Properties

Label 25.26.a.f.1.2
Level $25$
Weight $26$
Character 25.1
Self dual yes
Analytic conductor $98.999$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [25,26,Mod(1,25)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("25.1"); S:= CuspForms(chi, 26); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 26, names="a")
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 25.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.9991949881\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 71168091 x^{10} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{46}\cdot 3^{20}\cdot 5^{36} \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4680.77\) of defining polynomial
Character \(\chi\) \(=\) 25.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9361.55 q^{2} +531494. q^{3} +5.40841e7 q^{4} -4.97561e9 q^{6} +1.37587e10 q^{7} -1.92189e11 q^{8} -5.64803e11 q^{9} -9.26999e12 q^{11} +2.87454e13 q^{12} -1.02027e14 q^{13} -1.28802e14 q^{14} -1.55712e13 q^{16} -3.06292e15 q^{17} +5.28743e15 q^{18} -5.00581e15 q^{19} +7.31265e15 q^{21} +8.67815e16 q^{22} -9.11014e16 q^{23} -1.02148e17 q^{24} +9.55130e17 q^{26} -7.50518e17 q^{27} +7.44125e17 q^{28} +3.16262e18 q^{29} +3.22878e18 q^{31} +6.59458e18 q^{32} -4.92695e18 q^{33} +2.86736e19 q^{34} -3.05468e19 q^{36} +1.59124e19 q^{37} +4.68621e19 q^{38} -5.42268e19 q^{39} -8.10389e19 q^{41} -6.84577e19 q^{42} -3.97592e20 q^{43} -5.01359e20 q^{44} +8.52850e20 q^{46} +9.69576e20 q^{47} -8.27600e18 q^{48} -1.15177e21 q^{49} -1.62792e21 q^{51} -5.51804e21 q^{52} -5.88324e21 q^{53} +7.02601e21 q^{54} -2.64427e21 q^{56} -2.66056e21 q^{57} -2.96070e22 q^{58} +2.11464e22 q^{59} +7.65113e21 q^{61} -3.02264e22 q^{62} -7.77093e21 q^{63} -6.12130e22 q^{64} +4.61238e22 q^{66} -3.72268e22 q^{67} -1.65655e23 q^{68} -4.84199e22 q^{69} -3.96178e22 q^{71} +1.08549e23 q^{72} -4.27194e22 q^{73} -1.48965e23 q^{74} -2.70734e23 q^{76} -1.27543e23 q^{77} +5.07646e23 q^{78} +9.25017e23 q^{79} +7.96549e22 q^{81} +7.58649e23 q^{82} +9.81159e23 q^{83} +3.95498e23 q^{84} +3.72207e24 q^{86} +1.68091e24 q^{87} +1.78160e24 q^{88} +1.32371e24 q^{89} -1.40375e24 q^{91} -4.92714e24 q^{92} +1.71608e24 q^{93} -9.07673e24 q^{94} +3.50498e24 q^{96} +3.52916e24 q^{97} +1.07823e25 q^{98} +5.23572e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 166691544 q^{4} + 10591544184 q^{6} + 3948466041036 q^{9} - 1090673824176 q^{11} + 890646861445848 q^{14} + 22\!\cdots\!32 q^{16} - 63\!\cdots\!60 q^{19} + 13\!\cdots\!44 q^{21} + 12\!\cdots\!20 q^{24}+ \cdots + 10\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9361.55 −1.61612 −0.808058 0.589103i \(-0.799481\pi\)
−0.808058 + 0.589103i \(0.799481\pi\)
\(3\) 531494. 0.577408 0.288704 0.957418i \(-0.406776\pi\)
0.288704 + 0.957418i \(0.406776\pi\)
\(4\) 5.40841e7 1.61183
\(5\) 0 0
\(6\) −4.97561e9 −0.933158
\(7\) 1.37587e10 0.375708 0.187854 0.982197i \(-0.439847\pi\)
0.187854 + 0.982197i \(0.439847\pi\)
\(8\) −1.92189e11 −0.988791
\(9\) −5.64803e11 −0.666600
\(10\) 0 0
\(11\) −9.26999e12 −0.890576 −0.445288 0.895387i \(-0.646899\pi\)
−0.445288 + 0.895387i \(0.646899\pi\)
\(12\) 2.87454e13 0.930685
\(13\) −1.02027e14 −1.21457 −0.607286 0.794483i \(-0.707742\pi\)
−0.607286 + 0.794483i \(0.707742\pi\)
\(14\) −1.28802e14 −0.607188
\(15\) 0 0
\(16\) −1.55712e13 −0.0138300
\(17\) −3.06292e15 −1.27504 −0.637520 0.770434i \(-0.720040\pi\)
−0.637520 + 0.770434i \(0.720040\pi\)
\(18\) 5.28743e15 1.07730
\(19\) −5.00581e15 −0.518864 −0.259432 0.965761i \(-0.583535\pi\)
−0.259432 + 0.965761i \(0.583535\pi\)
\(20\) 0 0
\(21\) 7.31265e15 0.216937
\(22\) 8.67815e16 1.43927
\(23\) −9.11014e16 −0.866817 −0.433408 0.901198i \(-0.642689\pi\)
−0.433408 + 0.901198i \(0.642689\pi\)
\(24\) −1.02148e17 −0.570936
\(25\) 0 0
\(26\) 9.55130e17 1.96289
\(27\) −7.50518e17 −0.962308
\(28\) 7.44125e17 0.605578
\(29\) 3.16262e18 1.65986 0.829930 0.557867i \(-0.188380\pi\)
0.829930 + 0.557867i \(0.188380\pi\)
\(30\) 0 0
\(31\) 3.22878e18 0.736237 0.368119 0.929779i \(-0.380002\pi\)
0.368119 + 0.929779i \(0.380002\pi\)
\(32\) 6.59458e18 1.01114
\(33\) −4.92695e18 −0.514226
\(34\) 2.86736e19 2.06061
\(35\) 0 0
\(36\) −3.05468e19 −1.07445
\(37\) 1.59124e19 0.397388 0.198694 0.980062i \(-0.436330\pi\)
0.198694 + 0.980062i \(0.436330\pi\)
\(38\) 4.68621e19 0.838545
\(39\) −5.42268e19 −0.701303
\(40\) 0 0
\(41\) −8.10389e19 −0.560913 −0.280456 0.959867i \(-0.590486\pi\)
−0.280456 + 0.959867i \(0.590486\pi\)
\(42\) −6.84577e19 −0.350595
\(43\) −3.97592e20 −1.51734 −0.758668 0.651478i \(-0.774149\pi\)
−0.758668 + 0.651478i \(0.774149\pi\)
\(44\) −5.01359e20 −1.43546
\(45\) 0 0
\(46\) 8.52850e20 1.40088
\(47\) 9.69576e20 1.21719 0.608595 0.793481i \(-0.291733\pi\)
0.608595 + 0.793481i \(0.291733\pi\)
\(48\) −8.27600e18 −0.00798555
\(49\) −1.15177e21 −0.858843
\(50\) 0 0
\(51\) −1.62792e21 −0.736218
\(52\) −5.51804e21 −1.95769
\(53\) −5.88324e21 −1.64501 −0.822504 0.568759i \(-0.807424\pi\)
−0.822504 + 0.568759i \(0.807424\pi\)
\(54\) 7.02601e21 1.55520
\(55\) 0 0
\(56\) −2.64427e21 −0.371497
\(57\) −2.66056e21 −0.299596
\(58\) −2.96070e22 −2.68253
