Properties

Label 25.26.a.f.1.11
Level $25$
Weight $26$
Character 25.1
Self dual yes
Analytic conductor $98.999$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [25,26,Mod(1,25)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("25.1"); S:= CuspForms(chi, 26); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(25, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 26, names="a")
 
Level: \( N \) \(=\) \( 25 = 5^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 25.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(98.9991949881\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 71168091 x^{10} + \cdots + 10\!\cdots\!36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{46}\cdot 3^{20}\cdot 5^{36} \)
Twist minimal: no (minimal twist has level 5)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(4680.77\) of defining polynomial
Character \(\chi\) \(=\) 25.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9361.55 q^{2} -531494. q^{3} +5.40841e7 q^{4} -4.97561e9 q^{6} -1.37587e10 q^{7} +1.92189e11 q^{8} -5.64803e11 q^{9} -9.26999e12 q^{11} -2.87454e13 q^{12} +1.02027e14 q^{13} -1.28802e14 q^{14} -1.55712e13 q^{16} +3.06292e15 q^{17} -5.28743e15 q^{18} -5.00581e15 q^{19} +7.31265e15 q^{21} -8.67815e16 q^{22} +9.11014e16 q^{23} -1.02148e17 q^{24} +9.55130e17 q^{26} +7.50518e17 q^{27} -7.44125e17 q^{28} +3.16262e18 q^{29} +3.22878e18 q^{31} -6.59458e18 q^{32} +4.92695e18 q^{33} +2.86736e19 q^{34} -3.05468e19 q^{36} -1.59124e19 q^{37} -4.68621e19 q^{38} -5.42268e19 q^{39} -8.10389e19 q^{41} +6.84577e19 q^{42} +3.97592e20 q^{43} -5.01359e20 q^{44} +8.52850e20 q^{46} -9.69576e20 q^{47} +8.27600e18 q^{48} -1.15177e21 q^{49} -1.62792e21 q^{51} +5.51804e21 q^{52} +5.88324e21 q^{53} +7.02601e21 q^{54} -2.64427e21 q^{56} +2.66056e21 q^{57} +2.96070e22 q^{58} +2.11464e22 q^{59} +7.65113e21 q^{61} +3.02264e22 q^{62} +7.77093e21 q^{63} -6.12130e22 q^{64} +4.61238e22 q^{66} +3.72268e22 q^{67} +1.65655e23 q^{68} -4.84199e22 q^{69} -3.96178e22 q^{71} -1.08549e23 q^{72} +4.27194e22 q^{73} -1.48965e23 q^{74} -2.70734e23 q^{76} +1.27543e23 q^{77} -5.07646e23 q^{78} +9.25017e23 q^{79} +7.96549e22 q^{81} -7.58649e23 q^{82} -9.81159e23 q^{83} +3.95498e23 q^{84} +3.72207e24 q^{86} -1.68091e24 q^{87} -1.78160e24 q^{88} +1.32371e24 q^{89} -1.40375e24 q^{91} +4.92714e24 q^{92} -1.71608e24 q^{93} -9.07673e24 q^{94} +3.50498e24 q^{96} -3.52916e24 q^{97} -1.07823e25 q^{98} +5.23572e24 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 166691544 q^{4} + 10591544184 q^{6} + 3948466041036 q^{9} - 1090673824176 q^{11} + 890646861445848 q^{14} + 22\!\cdots\!32 q^{16} - 63\!\cdots\!60 q^{19} + 13\!\cdots\!44 q^{21} + 12\!\cdots\!20 q^{24}+ \cdots + 10\!\cdots\!72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9361.55 1.61612 0.808058 0.589103i \(-0.200519\pi\)
