\pi\)
0.413988 + 0.910282i \(0.364136\pi\)
\(858\) 0 0
\(859\) 4.00000 6.92820i 0.136478 0.236387i −0.789683 0.613515i \(-0.789755\pi\)
0.926161 + 0.377128i \(0.123088\pi\)
\(860\) −14.6969 25.4558i −0.501161 0.868037i
\(861\) 0 0
\(862\) −10.0000 + 17.3205i −0.340601 + 0.589939i
\(863\) 24.4949 + 14.1421i 0.833816 + 0.481404i 0.855157 0.518368i \(-0.173460\pi\)
−0.0213414 + 0.999772i \(0.506794\pi\)
\(864\) 0 0
\(865\) 28.0000 + 48.4974i 0.952029 + 1.64896i
\(866\) 3.67423 + 6.36396i 0.124856 + 0.216256i
\(867\) 0 0
\(868\) −1.00000 5.19615i −0.0339422 0.176369i
\(869\) −9.79796 −0.332373
\(870\) 0 0
\(871\) −22.5000 38.9711i −0.762383 1.32049i
\(872\) 12.2474 7.07107i 0.414751 0.239457i
\(873\) 0 0
\(874\) −10.0000 + 17.3205i −0.338255 + 0.585875i
\(875\) −14.6969 + 2.82843i −0.496847 + 0.0956183i
\(876\) 0 0
\(877\) −19.0000 + 32.9090i −0.641584 + 1.11126i 0.343495 + 0.939155i \(0.388389\pi\)
−0.985079 + 0.172102i \(0.944944\pi\)
\(878\) 5.65685i 0.190910i
\(879\) 0 0
\(880\) 32.0000 + 55.4256i 1.07872 + 1.86840i
\(881\) 53.7401i 1.81055i 0.424826 + 0.905275i \(0.360335\pi\)
−0.424826 + 0.905275i \(0.639665\pi\)
\(882\) 0 0
\(883\) 15.5885i 0.524593i −0.964987 0.262297i \(-0.915520\pi\)
0.964987 0.262297i \(-0.0844799\pi\)
\(884\) −29.3939 −0.988623
\(885\) 0 0
\(886\) 44.0000 1.47821
\(887\) 19.5959 33.9411i 0.657967 1.13963i −0.323175 0.946339i \(-0.604750\pi\)
0.981141 0.193292i \(-0.0619165\pi\)
\(888\) 0 0
\(889\) −40.5000 + 7.79423i −1.35833 + 0.261410i
\(890\) −39.1918 22.6274i −1.31371 0.758473i
\(891\) 0 0
\(892\) 4.00000 6.92820i 0.133930 0.231973i
\(893\) 12.2474 + 21.2132i 0.409845 + 0.709873i
\(894\) 0 0
\(895\) 8.00000 0.267411
\(896\) 19.5959 + 22.6274i 0.654654 + 0.755929i
\(897\) 0 0
\(898\) −18.0000 + 10.3923i −0.600668 + 0.346796i
\(899\) 0 0
\(900\) 0 0
\(901\) −12.0000 6.92820i −0.399778 0.230812i
\(902\) 39.1918 + 22.6274i 1.30495 + 0.753411i
\(903\) 0 0
\(904\) 41.5692i 1.38257i
\(905\) 7.34847 12.7279i 0.244271 0.423090i
\(906\) 0 0
\(907\) −19.5000 + 11.2583i −0.647487 + 0.373827i −0.787493 0.616324i \(-0.788621\pi\)
0.140006 + 0.990151i \(0.455288\pi\)
\(908\) −19.5959 −0.650313
\(909\) 0 0
\(910\) 54.0000 10.3923i 1.79008 0.344502i
\(911\) 2.82843i 0.0937100i −0.998902 0.0468550i \(-0.985080\pi\)
0.998902 0.0468550i \(-0.0149199\pi\)
\(912\) 0 0
