Properties

Label 1764.2.b.c.1567.4
Level $1764$
Weight $2$
Character 1764.1567
Analytic conductor $14.086$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(1567,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.1567"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,4,0,0,0,0,0,-8,0,0,0,0,0,-8,0,0,-20,0,0,-16,0,0,-12,0, 0,0,0,0,4,0,0,-8,0,0,20,0,0,-32,0,0,0,0,0,8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(50)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1567.4
Root \(-1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1567
Dual form 1764.2.b.c.1567.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 0.707107i) q^{2} +(1.00000 + 1.73205i) q^{4} +2.82843i q^{5} +2.82843i q^{8} +(-2.00000 + 3.46410i) q^{10} +5.65685i q^{11} -5.19615i q^{13} +(-2.00000 + 3.46410i) q^{16} +2.82843i q^{17} -5.00000 q^{19} +(-4.89898 + 2.82843i) q^{20} +(-4.00000 + 6.92820i) q^{22} -2.82843i q^{23} -3.00000 q^{25} +(3.67423 - 6.36396i) q^{26} +1.00000 q^{31} +(-4.89898 + 2.82843i) q^{32} +(-2.00000 + 3.46410i) q^{34} +5.00000 q^{37} +(-6.12372 - 3.53553i) q^{38} -8.00000 q^{40} -5.65685i q^{41} +5.19615i q^{43} +(-9.79796 + 5.65685i) q^{44} +(2.00000 - 3.46410i) q^{46} +4.89898 q^{47} +(-3.67423 - 2.12132i) q^{50} +(9.00000 - 5.19615i) q^{52} +4.89898 q^{53} -16.0000 q^{55} -4.89898 q^{59} -6.92820i q^{61} +(1.22474 + 0.707107i) q^{62} -8.00000 q^{64} +14.6969 q^{65} +8.66025i q^{67} +(-4.89898 + 2.82843i) q^{68} -2.82843i q^{71} +1.73205i q^{73} +(6.12372 + 3.53553i) q^{74} +(-5.00000 - 8.66025i) q^{76} +1.73205i q^{79} +(-9.79796 - 5.65685i) q^{80} +(4.00000 - 6.92820i) q^{82} -14.6969 q^{83} -8.00000 q^{85} +(-3.67423 + 6.36396i) q^{86} -16.0000 q^{88} +11.3137i q^{89} +(4.89898 - 2.82843i) q^{92} +(6.00000 + 3.46410i) q^{94} -14.1421i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 8 q^{10} - 8 q^{16} - 20 q^{19} - 16 q^{22} - 12 q^{25} + 4 q^{31} - 8 q^{34} + 20 q^{37} - 32 q^{40} + 8 q^{46} + 36 q^{52} - 64 q^{55} - 32 q^{64} - 20 q^{76} + 16 q^{82} - 32 q^{85} - 64 q^{88}+ \cdots + 24 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 0.707107i 0.866025 + 0.500000i
\(3\) 0 0
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 2.82843i 1.26491i 0.774597 + 0.632456i \(0.217953\pi\)
−0.774597 + 0.632456i \(0.782047\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) −2.00000 + 3.46410i −0.632456 + 1.09545i
\(11\) 5.65685i 1.70561i 0.522233 + 0.852803i \(0.325099\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 0 0
\(13\) 5.19615i 1.44115i −0.693375 0.720577i \(-0.743877\pi\)
0.693375 0.720577i \(-0.256123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 2.82843i 0.685994i 0.939336 + 0.342997i \(0.111442\pi\)
−0.939336 + 0.342997i \(0.888558\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) −4.89898 + 2.82843i −1.09545 + 0.632456i
\(21\) 0 0
\(22\) −4.00000 + 6.92820i −0.852803 + 1.47710i
\(23\) 2.82843i 0.589768i −0.955533 0.294884i \(-0.904719\pi\)
0.955533 0.294884i \(-0.0952810\pi\)
\(24\) 0 0
\(25\) −3.00000 −0.600000
\(26\) 3.67423 6.36396i 0.720577 1.24808i
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) −4.89898 + 2.82843i −0.866025 + 0.500000i
\(33\) 0 0
\(34\) −2.00000 + 3.46410i −0.342997 + 0.594089i
\(35\) 0 0
\(36\) 0 0
\(37\) 5.00000 0.821995 0.410997 0.911636i \(-0.365181\pi\)
0.410997 + 0.911636i \(0.365181\pi\)
\(38\) −6.12372 3.53553i −0.993399 0.573539i
\(39\) 0 0
\(40\) −8.00000 −1.26491
\(41\) 5.65685i 0.883452i −0.897150 0.441726i \(-0.854366\pi\)
0.897150 0.441726i \(-0.145634\pi\)
\(42\) 0 0
\(43\) 5.19615i 0.792406i 0.918163 + 0.396203i \(0.129672\pi\)
−0.918163 + 0.396203i \(0.870328\pi\)
\(44\) −9.79796 + 5.65685i −1.47710 + 0.852803i
\(45\) 0 0
\(46\) 2.00000 3.46410i 0.294884 0.510754i
\(47\) 4.89898 0.714590 0.357295 0.933992i \(-0.383699\pi\)
0.357295 + 0.933992i \(0.383699\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −3.67423 2.12132i −0.519615 0.300000i
\(51\) 0 0
\(52\) 9.00000 5.19615i 1.24808 0.720577i
\(53\) 4.89898 0.672927 0.336463 0.941697i \(-0.390769\pi\)
0.336463 + 0.941697i \(0.390769\pi\)
\(54\) 0 0
\(55\) −16.0000 −2.15744
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.89898 −0.637793 −0.318896 0.947790i \(-0.603312\pi\)
−0.318896 + 0.947790i \(0.603312\pi\)
\(60\) 0 0
\(61\) 6.92820i 0.887066i −0.896258 0.443533i \(-0.853725\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 1.22474 + 0.707107i 0.155543 + 0.0898027i
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 14.6969 1.82293
\(66\) 0 0
\(67\) 8.66025i 1.05802i 0.848616 + 0.529009i \(0.177436\pi\)
−0.848616 + 0.529009i \(0.822564\pi\)
\(68\) −4.89898 + 2.82843i −0.594089 + 0.342997i
\(69\) 0 0
\(70\) 0 0
\(71\) 2.82843i 0.335673i −0.985815 0.167836i \(-0.946322\pi\)
0.985815 0.167836i \(-0.0536780\pi\)
\(72\) 0 0
\(73\) 1.73205i 0.202721i 0.994850 + 0.101361i \(0.0323196\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 6.12372 + 3.53553i 0.711868 + 0.410997i
\(75\) 0 0