\(59\) 2.11464e22 1.54734 0.773671 0.633588i \(-0.218418\pi\)
0.773671 + 0.633588i \(0.218418\pi\)
\(60\) 0 0
\(61\) 7.65113e21 0.369065 0.184532 0.982826i \(-0.440923\pi\)
0.184532 + 0.982826i \(0.440923\pi\)
\(62\) −3.02264e22 −1.18985
\(63\) −7.77093e21 −0.250447
\(64\) −6.12130e22 −1.62029
\(65\) 0 0
\(66\) 4.61238e22 0.831048
\(67\) −3.72268e22 −0.555802 −0.277901 0.960610i \(-0.589639\pi\)
−0.277901 + 0.960610i \(0.589639\pi\)
\(68\) −1.65655e23 −2.05515
\(69\) −4.84199e22 −0.500507
\(70\) 0 0
\(71\) −3.96178e22 −0.286524 −0.143262 0.989685i \(-0.545759\pi\)
−0.143262 + 0.989685i \(0.545759\pi\)
\(72\) 1.08549e23 0.659128
\(73\) −4.27194e22 −0.218318 −0.109159 0.994024i \(-0.534816\pi\)
−0.109159 + 0.994024i \(0.534816\pi\)
\(74\) −1.48965e23 −0.642225
\(75\) 0 0
\(76\) −2.70734e23 −0.836322
\(77\) −1.27543e23 −0.334597
\(78\) 5.07646e23 1.13339
\(79\) 9.25017e23 1.76121 0.880605 0.473851i \(-0.157137\pi\)
0.880605 + 0.473851i \(0.157137\pi\)
\(80\) 0 0
\(81\) 7.96549e22 0.110956
\(82\) 7.58649e23 0.906500
\(83\) 9.81159e23 1.00754 0.503771 0.863837i \(-0.331946\pi\)
0.503771 + 0.863837i \(0.331946\pi\)
\(84\) 3.95498e23 0.349666
\(85\) 0 0
\(86\) 3.72207e24 2.45219
\(87\) 1.68091e24 0.958416
\(88\) 1.78160e24 0.880594
\(89\) 1.32371e24 0.568091 0.284046 0.958811i \(-0.408323\pi\)
0.284046 + 0.958811i \(0.408323\pi\)
\(90\) 0 0
\(91\) −1.40375e24 −0.456324
\(92\) −4.92714e24 −1.39716
\(93\) 1.71608e24 0.425109
\(94\) −9.07673e24 −1.96712
\(95\) 0 0
\(96\) 3.50498e24 0.583842
\(97\) 3.52916e24 0.516445 0.258223 0.966085i \(-0.416863\pi\)
0.258223 + 0.966085i \(0.416863\pi\)
\(98\) 1.07823e25 1.38799
\(99\) 5.23572e24 0.593658
\(100\) 0 0
\(101\) −1.04249e25 −0.920570 −0.460285 0.887771i \(-0.652253\pi\)
−0.460285 + 0.887771i \(0.652253\pi\)
\(102\) 1.52399e25 1.18981
\(103\) −1.55473e25 −1.07446 −0.537230 0.843436i \(-0.680529\pi\)
−0.537230 + 0.843436i \(0.680529\pi\)
\(104\) 1.96085e25 1.20096
\(105\) 0 0
\(106\) 5.50762e25 2.65852
\(107\) −3.91524e25 −1.68059 −0.840294 0.542131i \(-0.817618\pi\)
−0.840294 + 0.542131i \(0.817618\pi\)
\(108\) −4.05911e25 −1.55108
\(109\) 1.97006e25 0.670886 0.335443 0.942060i \(-0.391114\pi\)
0.335443 + 0.942060i \(0.391114\pi\)
\(110\) 0 0
\(111\) 8.45735e24 0.229455
\(112\) −2.14239e23 −0.00519604
\(113\) 4.21994e25 0.915853 0.457926 0.888990i \(-0.348592\pi\)
0.457926 + 0.888990i \(0.348592\pi\)
\(114\) 2.49069e25 0.484183
\(115\) 0 0
\(116\) 1.71047e26 2.67542
\(117\) 5.76251e25 0.809634
\(118\) −1.97963e26 −2.50068
\(119\) −4.21416e25 −0.479043
\(120\) 0 0
\(121\) −2.24143e25 −0.206875
\(122\) −7.16264e25 −0.596452
\(123\) −4.30717e25 −0.323875
\(124\) 1.74626e26 1.18669
\(125\) 0 0
\(126\) 7.27479e25 0.404752
\(127\) −1.11228e26 −0.560619 −0.280310 0.959910i \(-0.590437\pi\)
−0.280310 + 0.959910i \(0.590437\pi\)
\(128\) 3.51771e26 1.60744
\(129\) −2.11318e26 −0.876122
\(130\) 0 0
\(131\) 2.15522e26 0.737227 0.368613 0.929583i \(-0.379833\pi\)
0.368613 + 0.929583i \(0.379833\pi\)
\(132\) −2.66470e26 −0.828845
\(133\) −6.88732e25 −0.194942
\(134\) 3.48500e26 0.898241
\(135\) 0 0
\(136\) 5.88660e26 1.26075
\(137\) 9.54103e26 1.86461 0.932305 0.361672i \(-0.117794\pi\)
0.932305 + 0.361672i \(0.117794\pi\)
\(138\) 4.53285e26 0.808877
\(139\) 2.71293e26 0.442337 0.221169 0.975236i \(-0.429013\pi\)
0.221169 + 0.975236i \(0.429013\pi\)
\(140\) 0 0
\(141\) 5.15324e26 0.702816
\(142\) 3.70884e26 0.463056
\(143\) 9.45790e26 1.08167
\(144\) 8.79465e24 0.00921908
\(145\) 0 0
\(146\) 3.99919e26 0.352827
\(147\) −6.12158e26 −0.495903
\(148\) 8.60608e26 0.640522
\(149\) 2.96654e26 0.202966 0.101483 0.994837i \(-0.467641\pi\)
0.101483 + 0.994837i \(0.467641\pi\)
\(150\) 0 0
\(151\) 2.46628e26 0.142834 0.0714169 0.997447i \(-0.477248\pi\)
0.0714169 + 0.997447i \(0.477248\pi\)
\(152\) 9.62063e26 0.513049
\(153\) 1.72994e27 0.849942
\(154\) 1.19400e27 0.540747
\(155\) 0 0
\(156\) −2.93281e27 −1.13038
\(157\) −6.49248e26 −0.231028 −0.115514 0.993306i \(-0.536852\pi\)
−0.115514 + 0.993306i \(0.536852\pi\)
\(158\) −8.65959e27 −2.84632
\(159\) −3.12691e27 −0.949841
\(160\) 0 0
\(161\) −1.25343e27 −0.325670
\(162\) −7.45693e26 −0.179317
\(163\) −4.33189e26 −0.0964567 −0.0482283 0.998836i \(-0.515358\pi\)
−0.0482283 + 0.998836i \(0.515358\pi\)
\(164\) −4.38291e27 −0.904097
\(165\) 0 0
\(166\) −9.18516e27 −1.62830
\(167\) 1.30454e26 0.0214536 0.0107268 0.999942i \(-0.496585\pi\)
0.0107268 + 0.999942i \(0.496585\pi\)
\(168\) −1.40541e27 −0.214505
\(169\) 3.35310e27 0.475185
\(170\) 0 0
\(171\) 2.82729e27 0.345875
\(172\) −2.15034e28 −2.44569
\(173\) −6.64872e27 −0.703335 −0.351667 0.936125i \(-0.614385\pi\)
−0.351667 + 0.936125i \(0.614385\pi\)
\(174\) −1.57359e28 −1.54891
\(175\) 0 0
\(176\) 1.44345e26 0.0123167
\(177\) 1.12392e28 0.893447
\(178\) −1.23920e28 −0.918102
\(179\) 1.37345e28 0.948749 0.474375 0.880323i \(-0.342674\pi\)
0.474375 + 0.880323i \(0.342674\pi\)
\(180\) 0 0
\(181\) −2.24199e28 −1.34788 −0.673941 0.738786i \(-0.735400\pi\)
−0.673941 + 0.738786i \(0.735400\pi\)
\(182\) 1.31413e28 0.737473
\(183\) 4.06653e27 0.213101
\(184\) 1.75087e28 0.857101
\(185\) 0 0