0.808058 + 0.589103i \(0.200519\pi\)
\(3\) −531494. −0.577408 −0.288704 0.957418i \(-0.593224\pi\)
−0.288704 + 0.957418i \(0.593224\pi\)
\(4\) 5.40841e7 1.61183
\(5\) 0 0
\(6\) −4.97561e9 −0.933158
\(7\) −1.37587e10 −0.375708 −0.187854 0.982197i \(-0.560153\pi\)
−0.187854 + 0.982197i \(0.560153\pi\)
\(8\) 1.92189e11 0.988791
\(9\) −5.64803e11 −0.666600
\(10\) 0 0
\(11\) −9.26999e12 −0.890576 −0.445288 0.895387i \(-0.646899\pi\)
−0.445288 + 0.895387i \(0.646899\pi\)
\(12\) −2.87454e13 −0.930685
\(13\) 1.02027e14 1.21457 0.607286 0.794483i \(-0.292258\pi\)
0.607286 + 0.794483i \(0.292258\pi\)
\(14\) −1.28802e14 −0.607188
\(15\) 0 0
\(16\) −1.55712e13 −0.0138300
\(17\) 3.06292e15 1.27504 0.637520 0.770434i \(-0.279960\pi\)
0.637520 + 0.770434i \(0.279960\pi\)
\(18\) −5.28743e15 −1.07730
\(19\) −5.00581e15 −0.518864 −0.259432 0.965761i \(-0.583535\pi\)
−0.259432 + 0.965761i \(0.583535\pi\)
\(20\) 0 0
\(21\) 7.31265e15 0.216937
\(22\) −8.67815e16 −1.43927
\(23\) 9.11014e16 0.866817 0.433408 0.901198i \(-0.357311\pi\)
0.433408 + 0.901198i \(0.357311\pi\)
\(24\) −1.02148e17 −0.570936
\(25\) 0 0
\(26\) 9.55130e17 1.96289
\(27\) 7.50518e17 0.962308
\(28\) −7.44125e17 −0.605578
\(29\) 3.16262e18 1.65986 0.829930 0.557867i \(-0.188380\pi\)
0.829930 + 0.557867i \(0.188380\pi\)
\(30\) 0 0
\(31\) 3.22878e18 0.736237 0.368119 0.929779i \(-0.380002\pi\)
0.368119 + 0.929779i \(0.380002\pi\)
\(32\) −6.59458e18 −1.01114
\(33\) 4.92695e18 0.514226
\(34\) 2.86736e19 2.06061
\(35\) 0 0
\(36\) −3.05468e19 −1.07445
\(37\) −1.59124e19 −0.397388 −0.198694 0.980062i \(-0.563670\pi\)
−0.198694 + 0.980062i \(0.563670\pi\)
\(38\) −4.68621e19 −0.838545
\(39\) −5.42268e19 −0.701303
\(40\) 0 0
\(41\) −8.10389e19 −0.560913 −0.280456 0.959867i \(-0.590486\pi\)
−0.280456 + 0.959867i \(0.590486\pi\)
\(42\) 6.84577e19 0.350595
\(43\) 3.97592e20 1.51734 0.758668 0.651478i \(-0.225851\pi\)
0.758668 + 0.651478i \(0.225851\pi\)
\(44\) −5.01359e20 −1.43546
\(45\) 0 0
\(46\) 8.52850e20 1.40088
\(47\) −9.69576e20 −1.21719 −0.608595 0.793481i \(-0.708267\pi\)
−0.608595 + 0.793481i \(0.708267\pi\)
\(48\) 8.27600e18 0.00798555
\(49\) −1.15177e21 −0.858843
\(50\) 0 0
\(51\) −1.62792e21 −0.736218
\(52\) 5.51804e21 1.95769
\(53\) 5.88324e21 1.64501 0.822504 0.568759i \(-0.192576\pi\)
0.822504 + 0.568759i \(0.192576\pi\)
\(54\) 7.02601e21 1.55520
\(55\) 0 0
\(56\) −2.64427e21 −0.371497
\(57\) 2.66056e21 0.299596
\(58\) 2.96070e22 2.68253
\(59\) 2.11464e22 1.54734 0.773671 0.633588i \(-0.218418\pi\)
0.773671 + 0.633588i \(0.218418\pi\)
\(60\) 0 0
\(61\) 7.65113e21 0.369065 0.184532 0.982826i \(-0.440923\pi\)