\(76\) −5.00000 8.66025i −0.573539 0.993399i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.73205i 0.194871i 0.995242 + 0.0974355i \(0.0310640\pi\)
−0.995242 + 0.0974355i \(0.968936\pi\)
\(80\) −9.79796 5.65685i −1.09545 0.632456i
\(81\) 0 0
\(82\) 4.00000 6.92820i 0.441726 0.765092i
\(83\) −14.6969 −1.61320 −0.806599 0.591099i \(-0.798694\pi\)
−0.806599 + 0.591099i \(0.798694\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) −3.67423 + 6.36396i −0.396203 + 0.686244i
\(87\) 0 0
\(88\) −16.0000 −1.70561
\(89\) 11.3137i 1.19925i 0.800281 + 0.599625i \(0.204684\pi\)
−0.800281 + 0.599625i \(0.795316\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 4.89898 2.82843i 0.510754 0.294884i
\(93\) 0 0
\(94\) 6.00000 + 3.46410i 0.618853 + 0.357295i
\(95\) 14.1421i 1.45095i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −3.00000 5.19615i −0.300000 0.519615i
\(101\) 11.3137i 1.12576i 0.826540 + 0.562878i \(0.190306\pi\)
−0.826540 + 0.562878i \(0.809694\pi\)
\(102\) 0 0
\(103\) 1.00000 0.0985329 0.0492665 0.998786i \(-0.484312\pi\)
0.0492665 + 0.998786i \(0.484312\pi\)
\(104\) 14.6969 1.44115
\(105\) 0 0
\(106\) 6.00000 + 3.46410i 0.582772 + 0.336463i
\(107\) 2.82843i 0.273434i −0.990610 0.136717i \(-0.956345\pi\)
0.990610 0.136717i \(-0.0436552\pi\)
\(108\) 0 0
\(109\) 5.00000 0.478913 0.239457 0.970907i \(-0.423031\pi\)
0.239457 + 0.970907i \(0.423031\pi\)
\(110\) −19.5959 11.3137i −1.86840 1.07872i
\(111\) 0 0
\(112\) 0 0
\(113\) 14.6969 1.38257 0.691286 0.722581i \(-0.257045\pi\)
0.691286 + 0.722581i \(0.257045\pi\)
\(114\) 0 0
\(115\) 8.00000 0.746004
\(116\) 0 0
\(117\) 0 0
\(118\) −6.00000 3.46410i −0.552345 0.318896i
\(119\) 0 0
\(120\) 0 0
\(121\) −21.0000 −1.90909
\(122\) 4.89898 8.48528i 0.443533 0.768221i
\(123\) 0 0
\(124\) 1.00000 + 1.73205i 0.0898027 + 0.155543i
\(125\) 5.65685i 0.505964i
\(126\) 0 0
\(127\) 15.5885i 1.38325i 0.722256 + 0.691626i \(0.243105\pi\)
−0.722256 + 0.691626i \(0.756895\pi\)
\(128\) −9.79796 5.65685i −0.866025 0.500000i
\(129\) 0 0
\(130\) 18.0000 + 10.3923i 1.57870 + 0.911465i
\(131\) 19.5959 1.71210 0.856052 0.516890i \(-0.172910\pi\)
0.856052 + 0.516890i \(0.172910\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −6.12372 + 10.6066i −0.529009 + 0.916271i
\(135\) 0 0
\(136\) −8.00000 −0.685994
\(137\) −9.79796 −0.837096 −0.418548 0.908195i \(-0.637461\pi\)
−0.418548 + 0.908195i \(0.637461\pi\)
\(138\) 0 0
\(139\) 13.0000 1.10265 0.551323 0.834292i \(-0.314123\pi\)
0.551323 + 0.834292i \(0.314123\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 2.00000 3.46410i 0.167836 0.290701i
\(143\) 29.3939 2.45804
\(144\) 0 0
\(145\) 0 0
\(146\) −1.22474 + 2.12132i −0.101361 + 0.175562i
\(147\) 0 0
\(148\) 5.00000 + 8.66025i 0.410997 + 0.711868i
\(149\) 9.79796 0.802680 0.401340 0.915929i \(-0.368545\pi\)
0.401340 + 0.915929i \(0.368545\pi\)
\(150\) 0 0
\(151\) 17.3205i 1.40952i −0.709444 0.704761i \(-0.751054\pi\)
0.709444 0.704761i \(-0.248946\pi\)
\(152\) 14.1421i 1.14708i
\(153\) 0 0
\(154\) 0 0
\(155\) 2.82843i 0.227185i
\(156\) 0 0
\(157\) 6.92820i 0.552931i 0.961024 + 0.276465i \(0.0891631\pi\)
−0.961024 + 0.276465i \(0.910837\pi\)
\(158\) −1.22474 + 2.12132i −0.0974355 + 0.168763i
\(159\) 0 0
\(160\) −8.00000 13.8564i −0.632456 1.09545i
\(161\) 0 0
\(162\) 0 0
\(163\) 3.46410i 0.271329i −0.990755 0.135665i \(-0.956683\pi\)
0.990755 0.135665i \(-0.0433170\pi\)
\(164\) 9.79796 5.65685i 0.765092 0.441726i
\(165\) 0 0
\(166\) −18.0000 10.3923i −1.39707 0.806599i
\(167\) 14.6969 1.13728 0.568642 0.822585i \(-0.307469\pi\)
0.568642 + 0.822585i \(0.307469\pi\)
\(168\) 0 0
\(169\) −14.0000 −1.07692
\(170\) −9.79796 5.65685i −0.751469 0.433861i
\(171\) 0 0
\(172\) −9.00000 + 5.19615i −0.686244 + 0.396203i
\(173\) 19.7990i 1.50529i 0.658427 + 0.752645i \(0.271222\pi\)
−0.658427 + 0.752645i \(0.728778\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −19.5959 11.3137i −1.47710 0.852803i
\(177\) 0 0
\(178\) −8.00000 + 13.8564i −0.599625 + 1.03858i
\(179\) 2.82843i 0.211407i −0.994398 0.105703i \(-0.966291\pi\)
0.994398 0.105703i \(-0.0337094\pi\)
\(180\) 0 0
\(181\) 5.19615i 0.386227i 0.981176 + 0.193113i \(0.0618586\pi\)
−0.981176 + 0.193113i \(0.938141\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 8.00000 0.589768
\(185\) 14.1421i 1.03975i
\(186\) 0 0
\(187\) −16.0000 −1.17004
\(188\) 4.89898 + 8.48528i 0.357295 + 0.618853i
\(189\) 0 0
\(190\) 10.0000 17.3205i 0.725476 1.25656i
\(191\) 19.7990i 1.43260i −0.697790 0.716302i \(-0.745833\pi\)
0.697790 0.716302i \(-0.254167\pi\)
\(192\) 0 0
\(193\) −7.00000 −0.503871 −0.251936 0.967744i \(-0.581067\pi\)
−0.251936 + 0.967744i \(0.581067\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.6969 −1.04711 −0.523557 0.851991i \(-0.675395\pi\)
−0.523557 + 0.851991i \(0.675395\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 8.48528i 0.600000i
\(201\) 0 0
\(202\) −8.00000 + 13.8564i −0.562878 + 0.974933i
\(203\) 0 0
\(204\) 0 0
\(205\) 16.0000 1.11749