\(186\) −1.60652e28 −0.687026
\(187\) 2.83932e28 1.13552
\(188\) 5.24386e28 1.96191
\(189\) −1.03261e28 −0.361547
\(190\) 0 0
\(191\) −6.91841e26 −0.0212368 −0.0106184 0.999944i \(-0.503380\pi\)
−0.0106184 + 0.999944i \(0.503380\pi\)
\(192\) −3.25343e28 −0.935570
\(193\) 6.51372e28 1.75535 0.877673 0.479259i \(-0.159095\pi\)
0.877673 + 0.479259i \(0.159095\pi\)
\(194\) −3.30384e28 −0.834636
\(195\) 0 0
\(196\) −6.22923e28 −1.38431
\(197\) 4.73638e27 0.0987686 0.0493843 0.998780i \(-0.484274\pi\)
0.0493843 + 0.998780i \(0.484274\pi\)
\(198\) −4.90144e28 −0.959420
\(199\) −3.76031e28 −0.691131 −0.345565 0.938395i \(-0.612313\pi\)
−0.345565 + 0.938395i \(0.612313\pi\)
\(200\) 0 0
\(201\) −1.97858e28 −0.320925
\(202\) 9.75936e28 1.48775
\(203\) 4.35134e28 0.623623
\(204\) −8.80447e28 −1.18666
\(205\) 0 0
\(206\) 1.45547e29 1.73645
\(207\) 5.14543e28 0.577820
\(208\) 1.58868e27 0.0167975
\(209\) 4.64038e28 0.462088
\(210\) 0 0
\(211\) 2.10105e28 0.185740 0.0928700 0.995678i \(-0.470396\pi\)
0.0928700 + 0.995678i \(0.470396\pi\)
\(212\) −3.18190e29 −2.65148
\(213\) −2.10566e28 −0.165441
\(214\) 3.66527e29 2.71603
\(215\) 0 0
\(216\) 1.44242e29 0.951522
\(217\) 4.44237e28 0.276610
\(218\) −1.84428e29 −1.08423
\(219\) −2.27051e28 −0.126058
\(220\) 0 0
\(221\) 3.12500e29 1.54863
\(222\) −7.91739e28 −0.370826
\(223\) −2.96364e29 −1.31224 −0.656122 0.754655i \(-0.727804\pi\)
−0.656122 + 0.754655i \(0.727804\pi\)
\(224\) 9.07325e28 0.379894
\(225\) 0 0
\(226\) −3.95051e29 −1.48012
\(227\) 2.89017e29 1.02471 0.512354 0.858775i \(-0.328774\pi\)
0.512354 + 0.858775i \(0.328774\pi\)
\(228\) −1.43894e29 −0.482899
\(229\) 1.38694e29 0.440670 0.220335 0.975424i \(-0.429285\pi\)
0.220335 + 0.975424i \(0.429285\pi\)
\(230\) 0 0
\(231\) −6.77882e28 −0.193199
\(232\) −6.07821e29 −1.64126
\(233\) −1.00825e29 −0.258000 −0.129000 0.991645i \(-0.541177\pi\)
−0.129000 + 0.991645i \(0.541177\pi\)
\(234\) −5.39460e29 −1.30846
\(235\) 0 0
\(236\) 1.14368e30 2.49405
\(237\) 4.91641e29 1.01694
\(238\) 3.94511e29 0.774189
\(239\) −5.29180e29 −0.985438 −0.492719 0.870188i \(-0.663997\pi\)
−0.492719 + 0.870188i \(0.663997\pi\)
\(240\) 0 0
\(241\) −4.04250e28 −0.0678324 −0.0339162 0.999425i \(-0.510798\pi\)
−0.0339162 + 0.999425i \(0.510798\pi\)
\(242\) 2.09832e29 0.334333
\(243\) 6.78242e29 1.02637
\(244\) 4.13804e29 0.594870
\(245\) 0 0
\(246\) 4.03217e29 0.523420
\(247\) 5.10727e29 0.630198
\(248\) −6.20538e29 −0.727985
\(249\) 5.21480e29 0.581763
\(250\) 0 0
\(251\) 4.46094e29 0.450303 0.225151 0.974324i \(-0.427712\pi\)
0.225151 + 0.974324i \(0.427712\pi\)
\(252\) −4.20284e29 −0.403678
\(253\) 8.44510e29 0.771966
\(254\) 1.04127e30 0.906026
\(255\) 0 0
\(256\) −1.23915e30 −0.977517
\(257\) 9.74169e29 0.731931 0.365965 0.930628i \(-0.380739\pi\)
0.365965 + 0.930628i \(0.380739\pi\)
\(258\) 1.97826e30 1.41591
\(259\) 2.18933e29 0.149302
\(260\) 0 0
\(261\) −1.78625e30 −1.10646
\(262\) −2.01762e30 −1.19144
\(263\) 1.52948e30 0.861188 0.430594 0.902546i \(-0.358304\pi\)
0.430594 + 0.902546i \(0.358304\pi\)
\(264\) 9.46907e29 0.508462
\(265\) 0 0
\(266\) 6.44759e29 0.315048
\(267\) 7.03545e29 0.328020
\(268\) −2.01338e30 −0.895860
\(269\) 2.62915e29 0.111663 0.0558317 0.998440i \(-0.482219\pi\)
0.0558317 + 0.998440i \(0.482219\pi\)
\(270\) 0 0
\(271\) −2.83737e30 −1.09850 −0.549249 0.835658i \(-0.685086\pi\)
−0.549249 + 0.835658i \(0.685086\pi\)
\(272\) 4.76933e28 0.0176338
\(273\) −7.46087e29 −0.263485
\(274\) −8.93188e30 −3.01343
\(275\) 0 0
\(276\) −2.61875e30 −0.806733
\(277\) 2.96419e30 0.872788 0.436394 0.899756i \(-0.356255\pi\)
0.436394 + 0.899756i \(0.356255\pi\)
\(278\) −2.53972e30 −0.714868
\(279\) −1.82363e30 −0.490776
\(280\) 0 0
\(281\) 3.78581e30 0.931816 0.465908 0.884833i \(-0.345728\pi\)
0.465908 + 0.884833i \(0.345728\pi\)
\(282\) −4.82423e30 −1.13583
\(283\) −5.09128e30 −1.14682 −0.573412 0.819267i \(-0.694381\pi\)
−0.573412 + 0.819267i \(0.694381\pi\)
\(284\) −2.14269e30 −0.461829
\(285\) 0 0
\(286\) −8.85405e30 −1.74810
\(287\) −1.11499e30 −0.210739
\(288\) −3.72463e30 −0.674027
\(289\) 3.61083e30 0.625727
\(290\) 0 0
\(291\) 1.87573e30 0.298200
\(292\) −2.31044e30 −0.351891
\(293\) 6.28617e30 0.917362 0.458681 0.888601i \(-0.348322\pi\)
0.458681 + 0.888601i \(0.348322\pi\)
\(294\) 5.73074e30 0.801437
\(295\) 0 0
\(296\) −3.05820e30 −0.392933
\(297\) 6.95730e30 0.857008
\(298\) −2.77714e30 −0.328016
\(299\) 9.29481e30 1.05281
\(300\) 0 0
\(301\) −5.47033e30 −0.570075
\(302\) −2.30882e30 −0.230836
\(303\) −5.54080e30 −0.531544
\(304\) 7.79464e28 0.00717590
\(305\) 0 0
\(306\) −1.61949e31 −1.37360
\(307\) −1.10314e30 −0.0898261 −0.0449130 0.998991i \(-0.514301\pi\)
−0.0449130 + 0.998991i \(0.514301\pi\)
\(308\) −6.89803e30 −0.539313
\(309\) −8.26332e30 −0.620402
\(310\) 0 0
\(311\) 2.41872e31 1.67525 0.837627 0.546242i \(-0.183942\pi\)
0.837627 + 0.546242i \(0.183942\pi\)
\(312\) 1.04218e31 0.693443
\(313\) 1.66307e31 1.06318 0.531589 0.847002i \(-0.321595\pi\)
0.531589 + 0.847002i \(0.321595\pi\)
\(314\) 6.07797e30 0.373369
\(315\) 0 0
\(316\) 5.00287e31 2.83877
\(317\) −2.91127e31 −1.58797 −0.793984 0.607939i \(-0.791997\pi\)