0.184532 + 0.982826i \(0.440923\pi\)
\(62\) 3.02264e22 1.18985
\(63\) 7.77093e21 0.250447
\(64\) −6.12130e22 −1.62029
\(65\) 0 0
\(66\) 4.61238e22 0.831048
\(67\) 3.72268e22 0.555802 0.277901 0.960610i \(-0.410361\pi\)
0.277901 + 0.960610i \(0.410361\pi\)
\(68\) 1.65655e23 2.05515
\(69\) −4.84199e22 −0.500507
\(70\) 0 0
\(71\) −3.96178e22 −0.286524 −0.143262 0.989685i \(-0.545759\pi\)
−0.143262 + 0.989685i \(0.545759\pi\)
\(72\) −1.08549e23 −0.659128
\(73\) 4.27194e22 0.218318 0.109159 0.994024i \(-0.465184\pi\)
0.109159 + 0.994024i \(0.465184\pi\)
\(74\) −1.48965e23 −0.642225
\(75\) 0 0
\(76\) −2.70734e23 −0.836322
\(77\) 1.27543e23 0.334597
\(78\) −5.07646e23 −1.13339
\(79\) 9.25017e23 1.76121 0.880605 0.473851i \(-0.157137\pi\)
0.880605 + 0.473851i \(0.157137\pi\)
\(80\) 0 0
\(81\) 7.96549e22 0.110956
\(82\) −7.58649e23 −0.906500
\(83\) −9.81159e23 −1.00754 −0.503771 0.863837i \(-0.668054\pi\)
−0.503771 + 0.863837i \(0.668054\pi\)
\(84\) 3.95498e23 0.349666
\(85\) 0 0
\(86\) 3.72207e24 2.45219
\(87\) −1.68091e24 −0.958416
\(88\) −1.78160e24 −0.880594
\(89\) 1.32371e24 0.568091 0.284046 0.958811i \(-0.408323\pi\)
0.284046 + 0.958811i \(0.408323\pi\)
\(90\) 0 0
\(91\) −1.40375e24 −0.456324
\(92\) 4.92714e24 1.39716
\(93\) −1.71608e24 −0.425109
\(94\) −9.07673e24 −1.96712
\(95\) 0 0
\(96\) 3.50498e24 0.583842
\(97\) −3.52916e24 −0.516445 −0.258223 0.966085i \(-0.583137\pi\)
−0.258223 + 0.966085i \(0.583137\pi\)
\(98\) −1.07823e25 −1.38799
\(99\) 5.23572e24 0.593658
\(100\) 0 0
\(101\) −1.04249e25 −0.920570 −0.460285 0.887771i \(-0.652253\pi\)
−0.460285 + 0.887771i \(0.652253\pi\)
\(102\) −1.52399e25 −1.18981
\(103\) 1.55473e25 1.07446 0.537230 0.843436i \(-0.319471\pi\)
0.537230 + 0.843436i \(0.319471\pi\)
\(104\) 1.96085e25 1.20096
\(105\) 0 0
\(106\) 5.50762e25 2.65852
\(107\) 3.91524e25 1.68059 0.840294 0.542131i \(-0.182382\pi\)
0.840294 + 0.542131i \(0.182382\pi\)
\(108\) 4.05911e25 1.55108
\(109\) 1.97006e25 0.670886 0.335443 0.942060i \(-0.391114\pi\)
0.335443 + 0.942060i \(0.391114\pi\)
\(110\) 0 0
\(111\) 8.45735e24 0.229455
\(112\) 2.14239e23 0.00519604
\(113\) −4.21994e25 −0.915853 −0.457926 0.888990i \(-0.651408\pi\)
−0.457926 + 0.888990i \(0.651408\pi\)
\(114\) 2.49069e25 0.484183
\(115\) 0 0
\(116\) 1.71047e26 2.67542
\(117\) −5.76251e25 −0.809634
\(118\) 1.97963e26 2.50068
\(119\) −4.21416e25 −0.479043
\(120\) 0 0
\(121\) −2.24143e25 −0.206875
\(122\) 7.16264e25 0.596452
\(123\) 4.30717e25 0.323875
\(124\) 1.74626e26 1.18669
\(125\) 0 0
\(126\) 7.27479e25 0.404752
\(127\) 1.11228e26 0.560619 0.280310 0.959910i \(-0.409563\pi\)
0.280310 + 0.959910i \(0.409563\pi\)
\(128\) −3.51771e26 −1.60744
\(129\) −2.11318e26 −0.876122
\(130\) 0 0