\(206\) 1.22474 + 0.707107i 0.0853320 + 0.0492665i
\(207\) 0 0
\(208\) 18.0000 + 10.3923i 1.24808 + 0.720577i
\(209\) 28.2843i 1.95646i
\(210\) 0 0
\(211\) 10.3923i 0.715436i −0.933830 0.357718i \(-0.883555\pi\)
0.933830 0.357718i \(-0.116445\pi\)
\(212\) 4.89898 + 8.48528i 0.336463 + 0.582772i
\(213\) 0 0
\(214\) 2.00000 3.46410i 0.136717 0.236801i
\(215\) −14.6969 −1.00232
\(216\) 0 0
\(217\) 0 0
\(218\) 6.12372 + 3.53553i 0.414751 + 0.239457i
\(219\) 0 0
\(220\) −16.0000 27.7128i −1.07872 1.86840i
\(221\) 14.6969 0.988623
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 18.0000 + 10.3923i 1.19734 + 0.691286i
\(227\) 9.79796 0.650313 0.325157 0.945660i \(-0.394583\pi\)
0.325157 + 0.945660i \(0.394583\pi\)
\(228\) 0 0
\(229\) 19.0526i 1.25903i 0.776989 + 0.629514i \(0.216746\pi\)
−0.776989 + 0.629514i \(0.783254\pi\)
\(230\) 9.79796 + 5.65685i 0.646058 + 0.373002i
\(231\) 0 0
\(232\) 0 0
\(233\) 24.4949 1.60471 0.802357 0.596844i \(-0.203579\pi\)
0.802357 + 0.596844i \(0.203579\pi\)
\(234\) 0 0
\(235\) 13.8564i 0.903892i
\(236\) −4.89898 8.48528i −0.318896 0.552345i
\(237\) 0 0
\(238\) 0 0
\(239\) 11.3137i 0.731823i −0.930650 0.365911i \(-0.880757\pi\)
0.930650 0.365911i \(-0.119243\pi\)
\(240\) 0 0
\(241\) 13.8564i 0.892570i −0.894891 0.446285i \(-0.852747\pi\)
0.894891 0.446285i \(-0.147253\pi\)
\(242\) −25.7196 14.8492i −1.65332 0.954545i
\(243\) 0 0
\(244\) 12.0000 6.92820i 0.768221 0.443533i
\(245\) 0 0
\(246\) 0 0
\(247\) 25.9808i 1.65312i
\(248\) 2.82843i 0.179605i
\(249\) 0 0
\(250\) −4.00000 + 6.92820i −0.252982 + 0.438178i
\(251\) 14.6969 0.927663 0.463831 0.885924i \(-0.346474\pi\)
0.463831 + 0.885924i \(0.346474\pi\)
\(252\) 0 0
\(253\) 16.0000 1.00591
\(254\) −11.0227 + 19.0919i −0.691626 + 1.19793i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 2.82843i 0.176432i 0.996101 + 0.0882162i \(0.0281166\pi\)
−0.996101 + 0.0882162i \(0.971883\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 14.6969 + 25.4558i 0.911465 + 1.57870i
\(261\) 0 0
\(262\) 24.0000 + 13.8564i 1.48272 + 0.856052i
\(263\) 5.65685i 0.348817i 0.984673 + 0.174408i \(0.0558013\pi\)
−0.984673 + 0.174408i \(0.944199\pi\)
\(264\) 0 0
\(265\) 13.8564i 0.851192i
\(266\) 0 0
\(267\) 0 0
\(268\) −15.0000 + 8.66025i −0.916271 + 0.529009i
\(269\) 11.3137i 0.689809i 0.938638 + 0.344904i \(0.112089\pi\)
−0.938638 + 0.344904i \(0.887911\pi\)
\(270\) 0 0
\(271\) 28.0000 1.70088 0.850439 0.526073i \(-0.176336\pi\)
0.850439 + 0.526073i \(0.176336\pi\)
\(272\) −9.79796 5.65685i −0.594089 0.342997i
\(273\) 0 0
\(274\) −12.0000 6.92820i −0.724947 0.418548i
\(275\) 16.9706i 1.02336i
\(276\) 0 0
\(277\) 11.0000 0.660926 0.330463 0.943819i \(-0.392795\pi\)
0.330463 + 0.943819i \(0.392795\pi\)
\(278\) 15.9217 + 9.19239i 0.954919 + 0.551323i
\(279\) 0 0
\(280\) 0 0
\(281\) 14.6969 0.876746 0.438373 0.898793i \(-0.355555\pi\)
0.438373 + 0.898793i \(0.355555\pi\)
\(282\) 0 0
\(283\) −29.0000 −1.72387 −0.861936 0.507018i \(-0.830748\pi\)
−0.861936 + 0.507018i \(0.830748\pi\)
\(284\) 4.89898 2.82843i 0.290701 0.167836i
\(285\) 0 0
\(286\) 36.0000 + 20.7846i 2.12872 + 1.22902i
\(287\) 0 0
\(288\) 0 0
\(289\) 9.00000 0.529412
\(290\) 0 0
\(291\) 0 0
\(292\) −3.00000 + 1.73205i −0.175562 + 0.101361i
\(293\) 11.3137i 0.660954i 0.943814 + 0.330477i \(0.107210\pi\)
−0.943814 + 0.330477i \(0.892790\pi\)
\(294\) 0 0
\(295\) 13.8564i 0.806751i
\(296\) 14.1421i 0.821995i
\(297\) 0 0
\(298\) 12.0000 + 6.92820i 0.695141 + 0.401340i
\(299\) −14.6969 −0.849946
\(300\) 0 0
\(301\) 0 0
\(302\) 12.2474 21.2132i 0.704761 1.22068i
\(303\) 0 0
\(304\) 10.0000 17.3205i 0.573539 0.993399i
\(305\) 19.5959 1.12206
\(306\) 0 0
\(307\) 1.00000 0.0570730 0.0285365 0.999593i \(-0.490915\pi\)
0.0285365 + 0.999593i \(0.490915\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −2.00000 + 3.46410i −0.113592 + 0.196748i
\(311\) −19.5959 −1.11118 −0.555591 0.831456i \(-0.687508\pi\)
−0.555591 + 0.831456i \(0.687508\pi\)
\(312\) 0 0
\(313\) 22.5167i 1.27272i −0.771393 0.636358i \(-0.780440\pi\)
0.771393 0.636358i \(-0.219560\pi\)
\(314\) −4.89898 + 8.48528i −0.276465 + 0.478852i
\(315\) 0 0
\(316\) −3.00000 + 1.73205i −0.168763 + 0.0974355i
\(317\) −19.5959 −1.10062 −0.550308 0.834962i \(-0.685490\pi\)
−0.550308 + 0.834962i \(0.685490\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 22.6274i 1.26491i
\(321\) 0 0
\(322\) 0 0
\(323\) 14.1421i 0.786889i
\(324\) 0 0
\(325\) 15.5885i 0.864692i
\(326\) 2.44949 4.24264i 0.135665 0.234978i
\(327\) 0 0
\(328\) 16.0000 0.883452
\(329\) 0 0
\(330\) 0 0
\(331\) 29.4449i 1.61844i −0.587508 0.809218i \(-0.699891\pi\)
0.587508 0.809218i \(-0.300109\pi\)
\(332\) −14.6969 25.4558i −0.806599 1.39707i
\(333\) 0 0
\(334\) 18.0000 + 10.3923i 0.984916 + 0.568642i
\(335\) −24.4949 −1.33830
\(336\) 0 0
\(337\) 29.0000 1.57973 0.789865 0.613280i \(-0.210150\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) −17.1464 9.89949i −0.932643 0.538462i
\(339\) 0 0
\(340\) −8.00000 13.8564i −0.433861 0.751469i