−0.793984 + 0.607939i \(0.791997\pi\)
\(318\) 2.92727e31 1.53505
\(319\) −2.93174e31 −1.47823
\(320\) 0 0
\(321\) −2.08093e31 −0.970385
\(322\) 1.17341e31 0.526321
\(323\) 1.53324e31 0.661573
\(324\) 4.30806e30 0.178842
\(325\) 0 0
\(326\) 4.05532e30 0.155885
\(327\) 1.04708e31 0.387375
\(328\) 1.55748e31 0.554625
\(329\) 1.33401e31 0.457308
\(330\) 0 0
\(331\) 1.93746e31 0.615719 0.307860 0.951432i \(-0.400387\pi\)
0.307860 + 0.951432i \(0.400387\pi\)
\(332\) 5.30651e31 1.62399
\(333\) −8.98737e30 −0.264899
\(334\) −1.22125e30 −0.0346715
\(335\) 0 0
\(336\) −1.13867e29 −0.00300024
\(337\) −2.56947e30 −0.0652335 −0.0326167 0.999468i \(-0.510384\pi\)
−0.0326167 + 0.999468i \(0.510384\pi\)
\(338\) −3.13902e31 −0.767954
\(339\) 2.24287e31 0.528821
\(340\) 0 0
\(341\) −2.99308e31 −0.655675
\(342\) −2.64678e31 −0.558974
\(343\) −3.42981e31 −0.698383
\(344\) 7.64129e31 1.50033
\(345\) 0 0
\(346\) 6.22423e31 1.13667
\(347\) −3.68925e31 −0.649860 −0.324930 0.945738i \(-0.605341\pi\)
−0.324930 + 0.945738i \(0.605341\pi\)
\(348\) 9.09106e31 1.54481
\(349\) 8.90327e31 1.45959 0.729796 0.683665i \(-0.239615\pi\)
0.729796 + 0.683665i \(0.239615\pi\)
\(350\) 0 0
\(351\) 7.65731e31 1.16879
\(352\) −6.11317e31 −0.900499
\(353\) −1.18792e32 −1.68890 −0.844448 0.535638i \(-0.820071\pi\)
−0.844448 + 0.535638i \(0.820071\pi\)
\(354\) −1.05216e32 −1.44391
\(355\) 0 0
\(356\) 7.15917e31 0.915668
\(357\) −2.23980e31 −0.276603
\(358\) −1.28577e32 −1.53329
\(359\) −3.43106e31 −0.395137 −0.197569 0.980289i \(-0.563305\pi\)
−0.197569 + 0.980289i \(0.563305\pi\)
\(360\) 0 0
\(361\) −6.80184e31 −0.730780
\(362\) 2.09885e32 2.17833
\(363\) −1.19130e31 −0.119451
\(364\) −7.59208e31 −0.735518
\(365\) 0 0
\(366\) −3.80690e31 −0.344396
\(367\) −1.81832e32 −1.58981 −0.794904 0.606735i \(-0.792479\pi\)
−0.794904 + 0.606735i \(0.792479\pi\)
\(368\) 1.41856e30 0.0119881
\(369\) 4.57710e31 0.373904
\(370\) 0 0
\(371\) −8.09454e31 −0.618043
\(372\) 9.28126e31 0.685205
\(373\) −4.57515e31 −0.326621 −0.163311 0.986575i \(-0.552217\pi\)
−0.163311 + 0.986575i \(0.552217\pi\)
\(374\) −2.65804e32 −1.83513
\(375\) 0 0
\(376\) −1.86342e32 −1.20355
\(377\) −3.22672e32 −2.01602
\(378\) 9.66685e31 0.584302
\(379\) −5.21676e31 −0.305078 −0.152539 0.988297i \(-0.548745\pi\)
−0.152539 + 0.988297i \(0.548745\pi\)
\(380\) 0 0
\(381\) −5.91171e31 −0.323706
\(382\) 6.47670e30 0.0343212
\(383\) 1.65045e32 0.846481 0.423240 0.906017i \(-0.360893\pi\)
0.423240 + 0.906017i \(0.360893\pi\)
\(384\) 1.86964e32 0.928149
\(385\) 0 0
\(386\) −6.09785e32 −2.83684
\(387\) 2.24561e32 1.01146
\(388\) 1.90871e32 0.832423
\(389\) 2.98846e32 1.26205 0.631025 0.775762i \(-0.282634\pi\)
0.631025 + 0.775762i \(0.282634\pi\)
\(390\) 0 0
\(391\) 2.79036e32 1.10523
\(392\) 2.21358e32 0.849217
\(393\) 1.14549e32 0.425681
\(394\) −4.43399e31 −0.159622
\(395\) 0 0
\(396\) 2.83169e32 0.956877
\(397\) 3.98902e32 1.30612 0.653062 0.757304i \(-0.273484\pi\)
0.653062 + 0.757304i \(0.273484\pi\)
\(398\) 3.52023e32 1.11695
\(399\) −3.66057e31 −0.112561
\(400\) 0 0
\(401\) 1.04555e32 0.302024 0.151012 0.988532i \(-0.451747\pi\)
0.151012 + 0.988532i \(0.451747\pi\)
\(402\) 1.85226e32 0.518651
\(403\) −3.29423e32 −0.894213
\(404\) −5.63824e32 −1.48380
\(405\) 0 0
\(406\) −4.07352e32 −1.00785
\(407\) −1.47508e32 −0.353904
\(408\) 3.12869e32 0.727966
\(409\) 5.94901e32 1.34247 0.671234 0.741246i \(-0.265765\pi\)
0.671234 + 0.741246i \(0.265765\pi\)
\(410\) 0 0
\(411\) 5.07100e32 1.07664
\(412\) −8.40864e32 −1.73185
\(413\) 2.90946e32 0.581349
\(414\) −4.81692e32 −0.933825
\(415\) 0 0
\(416\) −6.72825e32 −1.22810
\(417\) 1.44191e32 0.255409
\(418\) −4.34411e32 −0.746788
\(419\) −1.11614e33 −1.86227 −0.931136 0.364671i \(-0.881181\pi\)
−0.931136 + 0.364671i \(0.881181\pi\)
\(420\) 0 0
\(421\) −4.92553e32 −0.774331 −0.387166 0.922010i \(-0.626546\pi\)
−0.387166 + 0.922010i \(0.626546\pi\)
\(422\) −1.96691e32 −0.300177
\(423\) −5.47619e32 −0.811379
\(424\) 1.13070e33 1.62657
\(425\) 0 0
\(426\) 1.97123e32 0.267372
\(427\) 1.05269e32 0.138661
\(428\) −2.11752e33 −2.70883
\(429\) 5.02682e32 0.624564
\(430\) 0 0
\(431\) −4.71497e31 −0.0552730 −0.0276365 0.999618i \(-0.508798\pi\)
−0.0276365 + 0.999618i \(0.508798\pi\)
\(432\) 1.16865e31 0.0133087
\(433\) 3.61224e30 0.00399648 0.00199824 0.999998i \(-0.499364\pi\)
0.00199824 + 0.999998i \(0.499364\pi\)
\(434\) −4.15875e32 −0.447034
\(435\) 0 0
\(436\) 1.06549e33 1.08136
\(437\) 4.56036e32 0.449760
\(438\) 2.12555e32 0.203725
\(439\) 3.57029e32 0.332580 0.166290 0.986077i \(-0.446821\pi\)
0.166290 + 0.986077i \(0.446821\pi\)
\(440\) 0 0
\(441\) 6.50522e32 0.572505
\(442\) −2.92549e33 −2.50276
\(443\) 1.54821e33 1.28761 0.643805 0.765190i \(-0.277355\pi\)
0.643805 + 0.765190i \(0.277355\pi\)
\(444\) 4.57408e32 0.369842
\(445\) 0 0
\(446\) 2.77442e33 2.12074
\(447\) 1.57670e32 0.117194
\(448\) −8.42208e32 −0.608757
\(449\) 2.49721e33 1.75540 0.877701 0.479209i \(-0.159076\pi\)
0.877701 + 0.479209i \(0.159076\pi\)
\(450\) 0 0
\(451\) 7.51230e32 0.499535
\(452\) 2.28232e33 1.47620
\(453\) 1.31082e32 0.0824734