\(131\) 2.15522e26 0.737227 0.368613 0.929583i \(-0.379833\pi\)
0.368613 + 0.929583i \(0.379833\pi\)
\(132\) 2.66470e26 0.828845
\(133\) 6.88732e25 0.194942
\(134\) 3.48500e26 0.898241
\(135\) 0 0
\(136\) 5.88660e26 1.26075
\(137\) −9.54103e26 −1.86461 −0.932305 0.361672i \(-0.882206\pi\)
−0.932305 + 0.361672i \(0.882206\pi\)
\(138\) −4.53285e26 −0.808877
\(139\) 2.71293e26 0.442337 0.221169 0.975236i \(-0.429013\pi\)
0.221169 + 0.975236i \(0.429013\pi\)
\(140\) 0 0
\(141\) 5.15324e26 0.702816
\(142\) −3.70884e26 −0.463056
\(143\) −9.45790e26 −1.08167
\(144\) 8.79465e24 0.00921908
\(145\) 0 0
\(146\) 3.99919e26 0.352827
\(147\) 6.12158e26 0.495903
\(148\) −8.60608e26 −0.640522
\(149\) 2.96654e26 0.202966 0.101483 0.994837i \(-0.467641\pi\)
0.101483 + 0.994837i \(0.467641\pi\)
\(150\) 0 0
\(151\) 2.46628e26 0.142834 0.0714169 0.997447i \(-0.477248\pi\)
0.0714169 + 0.997447i \(0.477248\pi\)
\(152\) −9.62063e26 −0.513049
\(153\) −1.72994e27 −0.849942
\(154\) 1.19400e27 0.540747
\(155\) 0 0
\(156\) −2.93281e27 −1.13038
\(157\) 6.49248e26 0.231028 0.115514 0.993306i \(-0.463148\pi\)
0.115514 + 0.993306i \(0.463148\pi\)
\(158\) 8.65959e27 2.84632
\(159\) −3.12691e27 −0.949841
\(160\) 0 0
\(161\) −1.25343e27 −0.325670
\(162\) 7.45693e26 0.179317
\(163\) 4.33189e26 0.0964567 0.0482283 0.998836i \(-0.484642\pi\)
0.0482283 + 0.998836i \(0.484642\pi\)
\(164\) −4.38291e27 −0.904097
\(165\) 0 0
\(166\) −9.18516e27 −1.62830
\(167\) −1.30454e26 −0.0214536 −0.0107268 0.999942i \(-0.503415\pi\)
−0.0107268 + 0.999942i \(0.503415\pi\)
\(168\) 1.40541e27 0.214505
\(169\) 3.35310e27 0.475185
\(170\) 0 0
\(171\) 2.82729e27 0.345875
\(172\) 2.15034e28 2.44569
\(173\) 6.64872e27 0.703335 0.351667 0.936125i \(-0.385615\pi\)
0.351667 + 0.936125i \(0.385615\pi\)
\(174\) −1.57359e28 −1.54891
\(175\) 0 0
\(176\) 1.44345e26 0.0123167
\(177\) −1.12392e28 −0.893447
\(178\) 1.23920e28 0.918102
\(179\) 1.37345e28 0.948749 0.474375 0.880323i \(-0.342674\pi\)
0.474375 + 0.880323i \(0.342674\pi\)
\(180\) 0 0
\(181\) −2.24199e28 −1.34788 −0.673941 0.738786i \(-0.735400\pi\)
−0.673941 + 0.738786i \(0.735400\pi\)
\(182\) −1.31413e28 −0.737473
\(183\) −4.06653e27 −0.213101
\(184\) 1.75087e28 0.857101
\(185\) 0 0
\(186\) −1.60652e28 −0.687026
\(187\) −2.83932e28 −1.13552
\(188\) −5.24386e28 −1.96191
\(189\) −1.03261e28 −0.361547
\(190\) 0 0
\(191\) −6.91841e26 −0.0212368 −0.0106184 0.999944i \(-0.503380\pi\)
−0.0106184 + 0.999944i \(0.503380\pi\)
\(192\) 3.25343e28 0.935570
\(193\) −6.51372e28 −1.75535 −0.877673 0.479259i \(-0.840905\pi\)
−0.877673 + 0.479259i \(0.840905\pi\)
\(194\) −3.30384e28 −0.834636
\(195\) 0 0
\(196\) −6.22923e28 −1.38431
\(197\) −4.73638e27 −0.0987686 −0.0493843 0.998780i \(-0.515726\pi\)