\(341\) 5.65685i 0.306336i
\(342\) 0 0
\(343\) 0 0
\(344\) −14.6969 −0.792406
\(345\) 0 0
\(346\) −14.0000 + 24.2487i −0.752645 + 1.30362i
\(347\) 2.82843i 0.151838i −0.997114 0.0759190i \(-0.975811\pi\)
0.997114 0.0759190i \(-0.0241890\pi\)
\(348\) 0 0
\(349\) 20.7846i 1.11257i −0.830990 0.556287i \(-0.812225\pi\)
0.830990 0.556287i \(-0.187775\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −16.0000 27.7128i −0.852803 1.47710i
\(353\) 31.1127i 1.65596i −0.560756 0.827981i \(-0.689490\pi\)
0.560756 0.827981i \(-0.310510\pi\)
\(354\) 0 0
\(355\) 8.00000 0.424596
\(356\) −19.5959 + 11.3137i −1.03858 + 0.599625i
\(357\) 0 0
\(358\) 2.00000 3.46410i 0.105703 0.183083i
\(359\) 22.6274i 1.19423i 0.802156 + 0.597115i \(0.203686\pi\)
−0.802156 + 0.597115i \(0.796314\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) −3.67423 + 6.36396i −0.193113 + 0.334482i
\(363\) 0 0
\(364\) 0 0
\(365\) −4.89898 −0.256424
\(366\) 0 0
\(367\) −11.0000 −0.574195 −0.287098 0.957901i \(-0.592690\pi\)
−0.287098 + 0.957901i \(0.592690\pi\)
\(368\) 9.79796 + 5.65685i 0.510754 + 0.294884i
\(369\) 0 0
\(370\) −10.0000 + 17.3205i −0.519875 + 0.900450i
\(371\) 0 0
\(372\) 0 0
\(373\) −1.00000 −0.0517780 −0.0258890 0.999665i \(-0.508242\pi\)
−0.0258890 + 0.999665i \(0.508242\pi\)
\(374\) −19.5959 11.3137i −1.01328 0.585018i
\(375\) 0 0
\(376\) 13.8564i 0.714590i
\(377\) 0 0
\(378\) 0 0
\(379\) 36.3731i 1.86836i −0.356803 0.934179i \(-0.616133\pi\)
0.356803 0.934179i \(-0.383867\pi\)
\(380\) 24.4949 14.1421i 1.25656 0.725476i
\(381\) 0 0
\(382\) 14.0000 24.2487i 0.716302 1.24067i
\(383\) 34.2929 1.75228 0.876142 0.482054i \(-0.160109\pi\)
0.876142 + 0.482054i \(0.160109\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −8.57321 4.94975i −0.436365 0.251936i
\(387\) 0 0
\(388\) 0 0
\(389\) −24.4949 −1.24194 −0.620970 0.783834i \(-0.713261\pi\)
−0.620970 + 0.783834i \(0.713261\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) 0 0
\(393\) 0 0
\(394\) −18.0000 10.3923i −0.906827 0.523557i
\(395\) −4.89898 −0.246494
\(396\) 0 0
\(397\) 29.4449i 1.47780i 0.673818 + 0.738898i \(0.264653\pi\)
−0.673818 + 0.738898i \(0.735347\pi\)
\(398\) 4.89898 + 2.82843i 0.245564 + 0.141776i
\(399\) 0 0
\(400\) 6.00000 10.3923i 0.300000 0.519615i
\(401\) −4.89898 −0.244643 −0.122322 0.992491i \(-0.539034\pi\)
−0.122322 + 0.992491i \(0.539034\pi\)
\(402\) 0 0
\(403\) 5.19615i 0.258839i
\(404\) −19.5959 + 11.3137i −0.974933 + 0.562878i
\(405\) 0 0
\(406\) 0 0
\(407\) 28.2843i 1.40200i
\(408\) 0 0
\(409\) 29.4449i 1.45595i −0.685601 0.727977i \(-0.740461\pi\)
0.685601 0.727977i \(-0.259539\pi\)
\(410\) 19.5959 + 11.3137i 0.967773 + 0.558744i
\(411\) 0 0
\(412\) 1.00000 + 1.73205i 0.0492665 + 0.0853320i
\(413\) 0 0
\(414\) 0 0
\(415\) 41.5692i 2.04055i
\(416\) 14.6969 + 25.4558i 0.720577 + 1.24808i
\(417\) 0 0
\(418\) 20.0000 34.6410i 0.978232 1.69435i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 23.0000 1.12095 0.560476 0.828171i \(-0.310618\pi\)
0.560476 + 0.828171i \(0.310618\pi\)
\(422\) 7.34847 12.7279i 0.357718 0.619586i
\(423\) 0 0
\(424\) 13.8564i 0.672927i
\(425\) 8.48528i 0.411597i
\(426\) 0 0
\(427\) 0 0
\(428\) 4.89898 2.82843i 0.236801 0.136717i
\(429\) 0 0
\(430\) −18.0000 10.3923i −0.868037 0.501161i
\(431\) 14.1421i 0.681203i 0.940208 + 0.340601i \(0.110631\pi\)
−0.940208 + 0.340601i \(0.889369\pi\)
\(432\) 0 0
\(433\) 5.19615i 0.249711i −0.992175 0.124856i \(-0.960153\pi\)
0.992175 0.124856i \(-0.0398468\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 5.00000 + 8.66025i 0.239457 + 0.414751i
\(437\) 14.1421i 0.676510i
\(438\) 0 0
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) 45.2548i 2.15744i
\(441\) 0 0
\(442\) 18.0000 + 10.3923i 0.856173 + 0.494312i
\(443\) 31.1127i 1.47821i 0.673591 + 0.739104i \(0.264751\pi\)
−0.673591 + 0.739104i \(0.735249\pi\)
\(444\) 0 0
\(445\) −32.0000 −1.51695
\(446\) 4.89898 + 2.82843i 0.231973 + 0.133930i
\(447\) 0 0
\(448\) 0 0
\(449\) 14.6969 0.693591 0.346796 0.937941i \(-0.387270\pi\)
0.346796 + 0.937941i \(0.387270\pi\)
\(450\) 0 0
\(451\) 32.0000 1.50682
\(452\) 14.6969 + 25.4558i 0.691286 + 1.19734i
\(453\) 0 0
\(454\) 12.0000 + 6.92820i 0.563188 + 0.325157i
\(455\) 0 0
\(456\) 0 0
\(457\) −7.00000 −0.327446 −0.163723 0.986506i \(-0.552350\pi\)
−0.163723 + 0.986506i \(0.552350\pi\)
\(458\) −13.4722 + 23.3345i −0.629514 + 1.09035i
\(459\) 0 0
\(460\) 8.00000 + 13.8564i 0.373002 + 0.646058i
\(461\) 11.3137i 0.526932i 0.964669 + 0.263466i \(0.0848657\pi\)
−0.964669 + 0.263466i \(0.915134\pi\)
\(462\) 0 0
\(463\) 5.19615i 0.241486i −0.992684 0.120743i \(-0.961472\pi\)
0.992684 0.120743i \(-0.0385276\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 30.0000 + 17.3205i 1.38972 + 0.802357i
\(467\) 4.89898 0.226698 0.113349 0.993555i \(-0.463842\pi\)
0.113349 + 0.993555i \(0.463842\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −9.79796 + 16.9706i −0.451946 + 0.782794i
\(471\) 0 0
\(472\) 13.8564i 0.637793i
\(473\) −29.3939 −1.35153