\(454\) −2.70564e33 −1.65605
\(455\) 0 0
\(456\) 5.11331e32 0.296238
\(457\) 3.97112e32 0.223851 0.111926 0.993717i \(-0.464298\pi\)
0.111926 + 0.993717i \(0.464298\pi\)
\(458\) −1.29839e33 −0.712174
\(459\) 2.29878e33 1.22698
\(460\) 0 0
\(461\) −8.07920e32 −0.408420 −0.204210 0.978927i \(-0.565463\pi\)
−0.204210 + 0.978927i \(0.565463\pi\)
\(462\) 6.34602e32 0.312232
\(463\) 9.97158e32 0.477531 0.238766 0.971077i \(-0.423257\pi\)
0.238766 + 0.971077i \(0.423257\pi\)
\(464\) −4.92457e31 −0.0229559
\(465\) 0 0
\(466\) 9.43880e32 0.416959
\(467\) 3.43650e33 1.47793 0.738967 0.673742i \(-0.235314\pi\)
0.738967 + 0.673742i \(0.235314\pi\)
\(468\) 3.11660e33 1.30499
\(469\) −5.12190e32 −0.208819
\(470\) 0 0
\(471\) −3.45072e32 −0.133398
\(472\) −4.06411e33 −1.53000
\(473\) 3.68567e33 1.35130
\(474\) −4.60252e33 −1.64349
\(475\) 0 0
\(476\) −2.27919e33 −0.772136
\(477\) 3.32287e33 1.09656
\(478\) 4.95394e33 1.59258
\(479\) 4.30103e33 1.34704 0.673518 0.739171i \(-0.264782\pi\)
0.673518 + 0.739171i \(0.264782\pi\)
\(480\) 0 0
\(481\) −1.62350e33 −0.482656
\(482\) 3.78440e32 0.109625
\(483\) −6.66193e32 −0.188045
\(484\) −1.21225e33 −0.333447
\(485\) 0 0
\(486\) −6.34939e33 −1.65874
\(487\) −1.77385e33 −0.451654 −0.225827 0.974167i \(-0.572508\pi\)
−0.225827 + 0.974167i \(0.572508\pi\)
\(488\) −1.47047e33 −0.364928
\(489\) −2.30237e32 −0.0556948
\(490\) 0 0
\(491\) 7.59245e33 1.74527 0.872637 0.488370i \(-0.162408\pi\)
0.872637 + 0.488370i \(0.162408\pi\)
\(492\) −2.32949e33 −0.522033
\(493\) −9.68683e33 −2.11639
\(494\) −4.78120e33 −1.01847
\(495\) 0 0
\(496\) −5.02760e31 −0.0101822
\(497\) −5.45088e32 −0.107649
\(498\) −4.88186e33 −0.940196
\(499\) 2.93681e33 0.551593 0.275797 0.961216i \(-0.411058\pi\)
0.275797 + 0.961216i \(0.411058\pi\)
\(500\) 0 0
\(501\) 6.93353e31 0.0123875
\(502\) −4.17613e33 −0.727742
\(503\) 4.24338e33 0.721294 0.360647 0.932702i \(-0.382556\pi\)
0.360647 + 0.932702i \(0.382556\pi\)
\(504\) 1.49349e33 0.247640
\(505\) 0 0
\(506\) −7.90592e33 −1.24759
\(507\) 1.78215e33 0.274376
\(508\) −6.01567e33 −0.903624
\(509\) 2.39447e33 0.350943 0.175472 0.984484i \(-0.443855\pi\)
0.175472 + 0.984484i \(0.443855\pi\)
\(510\) 0 0
\(511\) −5.87761e32 −0.0820237
\(512\) −2.03101e32 −0.0276591
\(513\) 3.75695e33 0.499307
\(514\) −9.11972e33 −1.18289
\(515\) 0 0
\(516\) −1.14289e34 −1.41216
\(517\) −8.98796e33 −1.08400
\(518\) −2.04955e33 −0.241289
\(519\) −3.53376e33 −0.406111
\(520\) 0 0
\(521\) 8.32276e33 0.911582 0.455791 0.890087i \(-0.349356\pi\)
0.455791 + 0.890087i \(0.349356\pi\)
\(522\) 1.67221e34 1.78817
\(523\) −1.32749e34 −1.38599 −0.692993 0.720944i \(-0.743708\pi\)
−0.692993 + 0.720944i \(0.743708\pi\)
\(524\) 1.16563e34 1.18829
\(525\) 0 0
\(526\) −1.43183e34 −1.39178
\(527\) −9.88950e33 −0.938732
\(528\) 7.67185e31 0.00711174
\(529\) −2.74629e33 −0.248629
\(530\) 0 0
\(531\) −1.19435e34 −1.03146
\(532\) −3.72494e33 −0.314213
\(533\) 8.26815e33 0.681269
\(534\) −6.58627e33 −0.530119
\(535\) 0 0
\(536\) 7.15459e33 0.549572
\(537\) 7.29983e33 0.547815
\(538\) −2.46129e33 −0.180461
\(539\) 1.06769e34 0.764865
\(540\) 0 0
\(541\) 1.45952e34 0.998260 0.499130 0.866527i \(-0.333653\pi\)
0.499130 + 0.866527i \(0.333653\pi\)
\(542\) 2.65622e34 1.77530
\(543\) −1.19160e34 −0.778277
\(544\) −2.01986e34 −1.28925
\(545\) 0 0
\(546\) 6.98453e33 0.425823
\(547\) −3.28646e34 −1.95834 −0.979168 0.203054i \(-0.934913\pi\)
−0.979168 + 0.203054i \(0.934913\pi\)
\(548\) 5.16018e34 3.00544
\(549\) −4.32138e33 −0.246019
\(550\) 0 0
\(551\) −1.58314e34 −0.861242
\(552\) 9.30579e33 0.494897
\(553\) 1.27270e34 0.661701
\(554\) −2.77494e34 −1.41053
\(555\) 0 0
\(556\) 1.46726e34 0.712973
\(557\) 2.79942e34 1.33008 0.665042 0.746806i \(-0.268414\pi\)
0.665042 + 0.746806i \(0.268414\pi\)
\(558\) 1.70720e34 0.793151
\(559\) 4.05651e34 1.84291
\(560\) 0 0
\(561\) 1.50908e34 0.655658
\(562\) −3.54410e34 −1.50592
\(563\) −2.94294e34 −1.22300 −0.611500 0.791244i \(-0.709434\pi\)
−0.611500 + 0.791244i \(0.709434\pi\)
\(564\) 2.78708e34 1.13282
\(565\) 0 0
\(566\) 4.76623e34 1.85340
\(567\) 1.09594e33 0.0416869
\(568\) 7.61413e33 0.283313
\(569\) 1.44033e34 0.524275 0.262137 0.965031i \(-0.415573\pi\)
0.262137 + 0.965031i \(0.415573\pi\)
\(570\) 0 0
\(571\) −6.02200e33 −0.209792 −0.104896 0.994483i \(-0.533451\pi\)
−0.104896 + 0.994483i \(0.533451\pi\)
\(572\) 5.11522e34 1.74347
\(573\) −3.67710e32 −0.0122623
\(574\) 1.04380e34 0.340579
\(575\) 0 0
\(576\) 3.45732e34 1.08009
\(577\) −3.36622e34 −1.02907 −0.514534 0.857470i \(-0.672035\pi\)
−0.514534 + 0.857470i \(0.672035\pi\)
\(578\) −3.38030e34 −1.01125
\(579\) 3.46201e34 1.01355
\(580\) 0 0
\(581\) 1.34994e34 0.378542
\(582\) −1.75597e34 −0.481925
\(583\) 5.45376e34 1.46500
\(584\) 8.21021e33 0.215871
\(585\) 0 0
\(586\) −5.88482e34 −1.48256
\(587\) −2.29972e34 −0.567152 −0.283576 0.958950i \(-0.591521\pi\)
−0.283576 + 0.958950i \(0.591521\pi\)
\(588\) −3.31080e34 −0.799312
\(589\) −1.61627e34 −0.382007
\(590\) 0 0
\(591\) 2.51736e33 0.0570298
\(592\) −2.47775e32 −0.00549587
\(593\) −2.56446e34 −0.556945 −0.278472 0.960444i \(-0.589828\pi\)
−0.278472 + 0.960444i \(0.589828\pi\)