−0.0493843 + 0.998780i \(0.515726\pi\)
\(198\) 4.90144e28 0.959420
\(199\) −3.76031e28 −0.691131 −0.345565 0.938395i \(-0.612313\pi\)
−0.345565 + 0.938395i \(0.612313\pi\)
\(200\) 0 0
\(201\) −1.97858e28 −0.320925
\(202\) −9.75936e28 −1.48775
\(203\) −4.35134e28 −0.623623
\(204\) −8.80447e28 −1.18666
\(205\) 0 0
\(206\) 1.45547e29 1.73645
\(207\) −5.14543e28 −0.577820
\(208\) −1.58868e27 −0.0167975
\(209\) 4.64038e28 0.462088
\(210\) 0 0
\(211\) 2.10105e28 0.185740 0.0928700 0.995678i \(-0.470396\pi\)
0.0928700 + 0.995678i \(0.470396\pi\)
\(212\) 3.18190e29 2.65148
\(213\) 2.10566e28 0.165441
\(214\) 3.66527e29 2.71603
\(215\) 0 0
\(216\) 1.44242e29 0.951522
\(217\) −4.44237e28 −0.276610
\(218\) 1.84428e29 1.08423
\(219\) −2.27051e28 −0.126058
\(220\) 0 0
\(221\) 3.12500e29 1.54863
\(222\) 7.91739e28 0.370826
\(223\) 2.96364e29 1.31224 0.656122 0.754655i \(-0.272196\pi\)
0.656122 + 0.754655i \(0.272196\pi\)
\(224\) 9.07325e28 0.379894
\(225\) 0 0
\(226\) −3.95051e29 −1.48012
\(227\) −2.89017e29 −1.02471 −0.512354 0.858775i \(-0.671226\pi\)
−0.512354 + 0.858775i \(0.671226\pi\)
\(228\) 1.43894e29 0.482899
\(229\) 1.38694e29 0.440670 0.220335 0.975424i \(-0.429285\pi\)
0.220335 + 0.975424i \(0.429285\pi\)
\(230\) 0 0
\(231\) −6.77882e28 −0.193199
\(232\) 6.07821e29 1.64126
\(233\) 1.00825e29 0.258000 0.129000 0.991645i \(-0.458823\pi\)
0.129000 + 0.991645i \(0.458823\pi\)
\(234\) −5.39460e29 −1.30846
\(235\) 0 0
\(236\) 1.14368e30 2.49405
\(237\) −4.91641e29 −1.01694
\(238\) −3.94511e29 −0.774189
\(239\) −5.29180e29 −0.985438 −0.492719 0.870188i \(-0.663997\pi\)
−0.492719 + 0.870188i \(0.663997\pi\)
\(240\) 0 0
\(241\) −4.04250e28 −0.0678324 −0.0339162 0.999425i \(-0.510798\pi\)
−0.0339162 + 0.999425i \(0.510798\pi\)
\(242\) −2.09832e29 −0.334333
\(243\) −6.78242e29 −1.02637
\(244\) 4.13804e29 0.594870
\(245\) 0 0
\(246\) 4.03217e29 0.523420
\(247\) −5.10727e29 −0.630198
\(248\) 6.20538e29 0.727985
\(249\) 5.21480e29 0.581763
\(250\) 0 0
\(251\) 4.46094e29 0.450303 0.225151 0.974324i \(-0.427712\pi\)
0.225151 + 0.974324i \(0.427712\pi\)
\(252\) 4.20284e29 0.403678
\(253\) −8.44510e29 −0.771966
\(254\) 1.04127e30 0.906026
\(255\) 0 0
\(256\) −1.23915e30 −0.977517
\(257\) −9.74169e29 −0.731931 −0.365965 0.930628i \(-0.619261\pi\)
−0.365965 + 0.930628i \(0.619261\pi\)
\(258\) −1.97826e30 −1.41591
\(259\) 2.18933e29 0.149302
\(260\) 0 0
\(261\) −1.78625e30 −1.10646
\(262\) 2.01762e30 1.19144
\(263\) −1.52948e30 −0.861188 −0.430594 0.902546i \(-0.641696\pi\)
−0.430594 + 0.902546i \(0.641696\pi\)
\(264\) 9.46907e29 0.508462
\(265\) 0 0
\(266\) 6.44759e29 0.315048
\(267\) −7.03545e29 −0.328020
\(268\) 2.01338e30 0.895860
\(269\) 2.62915e29 0.111663 0.0558317 0.998440i \(-0.482219\pi\)