\(474\) 0 0
\(475\) 15.0000 0.688247
\(476\) 0 0
\(477\) 0 0
\(478\) 8.00000 13.8564i 0.365911 0.633777i
\(479\) −34.2929 −1.56688 −0.783440 0.621467i \(-0.786537\pi\)
−0.783440 + 0.621467i \(0.786537\pi\)
\(480\) 0 0
\(481\) 25.9808i 1.18462i
\(482\) 9.79796 16.9706i 0.446285 0.772988i
\(483\) 0 0
\(484\) −21.0000 36.3731i −0.954545 1.65332i
\(485\) 0 0
\(486\) 0 0
\(487\) 22.5167i 1.02033i −0.860077 0.510164i \(-0.829585\pi\)
0.860077 0.510164i \(-0.170415\pi\)
\(488\) 19.5959 0.887066
\(489\) 0 0
\(490\) 0 0
\(491\) 5.65685i 0.255290i 0.991820 + 0.127645i \(0.0407419\pi\)
−0.991820 + 0.127645i \(0.959258\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −18.3712 + 31.8198i −0.826558 + 1.43164i
\(495\) 0 0
\(496\) −2.00000 + 3.46410i −0.0898027 + 0.155543i
\(497\) 0 0
\(498\) 0 0
\(499\) 32.9090i 1.47321i 0.676325 + 0.736604i \(0.263572\pi\)
−0.676325 + 0.736604i \(0.736428\pi\)
\(500\) −9.79796 + 5.65685i −0.438178 + 0.252982i
\(501\) 0 0
\(502\) 18.0000 + 10.3923i 0.803379 + 0.463831i
\(503\) −29.3939 −1.31061 −0.655304 0.755365i \(-0.727460\pi\)
−0.655304 + 0.755365i \(0.727460\pi\)
\(504\) 0 0
\(505\) −32.0000 −1.42398
\(506\) 19.5959 + 11.3137i 0.871145 + 0.502956i
\(507\) 0 0
\(508\) −27.0000 + 15.5885i −1.19793 + 0.691626i
\(509\) 31.1127i 1.37905i −0.724264 0.689523i \(-0.757820\pi\)
0.724264 0.689523i \(-0.242180\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) −2.00000 + 3.46410i −0.0882162 + 0.152795i
\(515\) 2.82843i 0.124635i
\(516\) 0 0
\(517\) 27.7128i 1.21881i
\(518\) 0 0
\(519\) 0 0
\(520\) 41.5692i 1.82293i
\(521\) 11.3137i 0.495663i 0.968803 + 0.247831i \(0.0797179\pi\)
−0.968803 + 0.247831i \(0.920282\pi\)
\(522\) 0 0
\(523\) 31.0000 1.35554 0.677768 0.735276i \(-0.262948\pi\)
0.677768 + 0.735276i \(0.262948\pi\)
\(524\) 19.5959 + 33.9411i 0.856052 + 1.48272i
\(525\) 0 0
\(526\) −4.00000 + 6.92820i −0.174408 + 0.302084i
\(527\) 2.82843i 0.123208i
\(528\) 0 0
\(529\) 15.0000 0.652174
\(530\) −9.79796 + 16.9706i −0.425596 + 0.737154i
\(531\) 0 0
\(532\) 0 0
\(533\) −29.3939 −1.27319
\(534\) 0 0
\(535\) 8.00000 0.345870
\(536\) −24.4949 −1.05802
\(537\) 0 0
\(538\) −8.00000 + 13.8564i −0.344904 + 0.597392i
\(539\) 0 0
\(540\) 0 0
\(541\) 23.0000 0.988847 0.494424 0.869221i \(-0.335379\pi\)
0.494424 + 0.869221i \(0.335379\pi\)
\(542\) 34.2929 + 19.7990i 1.47300 + 0.850439i
\(543\) 0 0
\(544\) −8.00000 13.8564i −0.342997 0.594089i
\(545\) 14.1421i 0.605783i
\(546\) 0 0
\(547\) 10.3923i 0.444343i 0.975008 + 0.222171i \(0.0713145\pi\)
−0.975008 + 0.222171i \(0.928686\pi\)
\(548\) −9.79796 16.9706i −0.418548 0.724947i
\(549\) 0 0
\(550\) 12.0000 20.7846i 0.511682 0.886259i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 13.4722 + 7.77817i 0.572379 + 0.330463i
\(555\) 0 0
\(556\) 13.0000 + 22.5167i 0.551323 + 0.954919i
\(557\) 19.5959 0.830306 0.415153 0.909752i \(-0.363728\pi\)
0.415153 + 0.909752i \(0.363728\pi\)
\(558\) 0 0
\(559\) 27.0000 1.14198
\(560\) 0 0
\(561\) 0 0
\(562\) 18.0000 + 10.3923i 0.759284 + 0.438373i
\(563\) 24.4949 1.03234 0.516168 0.856487i \(-0.327358\pi\)
0.516168 + 0.856487i \(0.327358\pi\)
\(564\) 0 0
\(565\) 41.5692i 1.74883i
\(566\) −35.5176 20.5061i −1.49292 0.861936i
\(567\) 0 0
\(568\) 8.00000 0.335673
\(569\) −19.5959 −0.821504 −0.410752 0.911747i \(-0.634734\pi\)
−0.410752 + 0.911747i \(0.634734\pi\)
\(570\) 0 0
\(571\) 12.1244i 0.507388i −0.967284 0.253694i \(-0.918354\pi\)
0.967284 0.253694i \(-0.0816457\pi\)
\(572\) 29.3939 + 50.9117i 1.22902 + 2.12872i
\(573\) 0 0
\(574\) 0 0
\(575\) 8.48528i 0.353861i
\(576\) 0 0
\(577\) 8.66025i 0.360531i −0.983618 0.180266i \(-0.942304\pi\)
0.983618 0.180266i \(-0.0576957\pi\)
\(578\) 11.0227 + 6.36396i 0.458484 + 0.264706i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 27.7128i 1.14775i
\(584\) −4.89898 −0.202721
\(585\) 0 0
\(586\) −8.00000 + 13.8564i −0.330477 + 0.572403i
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −5.00000 −0.206021
\(590\) 9.79796 16.9706i 0.403376 0.698667i
\(591\) 0 0
\(592\) −10.0000 + 17.3205i −0.410997 + 0.711868i
\(593\) 39.5980i 1.62609i −0.582198 0.813047i \(-0.697807\pi\)
0.582198 0.813047i \(-0.302193\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 9.79796 + 16.9706i 0.401340 + 0.695141i
\(597\) 0 0
\(598\) −18.0000 10.3923i −0.736075 0.424973i
\(599\) 22.6274i 0.924531i 0.886742 + 0.462266i \(0.152963\pi\)
−0.886742 + 0.462266i \(0.847037\pi\)
\(600\) 0 0
\(601\) 25.9808i 1.05978i 0.848067 + 0.529889i \(0.177766\pi\)
−0.848067 + 0.529889i \(0.822234\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 30.0000 17.3205i 1.22068 0.704761i
\(605\) 59.3970i 2.41483i
\(606\) 0 0
\(607\) −47.0000 −1.90767 −0.953836 0.300329i \(-0.902903\pi\)
−0.953836 + 0.300329i \(0.902903\pi\)
\(608\) 24.4949 14.1421i 0.993399 0.573539i
\(609\) 0 0
\(610\) 24.0000 + 13.8564i 0.971732 + 0.561029i
\(611\) 25.4558i 1.02983i
\(612\) 0 0
\(613\) 14.0000 0.565455 0.282727 0.959200i \(-0.408761\pi\)
0.282727 + 0.959200i \(0.408761\pi\)