\(594\) −6.51311e34 −1.38503
\(595\) 0 0
\(596\) 1.60443e34 0.327146
\(597\) −1.99858e34 −0.399064
\(598\) −8.70138e34 −1.70147
\(599\) −6.53223e34 −1.25091 −0.625455 0.780260i \(-0.715087\pi\)
−0.625455 + 0.780260i \(0.715087\pi\)
\(600\) 0 0
\(601\) 1.46105e34 0.268370 0.134185 0.990956i \(-0.457158\pi\)
0.134185 + 0.990956i \(0.457158\pi\)
\(602\) 5.12107e34 0.921308
\(603\) 2.10258e34 0.370498
\(604\) 1.33387e34 0.230224
\(605\) 0 0
\(606\) 5.18704e34 0.859038
\(607\) −1.63446e34 −0.265165 −0.132582 0.991172i \(-0.542327\pi\)
−0.132582 + 0.991172i \(0.542327\pi\)
\(608\) −3.30112e34 −0.524646
\(609\) 2.31271e34 0.360085
\(610\) 0 0
\(611\) −9.89229e34 −1.47837
\(612\) 9.35625e34 1.36996
\(613\) −6.22253e34 −0.892712 −0.446356 0.894855i \(-0.647278\pi\)
−0.446356 + 0.894855i \(0.647278\pi\)
\(614\) 1.03271e34 0.145169
\(615\) 0 0
\(616\) 2.45124e34 0.330846
\(617\) 4.34980e34 0.575314 0.287657 0.957733i \(-0.407124\pi\)
0.287657 + 0.957733i \(0.407124\pi\)
\(618\) 7.73574e34 1.00264
\(619\) −1.76940e34 −0.224747 −0.112373 0.993666i \(-0.535845\pi\)
−0.112373 + 0.993666i \(0.535845\pi\)
\(620\) 0 0
\(621\) 6.83733e34 0.834145
\(622\) −2.26430e35 −2.70741
\(623\) 1.82125e34 0.213437
\(624\) 8.44376e32 0.00969903
\(625\) 0 0
\(626\) −1.55689e35 −1.71822
\(627\) 2.46633e34 0.266813
\(628\) −3.51140e34 −0.372379
\(629\) −4.87384e34 −0.506685
\(630\) 0 0
\(631\) 1.04208e35 1.04120 0.520601 0.853800i \(-0.325708\pi\)
0.520601 + 0.853800i \(0.325708\pi\)
\(632\) −1.77778e35 −1.74147
\(633\) 1.11669e34 0.107248
\(634\) 2.72540e35 2.56634
\(635\) 0 0
\(636\) −1.69116e35 −1.53098
\(637\) 1.17511e35 1.04313
\(638\) 2.74457e35 2.38899
\(639\) 2.23762e34 0.190997
\(640\) 0 0
\(641\) −8.19994e34 −0.673109 −0.336555 0.941664i \(-0.609262\pi\)
−0.336555 + 0.941664i \(0.609262\pi\)
\(642\) 1.94807e35 1.56825
\(643\) −5.73324e34 −0.452650 −0.226325 0.974052i \(-0.572671\pi\)
−0.226325 + 0.974052i \(0.572671\pi\)
\(644\) −6.77908e34 −0.524925
\(645\) 0 0
\(646\) −1.43535e35 −1.06918
\(647\) 1.81756e35 1.32796 0.663979 0.747751i \(-0.268866\pi\)
0.663979 + 0.747751i \(0.268866\pi\)
\(648\) −1.53088e34 −0.109712
\(649\) −1.96027e35 −1.37803
\(650\) 0 0
\(651\) 2.36110e34 0.159717
\(652\) −2.34286e34 −0.155472
\(653\) 1.90602e35 1.24083 0.620415 0.784274i \(-0.286964\pi\)
0.620415 + 0.784274i \(0.286964\pi\)
\(654\) −9.80226e34 −0.626043
\(655\) 0 0
\(656\) 1.26187e33 0.00775742
\(657\) 2.41280e34 0.145531
\(658\) −1.24884e35 −0.739064
\(659\) −6.08809e34 −0.353520 −0.176760 0.984254i \(-0.556562\pi\)
−0.176760 + 0.984254i \(0.556562\pi\)
\(660\) 0 0
\(661\) −2.17257e35 −1.21466 −0.607332 0.794448i \(-0.707760\pi\)
−0.607332 + 0.794448i \(0.707760\pi\)
\(662\) −1.81376e35 −0.995074
\(663\) 1.66092e35 0.894190
\(664\) −1.88568e35 −0.996249
\(665\) 0 0
\(666\) 8.41357e34 0.428107
\(667\) −2.88119e35 −1.43879
\(668\) 7.05547e33 0.0345796
\(669\) −1.57516e35 −0.757700
\(670\) 0 0
\(671\) −7.09259e34 −0.328680
\(672\) 4.82238e34 0.219354
\(673\) 7.80776e34 0.348609 0.174304 0.984692i \(-0.444232\pi\)
0.174304 + 0.984692i \(0.444232\pi\)
\(674\) 2.40542e34 0.105425
\(675\) 0 0
\(676\) 1.81349e35 0.765918
\(677\) 2.43537e35 1.00973 0.504866 0.863198i \(-0.331542\pi\)
0.504866 + 0.863198i \(0.331542\pi\)
\(678\) −2.09968e35 −0.854636
\(679\) 4.85565e34 0.194033
\(680\) 0 0
\(681\) 1.53611e35 0.591674
\(682\) 2.80199e35 1.05965
\(683\) −4.30905e35 −1.60001 −0.800004 0.599994i \(-0.795170\pi\)
−0.800004 + 0.599994i \(0.795170\pi\)
\(684\) 1.52912e35 0.557492
\(685\) 0 0
\(686\) 3.21083e35 1.12867
\(687\) 7.37149e34 0.254446
\(688\) 6.19098e33 0.0209848
\(689\) 6.00249e35 1.99798
\(690\) 0 0
\(691\) 2.98951e35 0.959675 0.479838 0.877357i \(-0.340696\pi\)
0.479838 + 0.877357i \(0.340696\pi\)
\(692\) −3.59590e35 −1.13366
\(693\) 7.20364e34 0.223042
\(694\) 3.45371e35 1.05025
\(695\) 0 0
\(696\) −3.23053e35 −0.947674
\(697\) 2.48215e35 0.715186
\(698\) −8.33483e35 −2.35887
\(699\) −5.35880e34 −0.148971
\(700\) 0 0
\(701\) −5.64961e35 −1.51546 −0.757728 0.652570i \(-0.773691\pi\)
−0.757728 + 0.652570i \(0.773691\pi\)
\(702\) −7.16843e35 −1.88890
\(703\) −7.96544e34 −0.206190
\(704\) 5.67444e35 1.44299
\(705\) 0 0
\(706\) 1.11208e36 2.72945
\(707\) −1.43433e35 −0.345866
\(708\) 6.07861e35 1.44009
\(709\) −3.85512e35 −0.897345 −0.448672 0.893696i \(-0.648103\pi\)
−0.448672 + 0.893696i \(0.648103\pi\)
\(710\) 0 0
\(711\) −5.22452e35 −1.17402
\(712\) −2.54403e35 −0.561724
\(713\) −2.94147e35 −0.638183
\(714\) 2.09680e35 0.447023
\(715\) 0 0
\(716\) 7.42821e35 1.52922
\(717\) −2.81256e35 −0.569000
\(718\) 3.21200e35 0.638588
\(719\) −9.36871e35 −1.83050 −0.915248 0.402892i \(-0.868005\pi\)
−0.915248 + 0.402892i \(0.868005\pi\)
\(720\) 0 0
\(721\) −2.13910e35 −0.403684
\(722\) 6.36757e35 1.18102
\(723\) −2.14856e34 −0.0391669
\(724\) −1.21256e36 −2.17256
\(725\) 0 0
\(726\) 1.11525e35 0.193047
\(727\) 3.25564e35 0.553931 0.276966 0.960880i \(-0.410671\pi\)
0.276966 + 0.960880i \(0.410671\pi\)
\(728\) 2.69787e35 0.451210
\(729\) 2.92991e35 0.481681
\(730\) 0 0
\(731\) 1.21779e36 1.93466
\(732\) 2.19935e35 0.343483