0.0558317 + 0.998440i \(0.482219\pi\)
\(270\) 0 0
\(271\) −2.83737e30 −1.09850 −0.549249 0.835658i \(-0.685086\pi\)
−0.549249 + 0.835658i \(0.685086\pi\)
\(272\) −4.76933e28 −0.0176338
\(273\) 7.46087e29 0.263485
\(274\) −8.93188e30 −3.01343
\(275\) 0 0
\(276\) −2.61875e30 −0.806733
\(277\) −2.96419e30 −0.872788 −0.436394 0.899756i \(-0.643745\pi\)
−0.436394 + 0.899756i \(0.643745\pi\)
\(278\) 2.53972e30 0.714868
\(279\) −1.82363e30 −0.490776
\(280\) 0 0
\(281\) 3.78581e30 0.931816 0.465908 0.884833i \(-0.345728\pi\)
0.465908 + 0.884833i \(0.345728\pi\)
\(282\) 4.82423e30 1.13583
\(283\) 5.09128e30 1.14682 0.573412 0.819267i \(-0.305619\pi\)
0.573412 + 0.819267i \(0.305619\pi\)
\(284\) −2.14269e30 −0.461829
\(285\) 0 0
\(286\) −8.85405e30 −1.74810
\(287\) 1.11499e30 0.210739
\(288\) 3.72463e30 0.674027
\(289\) 3.61083e30 0.625727
\(290\) 0 0
\(291\) 1.87573e30 0.298200
\(292\) 2.31044e30 0.351891
\(293\) −6.28617e30 −0.917362 −0.458681 0.888601i \(-0.651678\pi\)
−0.458681 + 0.888601i \(0.651678\pi\)
\(294\) 5.73074e30 0.801437
\(295\) 0 0
\(296\) −3.05820e30 −0.392933
\(297\) −6.95730e30 −0.857008
\(298\) 2.77714e30 0.328016
\(299\) 9.29481e30 1.05281
\(300\) 0 0
\(301\) −5.47033e30 −0.570075
\(302\) 2.30882e30 0.230836
\(303\) 5.54080e30 0.531544
\(304\) 7.79464e28 0.00717590
\(305\) 0 0
\(306\) −1.61949e31 −1.37360
\(307\) 1.10314e30 0.0898261 0.0449130 0.998991i \(-0.485699\pi\)
0.0449130 + 0.998991i \(0.485699\pi\)
\(308\) 6.89803e30 0.539313
\(309\) −8.26332e30 −0.620402
\(310\) 0 0
\(311\) 2.41872e31 1.67525 0.837627 0.546242i \(-0.183942\pi\)
0.837627 + 0.546242i \(0.183942\pi\)
\(312\) −1.04218e31 −0.693443
\(313\) −1.66307e31 −1.06318 −0.531589 0.847002i \(-0.678405\pi\)
−0.531589 + 0.847002i \(0.678405\pi\)
\(314\) 6.07797e30 0.373369
\(315\) 0 0
\(316\) 5.00287e31 2.83877
\(317\) 2.91127e31 1.58797 0.793984 0.607939i \(-0.208003\pi\)
0.793984 + 0.607939i \(0.208003\pi\)
\(318\) −2.92727e31 −1.53505
\(319\) −2.93174e31 −1.47823
\(320\) 0 0
\(321\) −2.08093e31 −0.970385
\(322\) −1.17341e31 −0.526321
\(323\) −1.53324e31 −0.661573
\(324\) 4.30806e30 0.178842
\(325\) 0 0
\(326\) 4.05532e30 0.155885
\(327\) −1.04708e31 −0.387375
\(328\) −1.55748e31 −0.554625
\(329\) 1.33401e31 0.457308
\(330\) 0 0
\(331\) 1.93746e31 0.615719 0.307860 0.951432i \(-0.400387\pi\)
0.307860 + 0.951432i \(0.400387\pi\)
\(332\) −5.30651e31 −1.62399
\(333\) 8.98737e30 0.264899
\(334\) −1.22125e30 −0.0346715
\(335\) 0 0
\(336\) −1.13867e29 −0.00300024
\(337\) 2.56947e30 0.0652335 0.0326167 0.999468i \(-0.489616\pi\)
0.0326167 + 0.999468i \(0.489616\pi\)
\(338\) 3.13902e31 0.767954
\(339\) 2.24287e31 0.528821
\(340\) 0 0
\(341\) −2.99308e31 −0.655675
\(342\) 2.64678e31 0.558974