\(614\) 1.22474 + 0.707107i 0.0494267 + 0.0285365i
\(615\) 0 0
\(616\) 0 0
\(617\) −29.3939 −1.18335 −0.591676 0.806176i \(-0.701534\pi\)
−0.591676 + 0.806176i \(0.701534\pi\)
\(618\) 0 0
\(619\) −29.0000 −1.16561 −0.582804 0.812613i \(-0.698045\pi\)
−0.582804 + 0.812613i \(0.698045\pi\)
\(620\) −4.89898 + 2.82843i −0.196748 + 0.113592i
\(621\) 0 0
\(622\) −24.0000 13.8564i −0.962312 0.555591i
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 15.9217 27.5772i 0.636358 1.10221i
\(627\) 0 0
\(628\) −12.0000 + 6.92820i −0.478852 + 0.276465i
\(629\) 14.1421i 0.563884i
\(630\) 0 0
\(631\) 10.3923i 0.413711i −0.978371 0.206856i \(-0.933677\pi\)
0.978371 0.206856i \(-0.0663230\pi\)
\(632\) −4.89898 −0.194871
\(633\) 0 0
\(634\) −24.0000 13.8564i −0.953162 0.550308i
\(635\) −44.0908 −1.74969
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 16.0000 27.7128i 0.632456 1.09545i
\(641\) 4.89898 0.193498 0.0967490 0.995309i \(-0.469156\pi\)
0.0967490 + 0.995309i \(0.469156\pi\)
\(642\) 0 0
\(643\) −29.0000 −1.14365 −0.571824 0.820376i \(-0.693764\pi\)
−0.571824 + 0.820376i \(0.693764\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 10.0000 17.3205i 0.393445 0.681466i
\(647\) −19.5959 −0.770395 −0.385198 0.922834i \(-0.625867\pi\)
−0.385198 + 0.922834i \(0.625867\pi\)
\(648\) 0 0
\(649\) 27.7128i 1.08782i
\(650\) −11.0227 + 19.0919i −0.432346 + 0.748845i
\(651\) 0 0
\(652\) 6.00000 3.46410i 0.234978 0.135665i
\(653\) −19.5959 −0.766848 −0.383424 0.923573i \(-0.625255\pi\)
−0.383424 + 0.923573i \(0.625255\pi\)
\(654\) 0 0
\(655\) 55.4256i 2.16566i
\(656\) 19.5959 + 11.3137i 0.765092 + 0.441726i
\(657\) 0 0
\(658\) 0 0
\(659\) 14.1421i 0.550899i 0.961315 + 0.275450i \(0.0888267\pi\)
−0.961315 + 0.275450i \(0.911173\pi\)
\(660\) 0 0
\(661\) 32.9090i 1.28001i 0.768371 + 0.640005i \(0.221068\pi\)
−0.768371 + 0.640005i \(0.778932\pi\)
\(662\) 20.8207 36.0624i 0.809218 1.40161i
\(663\) 0 0
\(664\) 41.5692i 1.61320i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 14.6969 + 25.4558i 0.568642 + 0.984916i
\(669\) 0 0
\(670\) −30.0000 17.3205i −1.15900 0.669150i
\(671\) 39.1918 1.51298
\(672\) 0 0
\(673\) −19.0000 −0.732396 −0.366198 0.930537i \(-0.619341\pi\)
−0.366198 + 0.930537i \(0.619341\pi\)
\(674\) 35.5176 + 20.5061i 1.36809 + 0.789865i
\(675\) 0 0
\(676\) −14.0000 24.2487i −0.538462 0.932643i
\(677\) 5.65685i 0.217411i −0.994074 0.108705i \(-0.965330\pi\)
0.994074 0.108705i \(-0.0346705\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 22.6274i 0.867722i
\(681\) 0 0
\(682\) −4.00000 + 6.92820i −0.153168 + 0.265295i
\(683\) 36.7696i 1.40695i −0.710721 0.703474i \(-0.751631\pi\)
0.710721 0.703474i \(-0.248369\pi\)
\(684\) 0 0
\(685\) 27.7128i 1.05885i
\(686\) 0 0
\(687\) 0 0
\(688\) −18.0000 10.3923i −0.686244 0.396203i
\(689\) 25.4558i 0.969790i
\(690\) 0 0
\(691\) −5.00000 −0.190209 −0.0951045 0.995467i \(-0.530319\pi\)
−0.0951045 + 0.995467i \(0.530319\pi\)
\(692\) −34.2929 + 19.7990i −1.30362 + 0.752645i
\(693\) 0 0
\(694\) 2.00000 3.46410i 0.0759190 0.131495i
\(695\) 36.7696i 1.39475i
\(696\) 0 0
\(697\) 16.0000 0.606043
\(698\) 14.6969 25.4558i 0.556287 0.963518i
\(699\) 0 0
\(700\) 0 0
\(701\) 44.0908 1.66529 0.832644 0.553809i \(-0.186826\pi\)
0.832644 + 0.553809i \(0.186826\pi\)
\(702\) 0 0
\(703\) −25.0000 −0.942893
\(704\) 45.2548i 1.70561i
\(705\) 0 0
\(706\) 22.0000 38.1051i 0.827981 1.43411i
\(707\) 0 0
\(708\) 0 0
\(709\) 2.00000 0.0751116 0.0375558 0.999295i \(-0.488043\pi\)
0.0375558 + 0.999295i \(0.488043\pi\)
\(710\) 9.79796 + 5.65685i 0.367711 + 0.212298i
\(711\) 0 0
\(712\) −32.0000 −1.19925
\(713\) 2.82843i 0.105925i
\(714\) 0 0
\(715\) 83.1384i 3.10920i
\(716\) 4.89898 2.82843i 0.183083 0.105703i
\(717\) 0 0
\(718\) −16.0000 + 27.7128i −0.597115 + 1.03423i
\(719\) −39.1918 −1.46161 −0.730804 0.682587i \(-0.760855\pi\)
−0.730804 + 0.682587i \(0.760855\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 7.34847 + 4.24264i 0.273482 + 0.157895i
\(723\) 0 0
\(724\) −9.00000 + 5.19615i −0.334482 + 0.193113i
\(725\) 0 0
\(726\) 0 0
\(727\) −17.0000 −0.630495 −0.315248 0.949009i \(-0.602088\pi\)
−0.315248 + 0.949009i \(0.602088\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −6.00000 3.46410i −0.222070 0.128212i
\(731\) −14.6969 −0.543586
\(732\) 0 0
\(733\) 8.66025i 0.319874i 0.987127 + 0.159937i \(0.0511291\pi\)
−0.987127 + 0.159937i \(0.948871\pi\)
\(734\) −13.4722 7.77817i −0.497268 0.287098i
\(735\) 0 0
\(736\) 8.00000 + 13.8564i 0.294884 + 0.510754i
\(737\) −48.9898 −1.80456
\(738\) 0 0
\(739\) 32.9090i 1.21058i −0.796007 0.605288i \(-0.793058\pi\)
0.796007 0.605288i \(-0.206942\pi\)
\(740\) −24.4949 + 14.1421i −0.900450 + 0.519875i
\(741\) 0 0
\(742\) 0 0
\(743\) 45.2548i 1.66024i −0.557586 0.830119i \(-0.688272\pi\)
0.557586 0.830119i \(-0.311728\pi\)
\(744\) 0 0
\(745\) 27.7128i 1.01532i
\(746\) −1.22474 0.707107i −0.0448411 0.0258890i
\(747\) 0 0
\(748\) −16.0000 27.7128i −0.585018 1.01328i
\(749\) 0 0
\(750\) 0 0