\(913\) −72.0000 + 41.5692i −2.38285 + 1.37574i
\(914\) 9.89949i 0.327446i
\(915\) 0 0
\(916\) −33.0000 + 19.0526i −1.09035 + 0.629514i
\(917\) −48.9898 16.9706i −1.61779 0.560417i
\(918\) 0 0
\(919\) 43.5000 + 25.1147i 1.43493 + 0.828459i 0.997491 0.0707883i \(-0.0225515\pi\)
0.437441 + 0.899247i \(0.355885\pi\)
\(920\) 19.5959 11.3137i 0.646058 0.373002i
\(921\) 0 0
\(922\) −8.00000 13.8564i −0.263466 0.456336i
\(923\) −14.6969 −0.483756
\(924\) 0 0
\(925\) −15.0000 −0.493197
\(926\) 3.67423 + 6.36396i 0.120743 + 0.209133i
\(927\) 0 0
\(928\) 0 0
\(929\) 12.2474 + 7.07107i 0.401826 + 0.231994i 0.687271 0.726401i \(-0.258808\pi\)
−0.285446 + 0.958395i \(0.592142\pi\)
\(930\) 0 0
\(931\) −5.00000 + 34.6410i −0.163868 + 1.13531i
\(932\) 24.4949 + 42.4264i 0.802357 + 1.38972i
\(933\) 0 0
\(934\) 6.92820i 0.226698i
\(935\) −39.1918 + 22.6274i −1.28171 + 0.739996i
\(936\) 0 0
\(937\) 36.3731i 1.18826i −0.804370 0.594128i \(-0.797497\pi\)
0.804370 0.594128i \(-0.202503\pi\)
\(938\) −30.6186 10.6066i −0.999733 0.346318i
\(939\) 0 0
\(940\) 27.7128i 0.903892i
\(941\) −41.6413 + 24.0416i −1.35747 + 0.783735i −0.989282 0.146017i \(-0.953354\pi\)
−0.368186 + 0.929752i \(0.620021\pi\)
\(942\) 0 0
\(943\) 8.00000 13.8564i 0.260516 0.451227i
\(944\) 9.79796 16.9706i 0.318896 0.552345i
\(945\) 0 0
\(946\) −36.0000 20.7846i −1.17046 0.675766i
\(947\) −4.89898 2.82843i −0.159195 0.0919115i 0.418286 0.908315i \(-0.362631\pi\)
−0.577481 + 0.816404i \(0.695964\pi\)
\(948\) 0 0
\(949\) −4.50000 7.79423i −0.146076 0.253011i
\(950\) −18.3712 + 10.6066i −0.596040 + 0.344124i
\(951\) 0 0
\(952\) −16.0000 + 13.8564i −0.518563 + 0.449089i
\(953\) −44.0908 −1.42824 −0.714121 0.700022i \(-0.753173\pi\)
−0.714121 + 0.700022i \(0.753173\pi\)
\(954\) 0 0
\(955\) −28.0000 48.4974i −0.906059 1.56934i
\(956\) −19.5959 11.3137i −0.633777 0.365911i
\(957\) 0 0
\(958\) −42.0000 24.2487i −1.35696 0.783440i
\(959\) −19.5959 + 16.9706i −0.632785 + 0.548008i
\(960\) 0 0
\(961\) 15.0000 25.9808i 0.483871 0.838089i
\(962\) −36.7423 −1.18462
\(963\) 0 0
\(964\) 27.7128i 0.892570i
\(965\) 19.7990i 0.637352i
\(966\) 0 0
\(967\) 25.9808i 0.835485i −0.908565 0.417742i \(-0.862821\pi\)
0.908565 0.417742i \(-0.137179\pi\)
\(968\) 51.4393 + 29.6985i 1.65332 + 0.954545i
\(969\) 0 0
\(970\) 0 0
\(971\) −17.1464 + 29.6985i −0.550255 + 0.953070i 0.448001 + 0.894033i \(0.352136\pi\)