\(733\) 2.07689e35 0.318870 0.159435 0.987208i \(-0.449033\pi\)
0.159435 + 0.987208i \(0.449033\pi\)
\(734\) 1.70223e36 2.56931
\(735\) 0 0
\(736\) −6.00776e35 −0.876475
\(737\) 3.45092e35 0.494984
\(738\) −4.28487e35 −0.604273
\(739\) −1.12620e36 −1.56156 −0.780781 0.624805i \(-0.785179\pi\)
−0.780781 + 0.624805i \(0.785179\pi\)
\(740\) 0 0
\(741\) 2.71449e35 0.363881
\(742\) 7.57774e35 0.998829
\(743\) 7.41657e35 0.961264 0.480632 0.876922i \(-0.340407\pi\)
0.480632 + 0.876922i \(0.340407\pi\)
\(744\) −3.29812e35 −0.420344
\(745\) 0 0
\(746\) 4.28304e35 0.527858
\(747\) −5.54161e35 −0.671628
\(748\) 1.53562e36 1.83027
\(749\) −5.38685e35 −0.631411
\(750\) 0 0
\(751\) −9.24971e35 −1.04865 −0.524323 0.851520i \(-0.675681\pi\)
−0.524323 + 0.851520i \(0.675681\pi\)
\(752\) −1.50975e34 −0.0168338
\(753\) 2.37096e35 0.260008
\(754\) 3.02071e36 3.25812
\(755\) 0 0
\(756\) −5.58479e35 −0.582753
\(757\) −2.20319e35 −0.226127 −0.113064 0.993588i \(-0.536066\pi\)
−0.113064 + 0.993588i \(0.536066\pi\)
\(758\) 4.88369e35 0.493041
\(759\) 4.48852e35 0.445739
\(760\) 0 0
\(761\) −3.87186e35 −0.372059 −0.186029 0.982544i \(-0.559562\pi\)
−0.186029 + 0.982544i \(0.559562\pi\)
\(762\) 5.53427e35 0.523147
\(763\) 2.71054e35 0.252057
\(764\) −3.74176e34 −0.0342302
\(765\) 0 0
\(766\) −1.54507e36 −1.36801
\(767\) −2.15750e36 −1.87936
\(768\) −6.58601e35 −0.564426
\(769\) −5.73844e35 −0.483854 −0.241927 0.970294i \(-0.577779\pi\)
−0.241927 + 0.970294i \(0.577779\pi\)
\(770\) 0 0
\(771\) 5.17765e35 0.422623
\(772\) 3.52289e36 2.82932
\(773\) 1.94109e35 0.153392 0.0766959 0.997055i \(-0.475563\pi\)
0.0766959 + 0.997055i \(0.475563\pi\)
\(774\) −2.10224e36 −1.63463
\(775\) 0 0
\(776\) −6.78267e35 −0.510657
\(777\) 1.16362e35 0.0862080
\(778\) −2.79766e36 −2.03962
\(779\) 4.05665e35 0.291038
\(780\) 0 0
\(781\) 3.67257e35 0.255171
\(782\) −2.61221e36 −1.78617
\(783\) −2.37360e36 −1.59730
\(784\) 1.79344e34 0.0118778
\(785\) 0 0
\(786\) −1.07235e36 −0.687949
\(787\) 7.50226e35 0.473705 0.236852 0.971546i \(-0.423884\pi\)
0.236852 + 0.971546i \(0.423884\pi\)
\(788\) 2.56163e35 0.159198
\(789\) 8.12912e35 0.497257
\(790\) 0 0
\(791\) 5.80607e35 0.344093
\(792\) −1.00625e36 −0.587004
\(793\) −7.80622e35 −0.448256
\(794\) −3.73434e36 −2.11085
\(795\) 0 0
\(796\) −2.03373e36 −1.11399
\(797\) −2.78320e36 −1.50077 −0.750387 0.660998i \(-0.770133\pi\)
−0.750387 + 0.660998i \(0.770133\pi\)
\(798\) 3.42686e35 0.181911
\(799\) −2.96973e36 −1.55197
\(800\) 0 0
\(801\) −7.47636e35 −0.378690
\(802\) −9.78801e35 −0.488107
\(803\) 3.96008e35 0.194429
\(804\) −1.07010e36 −0.517276
\(805\) 0 0
\(806\) 3.08391e36 1.44515
\(807\) 1.39738e35 0.0644754
\(808\) 2.00357e36 0.910252
\(809\) 2.84960e36 1.27476 0.637379 0.770550i \(-0.280018\pi\)
0.637379 + 0.770550i \(0.280018\pi\)
\(810\) 0 0
\(811\) −2.18452e36 −0.947535 −0.473767 0.880650i \(-0.657106\pi\)
−0.473767 + 0.880650i \(0.657106\pi\)
\(812\) 2.35338e36 1.00518
\(813\) −1.50804e36 −0.634282
\(814\) 1.38090e36 0.571950
\(815\) 0 0
\(816\) 2.53487e34 0.0101819
\(817\) 1.99027e36 0.787291
\(818\) −5.56920e36 −2.16958
\(819\) 7.92844e35 0.304186
\(820\) 0 0
\(821\) −3.44892e36 −1.28349 −0.641746 0.766917i \(-0.721790\pi\)
−0.641746 + 0.766917i \(0.721790\pi\)
\(822\) −4.74724e36 −1.73998
\(823\) −6.75510e35 −0.243856 −0.121928 0.992539i \(-0.538908\pi\)
−0.121928 + 0.992539i \(0.538908\pi\)
\(824\) 2.98803e36 1.06242
\(825\) 0 0
\(826\) −2.72370e36 −0.939527
\(827\) 1.98402e36 0.674105 0.337053 0.941486i \(-0.390570\pi\)
0.337053 + 0.941486i \(0.390570\pi\)
\(828\) 2.78286e36 0.931349
\(829\) 1.25430e36 0.413496 0.206748 0.978394i \(-0.433712\pi\)
0.206748 + 0.978394i \(0.433712\pi\)
\(830\) 0 0
\(831\) 1.57545e36 0.503955
\(832\) 6.24537e36 1.96796
\(833\) 3.52777e36 1.09506
\(834\) −1.34985e36 −0.412771
\(835\) 0 0
\(836\) 2.50971e36 0.744808
\(837\) −2.42326e36 −0.708487
\(838\) 1.04488e37 3.00965
\(839\) 3.59072e36 1.01896 0.509480 0.860483i \(-0.329838\pi\)
0.509480 + 0.860483i \(0.329838\pi\)
\(840\) 0 0
\(841\) 6.37178e36 1.75514
\(842\) 4.61106e36 1.25141
\(843\) 2.01214e36 0.538038
\(844\) 1.13633e36 0.299381
\(845\) 0 0
\(846\) 5.12656e36 1.31128
\(847\) −3.08390e35 −0.0777245
\(848\) 9.16091e34 0.0227505
\(849\) −2.70599e36 −0.662185
\(850\) 0 0
\(851\) −1.44964e36 −0.344462
\(852\) −1.13883e36 −0.266664
\(853\) 4.77260e35 0.110127 0.0550633 0.998483i \(-0.482464\pi\)
0.0550633 + 0.998483i \(0.482464\pi\)
\(854\) −9.85483e35 −0.224092
\(855\) 0 0
\(856\) 7.52468e36 1.66175
\(857\) −3.37504e36 −0.734545 −0.367272 0.930113i \(-0.619708\pi\)
−0.367272 + 0.930113i \(0.619708\pi\)
\(858\) −4.70588e36 −1.00937
\(859\) 4.53153e36 0.957923 0.478961 0.877836i \(-0.341013\pi\)
0.478961 + 0.877836i \(0.341013\pi\)
\(860\) 0 0
\(861\) −5.92608e35 −0.121683
\(862\) 4.41394e35 0.0893276
\(863\) −2.57027e36 −0.512677 −0.256338 0.966587i \(-0.582516\pi\)
−0.256338 + 0.966587i \(0.582516\pi\)
\(864\) −4.94935e36 −0.973030
\(865\) 0 0
\(866\) −3.38162e34 −0.00645878
\(867\) 1.91914e36 0.361299
\(868\) 2.40262e36 0.445849
\(869\) −8.57490e36 −1.56849
\(870\) 0 0
\(871\) 3.79814e36 0.675062