\(751\) 8.66025i 0.316017i −0.987438 0.158009i \(-0.949493\pi\)
0.987438 0.158009i \(-0.0505074\pi\)
\(752\) −9.79796 + 16.9706i −0.357295 + 0.618853i
\(753\) 0 0
\(754\) 0 0
\(755\) 48.9898 1.78292
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 25.7196 44.5477i 0.934179 1.61805i
\(759\) 0 0
\(760\) 40.0000 1.45095
\(761\) 19.7990i 0.717713i 0.933393 + 0.358856i \(0.116833\pi\)
−0.933393 + 0.358856i \(0.883167\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 34.2929 19.7990i 1.24067 0.716302i
\(765\) 0 0
\(766\) 42.0000 + 24.2487i 1.51752 + 0.876142i
\(767\) 25.4558i 0.919157i
\(768\) 0 0
\(769\) 15.5885i 0.562134i 0.959688 + 0.281067i \(0.0906883\pi\)
−0.959688 + 0.281067i \(0.909312\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.00000 12.1244i −0.251936 0.436365i
\(773\) 11.3137i 0.406926i 0.979083 + 0.203463i \(0.0652196\pi\)
−0.979083 + 0.203463i \(0.934780\pi\)
\(774\) 0 0
\(775\) −3.00000 −0.107763
\(776\) 0 0
\(777\) 0 0
\(778\) −30.0000 17.3205i −1.07555 0.620970i
\(779\) 28.2843i 1.01339i
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 9.79796 + 5.65685i 0.350374 + 0.202289i
\(783\) 0 0
\(784\) 0 0
\(785\) −19.5959 −0.699408
\(786\) 0 0
\(787\) 16.0000 0.570338 0.285169 0.958477i \(-0.407950\pi\)
0.285169 + 0.958477i \(0.407950\pi\)
\(788\) −14.6969 25.4558i −0.523557 0.906827i
\(789\) 0 0
\(790\) −6.00000 3.46410i −0.213470 0.123247i
\(791\) 0 0
\(792\) 0 0
\(793\) −36.0000 −1.27840
\(794\) −20.8207 + 36.0624i −0.738898 + 1.27981i
\(795\) 0 0
\(796\) 4.00000 + 6.92820i 0.141776 + 0.245564i
\(797\) 31.1127i 1.10207i −0.834483 0.551034i \(-0.814233\pi\)
0.834483 0.551034i \(-0.185767\pi\)
\(798\) 0 0
\(799\) 13.8564i 0.490204i
\(800\) 14.6969 8.48528i 0.519615 0.300000i
\(801\) 0 0
\(802\) −6.00000 3.46410i −0.211867 0.122322i
\(803\) −9.79796 −0.345762
\(804\) 0 0
\(805\) 0 0
\(806\) 3.67423 6.36396i 0.129419 0.224161i
\(807\) 0 0
\(808\) −32.0000 −1.12576
\(809\) 4.89898 0.172239 0.0861195 0.996285i \(-0.472553\pi\)
0.0861195 + 0.996285i \(0.472553\pi\)
\(810\) 0 0
\(811\) −8.00000 −0.280918 −0.140459 0.990086i \(-0.544858\pi\)
−0.140459 + 0.990086i \(0.544858\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −20.0000 + 34.6410i −0.701000 + 1.21417i
\(815\) 9.79796 0.343208
\(816\) 0 0
\(817\) 25.9808i 0.908952i
\(818\) 20.8207 36.0624i 0.727977 1.26089i
\(819\) 0 0
\(820\) 16.0000 + 27.7128i 0.558744 + 0.967773i
\(821\) −34.2929 −1.19683 −0.598414 0.801187i \(-0.704202\pi\)
−0.598414 + 0.801187i \(0.704202\pi\)
\(822\) 0 0
\(823\) 45.0333i 1.56976i 0.619646 + 0.784881i \(0.287276\pi\)
−0.619646 + 0.784881i \(0.712724\pi\)
\(824\) 2.82843i 0.0985329i
\(825\) 0 0
\(826\) 0 0
\(827\) 2.82843i 0.0983540i −0.998790 0.0491770i \(-0.984340\pi\)
0.998790 0.0491770i \(-0.0156598\pi\)
\(828\) 0 0
\(829\) 32.9090i 1.14298i 0.820611 + 0.571488i \(0.193634\pi\)
−0.820611 + 0.571488i \(0.806366\pi\)
\(830\) 29.3939 50.9117i 1.02028 1.76717i
\(831\) 0 0
\(832\) 41.5692i 1.44115i
\(833\) 0 0
\(834\) 0 0
\(835\) 41.5692i 1.43856i
\(836\) 48.9898 28.2843i 1.69435 0.978232i
\(837\) 0 0
\(838\) 0 0
\(839\) 29.3939 1.01479 0.507395 0.861714i \(-0.330609\pi\)
0.507395 + 0.861714i \(0.330609\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 28.1691 + 16.2635i 0.970772 + 0.560476i
\(843\) 0 0
\(844\) 18.0000 10.3923i 0.619586 0.357718i
\(845\) 39.5980i 1.36221i
\(846\) 0 0
\(847\) 0 0
\(848\) −9.79796 + 16.9706i −0.336463 + 0.582772i
\(849\) 0 0
\(850\) 6.00000 10.3923i 0.205798 0.356453i
\(851\) 14.1421i 0.484786i
\(852\) 0 0
\(853\) 15.5885i 0.533739i −0.963733 0.266869i \(-0.914011\pi\)
0.963733 0.266869i \(-0.0859892\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) 5.65685i 0.193234i −0.995322 0.0966172i \(-0.969198\pi\)
0.995322 0.0966172i \(-0.0308023\pi\)
\(858\) 0 0
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) −14.6969 25.4558i −0.501161 0.868037i
\(861\) 0 0
\(862\) −10.0000 + 17.3205i −0.340601 + 0.589939i
\(863\) 28.2843i 0.962808i −0.876499 0.481404i \(-0.840127\pi\)
0.876499 0.481404i \(-0.159873\pi\)
\(864\) 0 0
\(865\) −56.0000 −1.90406
\(866\) 3.67423 6.36396i 0.124856 0.216256i
\(867\) 0 0
\(868\) 0 0
\(869\) −9.79796 −0.332373
\(870\) 0 0
\(871\) 45.0000 1.52477
\(872\) 14.1421i 0.478913i
\(873\) 0 0
\(874\) −10.0000 + 17.3205i −0.338255 + 0.585875i
\(875\) 0 0
\(876\) 0 0
\(877\) 38.0000 1.28317 0.641584 0.767052i \(-0.278277\pi\)
0.641584 + 0.767052i \(0.278277\pi\)
\(878\) 4.89898 + 2.82843i 0.165333 + 0.0954548i
\(879\) 0 0
\(880\) 32.0000 55.4256i 1.07872 1.86840i
\(881\) 53.7401i 1.81055i 0.424826 + 0.905275i \(0.360335\pi\)
−0.424826 + 0.905275i \(0.639665\pi\)
\(882\) 0 0
\(883\) 15.5885i 0.524593i −0.964987 0.262297i \(-0.915520\pi\)
0.964987 0.262297i \(-0.0844799\pi\)
\(884\) 14.6969 + 25.4558i 0.494312 + 0.856173i
\(885\) 0 0
\(886\) −22.0000 + 38.1051i −0.739104 + 1.28017i
\(887\) −39.1918 −1.31593 −0.657967 0.753047i \(-0.728583\pi\)