\(343\) 3.42981e31 0.698383
\(344\) 7.64129e31 1.50033
\(345\) 0 0
\(346\) 6.22423e31 1.13667
\(347\) 3.68925e31 0.649860 0.324930 0.945738i \(-0.394659\pi\)
0.324930 + 0.945738i \(0.394659\pi\)
\(348\) −9.09106e31 −1.54481
\(349\) 8.90327e31 1.45959 0.729796 0.683665i \(-0.239615\pi\)
0.729796 + 0.683665i \(0.239615\pi\)
\(350\) 0 0
\(351\) 7.65731e31 1.16879
\(352\) 6.11317e31 0.900499
\(353\) 1.18792e32 1.68890 0.844448 0.535638i \(-0.179929\pi\)
0.844448 + 0.535638i \(0.179929\pi\)
\(354\) −1.05216e32 −1.44391
\(355\) 0 0
\(356\) 7.15917e31 0.915668
\(357\) 2.23980e31 0.276603
\(358\) 1.28577e32 1.53329
\(359\) −3.43106e31 −0.395137 −0.197569 0.980289i \(-0.563305\pi\)
−0.197569 + 0.980289i \(0.563305\pi\)
\(360\) 0 0
\(361\) −6.80184e31 −0.730780
\(362\) −2.09885e32 −2.17833
\(363\) 1.19130e31 0.119451
\(364\) −7.59208e31 −0.735518
\(365\) 0 0
\(366\) −3.80690e31 −0.344396
\(367\) 1.81832e32 1.58981 0.794904 0.606735i \(-0.207521\pi\)
0.794904 + 0.606735i \(0.207521\pi\)
\(368\) −1.41856e30 −0.0119881
\(369\) 4.57710e31 0.373904
\(370\) 0 0
\(371\) −8.09454e31 −0.618043
\(372\) −9.28126e31 −0.685205
\(373\) 4.57515e31 0.326621 0.163311 0.986575i \(-0.447783\pi\)
0.163311 + 0.986575i \(0.447783\pi\)
\(374\) −2.65804e32 −1.83513
\(375\) 0 0
\(376\) −1.86342e32 −1.20355
\(377\) 3.22672e32 2.01602
\(378\) −9.66685e31 −0.584302
\(379\) −5.21676e31 −0.305078 −0.152539 0.988297i \(-0.548745\pi\)
−0.152539 + 0.988297i \(0.548745\pi\)
\(380\) 0 0
\(381\) −5.91171e31 −0.323706
\(382\) −6.47670e30 −0.0343212
\(383\) −1.65045e32 −0.846481 −0.423240 0.906017i \(-0.639107\pi\)
−0.423240 + 0.906017i \(0.639107\pi\)
\(384\) 1.86964e32 0.928149
\(385\) 0 0
\(386\) −6.09785e32 −2.83684
\(387\) −2.24561e32 −1.01146
\(388\) −1.90871e32 −0.832423
\(389\) 2.98846e32 1.26205 0.631025 0.775762i \(-0.282634\pi\)
0.631025 + 0.775762i \(0.282634\pi\)
\(390\) 0 0
\(391\) 2.79036e32 1.10523
\(392\) −2.21358e32 −0.849217
\(393\) −1.14549e32 −0.425681
\(394\) −4.43399e31 −0.159622
\(395\) 0 0
\(396\) 2.83169e32 0.956877
\(397\) −3.98902e32 −1.30612 −0.653062 0.757304i \(-0.726516\pi\)
−0.653062 + 0.757304i \(0.726516\pi\)
\(398\) −3.52023e32 −1.11695
\(399\) −3.66057e31 −0.112561
\(400\) 0 0
\(401\) 1.04555e32 0.302024 0.151012 0.988532i \(-0.451747\pi\)
0.151012 + 0.988532i \(0.451747\pi\)
\(402\) −1.85226e32 −0.518651
\(403\) 3.29423e32 0.894213
\(404\) −5.63824e32 −1.48380
\(405\) 0 0
\(406\) −4.07352e32 −1.00785
\(407\) 1.47508e32 0.353904
\(408\) −3.12869e32 −0.727966
\(409\) 5.94901e32 1.34247 0.671234 0.741246i \(-0.265765\pi\)
0.671234 + 0.741246i \(0.265765\pi\)
\(410\) 0 0
\(411\) 5.07100e32 1.07664
\(412\) 8.40864e32 1.73185
\(413\) −2.90946e32 −0.581349
\(414\) −4.81692e32 −0.933825