\(872\) −3.78625e36 −0.663366
\(873\) −1.99328e36 −0.344262
\(874\) −4.26920e36 −0.726865
\(875\) 0 0
\(876\) −1.22798e36 −0.203185
\(877\) 1.02943e37 1.67919 0.839595 0.543213i \(-0.182792\pi\)
0.839595 + 0.543213i \(0.182792\pi\)
\(878\) −3.34234e36 −0.537488
\(879\) 3.34106e36 0.529692
\(880\) 0 0
\(881\) −1.32860e36 −0.204737 −0.102369 0.994747i \(-0.532642\pi\)
−0.102369 + 0.994747i \(0.532642\pi\)
\(882\) −6.08989e36 −0.925235
\(883\) 8.24109e36 1.23446 0.617228 0.786784i \(-0.288255\pi\)
0.617228 + 0.786784i \(0.288255\pi\)
\(884\) 1.69013e37 2.49613
\(885\) 0 0
\(886\) −1.44937e37 −2.08093
\(887\) −2.45432e36 −0.347445 −0.173722 0.984795i \(-0.555579\pi\)
−0.173722 + 0.984795i \(0.555579\pi\)
\(888\) −1.62541e36 −0.226883
\(889\) −1.53035e36 −0.210629
\(890\) 0 0
\(891\) −7.38400e35 −0.0988144
\(892\) −1.60286e37 −2.11512
\(893\) −4.85351e36 −0.631557
\(894\) −1.47604e36 −0.189399
\(895\) 0 0
\(896\) 4.83989e36 0.603928
\(897\) 4.94014e36 0.607902
\(898\) −2.33778e37 −2.83693
\(899\) 1.02114e37 1.22205
\(900\) 0 0
\(901\) 1.80199e37 2.09745
\(902\) −7.03267e36 −0.807307
\(903\) −2.90745e36 −0.329166
\(904\) −8.11028e36 −0.905587
\(905\) 0 0
\(906\) −1.22713e36 −0.133287
\(907\) 7.87438e36 0.843578 0.421789 0.906694i \(-0.361402\pi\)
0.421789 + 0.906694i \(0.361402\pi\)
\(908\) 1.56312e37 1.65166
\(909\) 5.88804e36 0.613652
\(910\) 0 0
\(911\) −1.36078e37 −1.37978 −0.689889 0.723915i \(-0.742341\pi\)
−0.689889 + 0.723915i \(0.742341\pi\)
\(912\) 4.14280e34 0.00414342
\(913\) −9.09534e36 −0.897293
\(914\) −3.71758e36 −0.361770
\(915\) 0 0
\(916\) 7.50112e36 0.710286
\(917\) 2.96530e36 0.276982
\(918\) −2.15201e37 −1.98294
\(919\) −9.86137e35 −0.0896382 −0.0448191 0.998995i \(-0.514271\pi\)
−0.0448191 + 0.998995i \(0.514271\pi\)
\(920\) 0 0
\(921\) −5.86315e35 −0.0518663
\(922\) 7.56338e36 0.660054
\(923\) 4.04209e36 0.348004
\(924\) −3.66626e36 −0.311404
\(925\) 0 0
\(926\) −9.33494e36 −0.771746
\(927\) 8.78117e36 0.716236
\(928\) 2.08561e37 1.67835
\(929\) 3.38052e36 0.268403 0.134202 0.990954i \(-0.457153\pi\)
0.134202 + 0.990954i \(0.457153\pi\)
\(930\) 0 0
\(931\) 5.76553e36 0.445623
\(932\) −5.45304e36 −0.415853
\(933\) 1.28554e37 0.967305
\(934\) −3.21709e37 −2.38851
\(935\) 0 0
\(936\) −1.10749e37 −0.800559
\(937\) −1.23256e37 −0.879151 −0.439576 0.898206i \(-0.644871\pi\)
−0.439576 + 0.898206i \(0.644871\pi\)
\(938\) 4.79489e36 0.337476
\(939\) 8.83912e36 0.613888
\(940\) 0 0
\(941\) 6.55312e36 0.443178 0.221589 0.975140i \(-0.428876\pi\)
0.221589 + 0.975140i \(0.428876\pi\)
\(942\) 3.23040e36 0.215586
\(943\) 7.38276e36 0.486208
\(944\) −3.29275e35 −0.0213997
\(945\) 0 0
\(946\) −3.45036e37 −2.18386
\(947\) 1.42694e37 0.891316 0.445658 0.895203i \(-0.352970\pi\)
0.445658 + 0.895203i \(0.352970\pi\)
\(948\) 2.65900e37 1.63913
\(949\) 4.35853e36 0.265163
\(950\) 0 0
\(951\) −1.54732e37 −0.916905
\(952\) 8.09918e36 0.473673
\(953\) 2.38480e36 0.137655 0.0688274 0.997629i \(-0.478074\pi\)
0.0688274 + 0.997629i \(0.478074\pi\)
\(954\) −3.11072e37 −1.77217
\(955\) 0 0
\(956\) −2.86202e37 −1.58836
\(957\) −1.55820e37 −0.853543
\(958\) −4.02643e37 −2.17697
\(959\) 1.31272e37 0.700549
\(960\) 0 0
\(961\) −8.80775e36 −0.457955
\(962\) 1.51984e37 0.780028
\(963\) 2.21134e37 1.12028
\(964\) −2.18635e36 −0.109334
\(965\) 0 0
\(966\) 6.23659e36 0.303902
\(967\) −1.64185e37 −0.789774 −0.394887 0.918730i \(-0.629216\pi\)
−0.394887 + 0.918730i \(0.629216\pi\)
\(968\) 4.30778e36 0.204556
\(969\) 8.14906e36 0.381997
\(970\) 0 0
\(971\) 2.07297e37 0.947007 0.473503 0.880792i \(-0.342989\pi\)
0.473503 + 0.880792i \(0.342989\pi\)
\(972\) 3.66821e37 1.65434
\(973\) 3.73263e36 0.166190
\(974\) 1.66060e37 0.729925
\(975\) 0 0
\(976\) −1.19137e35 −0.00510417
\(977\) −3.93106e36 −0.166275 −0.0831376 0.996538i \(-0.526494\pi\)
−0.0831376 + 0.996538i \(0.526494\pi\)
\(978\) 2.15538e36 0.0900093
\(979\) −1.22708e37 −0.505929
\(980\) 0 0
\(981\) −1.11270e37 −0.447213
\(982\) −7.10771e37 −2.82056
\(983\) −9.80814e36 −0.384298 −0.192149 0.981366i \(-0.561546\pi\)
−0.192149 + 0.981366i \(0.561546\pi\)
\(984\) 8.27792e36 0.320245
\(985\) 0 0
\(986\) 9.06837e37 3.42033
\(987\) 7.09017e36 0.264054
\(988\) 2.76222e37 1.01577
\(989\) 3.62212e37 1.31525
\(990\) 0 0
\(991\) −9.07369e36 −0.321265 −0.160632 0.987014i \(-0.551353\pi\)
−0.160632 + 0.987014i \(0.551353\pi\)
\(992\) 2.12925e37 0.744441
\(993\) 1.02975e37 0.355521
\(994\) 5.10287e36 0.173974
\(995\) 0 0
\(996\) 2.82038e37 0.937704
\(997\) −1.44463e37 −0.474315 −0.237158 0.971471i \(-0.576216\pi\)
−0.237158 + 0.971471i \(0.576216\pi\)
\(998\) −2.74931e37 −0.891439
\(999\) −1.19425e37 −0.382409
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 25.26.a.f.1.2 12
5.2 odd 4 5.26.b.a.4.2 12
5.3 odd 4 5.26.b.a.4.11 yes 12
5.4 even 2 inner 25.26.a.f.1.11 12
15.2 even 4 45.26.b.b.19.11 12
15.8 even 4 45.26.b.b.19.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.26.b.a.4.2 12 5.2 odd 4
5.26.b.a.4.11 yes 12 5.3 odd 4
25.26.a.f.1.2 12 1.1 even 1 trivial
25.26.a.f.1.11 12 5.4 even 2 inner
45.26.b.b.19.2 12 15.8 even 4
45.26.b.b.19.11 12 15.2 even 4