−0.657967 + 0.753047i \(0.728583\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −39.1918 22.6274i −1.31371 0.758473i
\(891\) 0 0
\(892\) 4.00000 + 6.92820i 0.133930 + 0.231973i
\(893\) −24.4949 −0.819690
\(894\) 0 0
\(895\) 8.00000 0.267411
\(896\) 0 0
\(897\) 0 0
\(898\) 18.0000 + 10.3923i 0.600668 + 0.346796i
\(899\) 0 0
\(900\) 0 0
\(901\) 13.8564i 0.461624i
\(902\) 39.1918 + 22.6274i 1.30495 + 0.753411i
\(903\) 0 0
\(904\) 41.5692i 1.38257i
\(905\) −14.6969 −0.488543
\(906\) 0 0
\(907\) 22.5167i 0.747653i −0.927499 0.373827i \(-0.878045\pi\)
0.927499 0.373827i \(-0.121955\pi\)
\(908\) 9.79796 + 16.9706i 0.325157 + 0.563188i
\(909\) 0 0
\(910\) 0 0
\(911\) 2.82843i 0.0937100i −0.998902 0.0468550i \(-0.985080\pi\)
0.998902 0.0468550i \(-0.0149199\pi\)
\(912\) 0 0
\(913\) 83.1384i 2.75148i
\(914\) −8.57321 4.94975i −0.283577 0.163723i
\(915\) 0 0
\(916\) −33.0000 + 19.0526i −1.09035 + 0.629514i
\(917\) 0 0
\(918\) 0 0
\(919\) 50.2295i 1.65692i −0.560050 0.828459i \(-0.689218\pi\)
0.560050 0.828459i \(-0.310782\pi\)
\(920\) 22.6274i 0.746004i
\(921\) 0 0
\(922\) −8.00000 + 13.8564i −0.263466 + 0.456336i
\(923\) −14.6969 −0.483756
\(924\) 0 0
\(925\) −15.0000 −0.493197
\(926\) 3.67423 6.36396i 0.120743 0.209133i
\(927\) 0 0
\(928\) 0 0
\(929\) 14.1421i 0.463988i −0.972717 0.231994i \(-0.925475\pi\)
0.972717 0.231994i \(-0.0745250\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 24.4949 + 42.4264i 0.802357 + 1.38972i
\(933\) 0 0
\(934\) 6.00000 + 3.46410i 0.196326 + 0.113349i
\(935\) 45.2548i 1.47999i
\(936\) 0 0
\(937\) 36.3731i 1.18826i −0.804370 0.594128i \(-0.797497\pi\)
0.804370 0.594128i \(-0.202503\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −24.0000 + 13.8564i −0.782794 + 0.451946i
\(941\) 48.0833i 1.56747i −0.621096 0.783735i \(-0.713312\pi\)
0.621096 0.783735i \(-0.286688\pi\)
\(942\) 0 0
\(943\) −16.0000 −0.521032
\(944\) 9.79796 16.9706i 0.318896 0.552345i
\(945\) 0 0
\(946\) −36.0000 20.7846i −1.17046 0.675766i
\(947\) 5.65685i 0.183823i 0.995767 + 0.0919115i \(0.0292977\pi\)
−0.995767 + 0.0919115i \(0.970702\pi\)
\(948\) 0 0
\(949\) 9.00000 0.292152
\(950\) 18.3712 + 10.6066i 0.596040 + 0.344124i
\(951\) 0 0
\(952\) 0 0
\(953\) −44.0908 −1.42824 −0.714121 0.700022i \(-0.753173\pi\)
−0.714121 + 0.700022i \(0.753173\pi\)
\(954\) 0 0
\(955\) 56.0000 1.81212
\(956\) 19.5959 11.3137i 0.633777 0.365911i
\(957\) 0 0
\(958\) −42.0000 24.2487i −1.35696 0.783440i
\(959\) 0 0
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 18.3712 31.8198i 0.592310 1.02591i
\(963\) 0 0
\(964\) 24.0000 13.8564i 0.772988 0.446285i
\(965\) 19.7990i 0.637352i
\(966\) 0 0
\(967\) 25.9808i 0.835485i −0.908565 0.417742i \(-0.862821\pi\)
0.908565 0.417742i \(-0.137179\pi\)
\(968\) 59.3970i 1.90909i
\(969\) 0 0
\(970\) 0 0
\(971\) 34.2929 1.10051 0.550255 0.834997i \(-0.314530\pi\)
0.550255 + 0.834997i \(0.314530\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 15.9217 27.5772i 0.510164 0.883629i
\(975\) 0 0
\(976\) 24.0000 + 13.8564i 0.768221 + 0.443533i
\(977\) 19.5959 0.626929 0.313464 0.949600i \(-0.398510\pi\)
0.313464 + 0.949600i \(0.398510\pi\)
\(978\) 0 0
\(979\) −64.0000 −2.04545
\(980\) 0 0
\(981\) 0 0
\(982\) −4.00000 + 6.92820i −0.127645 + 0.221088i
\(983\) 24.4949 0.781266 0.390633 0.920547i \(-0.372256\pi\)
0.390633 + 0.920547i \(0.372256\pi\)
\(984\) 0 0
\(985\) 41.5692i 1.32451i
\(986\) 0 0
\(987\) 0 0
\(988\) −45.0000 + 25.9808i −1.43164 + 0.826558i
\(989\) 14.6969 0.467335
\(990\) 0 0
\(991\) 22.5167i 0.715265i −0.933862 0.357633i \(-0.883584\pi\)
0.933862 0.357633i \(-0.116416\pi\)
\(992\) −4.89898 + 2.82843i −0.155543 + 0.0898027i
\(993\) 0 0
\(994\) 0 0
\(995\) 11.3137i 0.358669i
\(996\) 0 0
\(997\) 19.0526i 0.603401i −0.953403 0.301700i \(-0.902446\pi\)
0.953403 0.301700i \(-0.0975542\pi\)
\(998\) −23.2702 + 40.3051i −0.736604 + 1.27584i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.b.c.1567.4 4
3.2 odd 2 inner 1764.2.b.c.1567.1 4
4.3 odd 2 1764.2.b.d.1567.3 4
7.4 even 3 252.2.bf.c.19.1 yes 4
7.5 odd 6 252.2.bf.b.199.1 yes 4
7.6 odd 2 1764.2.b.d.1567.4 4
12.11 even 2 1764.2.b.d.1567.2 4
21.5 even 6 252.2.bf.b.199.2 yes 4
21.11 odd 6 252.2.bf.c.19.2 yes 4
21.20 even 2 1764.2.b.d.1567.1 4
28.11 odd 6 252.2.bf.b.19.2 yes 4
28.19 even 6 252.2.bf.c.199.1 yes 4
28.27 even 2 inner 1764.2.b.c.1567.3 4
84.11 even 6 252.2.bf.b.19.1 4
84.47 odd 6 252.2.bf.c.199.2 yes 4
84.83 odd 2 inner 1764.2.b.c.1567.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.bf.b.19.1 4 84.11 even 6
252.2.bf.b.19.2 yes 4 28.11 odd 6
252.2.bf.b.199.1 yes 4 7.5 odd 6
252.2.bf.b.199.2 yes 4 21.5 even 6
252.2.bf.c.19.1 yes 4 7.4 even 3
252.2.bf.c.19.2 yes 4 21.11 odd 6
252.2.bf.c.199.1 yes 4 28.19 even 6
252.2.bf.c.199.2 yes 4 84.47 odd 6
1764.2.b.c.1567.1 4 3.2 odd 2 inner
1764.2.b.c.1567.2 4 84.83 odd 2 inner
1764.2.b.c.1567.3 4 28.27 even 2 inner
1764.2.b.c.1567.4 4 1.1 even 1 trivial
1764.2.b.d.1567.1 4 21.20 even 2
1764.2.b.d.1567.2 4 12.11 even 2
1764.2.b.d.1567.3 4 4.3 odd 2
1764.2.b.d.1567.4 4 7.6 odd 2