−0.998256 + 0.0590366i \(0.981197\pi\)
\(972\) 0 0
\(973\) 6.50000 + 33.7750i 0.208380 + 1.08278i
\(974\) 15.9217 27.5772i 0.510164 0.883629i
\(975\) 0 0
\(976\) 27.7128i 0.887066i
\(977\) −9.79796 16.9706i −0.313464 0.542936i 0.665645 0.746268i \(-0.268156\pi\)
−0.979110 + 0.203332i \(0.934823\pi\)
\(978\) 0 0
\(979\) −64.0000 −2.04545
\(980\) 24.4949 31.1127i 0.782461 0.993859i
\(981\) 0 0
\(982\) −4.00000 6.92820i −0.127645 0.221088i
\(983\) −12.2474 21.2132i −0.390633 0.676596i 0.601900 0.798571i \(-0.294410\pi\)
−0.992533 + 0.121975i \(0.961077\pi\)
\(984\) 0 0
\(985\) 36.0000 + 20.7846i 1.14706 + 0.662253i
\(986\) 0 0
\(987\) 0 0
\(988\) −45.0000 + 25.9808i −1.43164 + 0.826558i
\(989\) −7.34847 + 12.7279i −0.233668 + 0.404724i
\(990\) 0 0
\(991\) −19.5000 + 11.2583i −0.619438 + 0.357633i −0.776650 0.629932i \(-0.783083\pi\)
0.157212 + 0.987565i \(0.449749\pi\)
\(992\) 5.65685i 0.179605i
\(993\) 0 0
\(994\) −8.00000 + 6.92820i −0.253745 + 0.219749i
\(995\) 11.3137i 0.358669i
\(996\) 0 0
\(997\) −16.5000 + 9.52628i −0.522560 + 0.301700i −0.737982 0.674821i \(-0.764221\pi\)
0.215421 + 0.976521i \(0.430888\pi\)
\(998\) 46.5403 1.47321
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.2.bf.c.19.1 yes 4
3.2 odd 2 inner 252.2.bf.c.19.2 yes 4
4.3 odd 2 252.2.bf.b.19.2 yes 4
7.2 even 3 1764.2.b.c.1567.4 4
7.3 odd 6 252.2.bf.b.199.1 yes 4
7.5 odd 6 1764.2.b.d.1567.4 4
12.11 even 2 252.2.bf.b.19.1 4
21.2 odd 6 1764.2.b.c.1567.1 4
21.5 even 6 1764.2.b.d.1567.1 4
21.17 even 6 252.2.bf.b.199.2 yes 4
28.3 even 6 inner 252.2.bf.c.199.1 yes 4
28.19 even 6 1764.2.b.c.1567.3 4
28.23 odd 6 1764.2.b.d.1567.3 4
84.23 even 6 1764.2.b.d.1567.2 4
84.47 odd 6 1764.2.b.c.1567.2 4
84.59 odd 6 inner 252.2.bf.c.199.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.bf.b.19.1 4 12.11 even 2
252.2.bf.b.19.2 yes 4 4.3 odd 2
252.2.bf.b.199.1 yes 4 7.3 odd 6
252.2.bf.b.199.2 yes 4 21.17 even 6
252.2.bf.c.19.1 yes 4 1.1 even 1 trivial
252.2.bf.c.19.2 yes 4 3.2 odd 2 inner
252.2.bf.c.199.1 yes 4 28.3 even 6 inner
252.2.bf.c.199.2 yes 4 84.59 odd 6 inner
1764.2.b.c.1567.1 4 21.2 odd 6
1764.2.b.c.1567.2 4 84.47 odd 6
1764.2.b.c.1567.3 4 28.19 even 6
1764.2.b.c.1567.4 4 7.2 even 3
1764.2.b.d.1567.1 4 21.5 even 6
1764.2.b.d.1567.2 4 84.23 even 6
1764.2.b.d.1567.3 4 28.23 odd 6
1764.2.b.d.1567.4 4 7.5 odd 6