\(415\) 0 0
\(416\) −6.72825e32 −1.22810
\(417\) −1.44191e32 −0.255409
\(418\) 4.34411e32 0.746788
\(419\) −1.11614e33 −1.86227 −0.931136 0.364671i \(-0.881181\pi\)
−0.931136 + 0.364671i \(0.881181\pi\)
\(420\) 0 0
\(421\) −4.92553e32 −0.774331 −0.387166 0.922010i \(-0.626546\pi\)
−0.387166 + 0.922010i \(0.626546\pi\)
\(422\) 1.96691e32 0.300177
\(423\) 5.47619e32 0.811379
\(424\) 1.13070e33 1.62657
\(425\) 0 0
\(426\) 1.97123e32 0.267372
\(427\) −1.05269e32 −0.138661
\(428\) 2.11752e33 2.70883
\(429\) 5.02682e32 0.624564
\(430\) 0 0
\(431\) −4.71497e31 −0.0552730 −0.0276365 0.999618i \(-0.508798\pi\)
−0.0276365 + 0.999618i \(0.508798\pi\)
\(432\) −1.16865e31 −0.0133087
\(433\) −3.61224e30 −0.00399648 −0.00199824 0.999998i \(-0.500636\pi\)
−0.00199824 + 0.999998i \(0.500636\pi\)
\(434\) −4.15875e32 −0.447034
\(435\) 0 0
\(436\) 1.06549e33 1.08136
\(437\) −4.56036e32 −0.449760
\(438\) −2.12555e32 −0.203725
\(439\) 3.57029e32 0.332580 0.166290 0.986077i \(-0.446821\pi\)
0.166290 + 0.986077i \(0.446821\pi\)
\(440\) 0 0
\(441\) 6.50522e32 0.572505
\(442\) 2.92549e33 2.50276
\(443\) −1.54821e33 −1.28761 −0.643805 0.765190i \(-0.722645\pi\)
−0.643805 + 0.765190i \(0.722645\pi\)
\(444\) 4.57408e32 0.369842
\(445\) 0 0
\(446\) 2.77442e33 2.12074
\(447\) −1.57670e32 −0.117194
\(448\) 8.42208e32 0.608757
\(449\) 2.49721e33 1.75540 0.877701 0.479209i \(-0.159076\pi\)
0.877701 + 0.479209i \(0.159076\pi\)
\(450\) 0 0
\(451\) 7.51230e32 0.499535
\(452\) −2.28232e33 −1.47620
\(453\) −1.31082e32 −0.0824734
\(454\) −2.70564e33 −1.65605
\(455\) 0 0
\(456\) 5.11331e32 0.296238
\(457\) −3.97112e32 −0.223851 −0.111926 0.993717i \(-0.535702\pi\)
−0.111926 + 0.993717i \(0.535702\pi\)
\(458\) 1.29839e33 0.712174
\(459\) 2.29878e33 1.22698
\(460\) 0 0
\(461\) −8.07920e32 −0.408420 −0.204210 0.978927i \(-0.565463\pi\)
−0.204210 + 0.978927i \(0.565463\pi\)
\(462\) −6.34602e32 −0.312232
\(463\) −9.97158e32 −0.477531 −0.238766 0.971077i \(-0.576743\pi\)
−0.238766 + 0.971077i \(0.576743\pi\)
\(464\) −4.92457e31 −0.0229559
\(465\) 0 0
\(466\) 9.43880e32 0.416959
\(467\) −3.43650e33 −1.47793 −0.738967 0.673742i \(-0.764686\pi\)
−0.738967 + 0.673742i \(0.764686\pi\)
\(468\) −3.11660e33 −1.30499
\(469\) −5.12190e32 −0.208819
\(470\) 0 0
\(471\) −3.45072e32 −0.133398
\(472\) 4.06411e33 1.53000
\(473\) −3.68567e33 −1.35130
\(474\) −4.60252e33 −1.64349
\(475\) 0 0
\(476\) −2.27919e33 −0.772136
\(477\) −3.32287e33 −1.09656
\(478\) −4.95394e33 −1.59258
\(479\) 4.30103e33 1.34704 0.673518 0.739171i \(-0.264782\pi\)
0.673518 + 0.739171i \(0.264782\pi\)
\(480\) 0 0
\(481\) −1.62350e33 −0.482656
\(482\) −3.78440e32 −0.109625
\(483\) 6.66193e32 0.188045
\(484\) −1.21225e33 −0.333447
\(485\) 0 0
\(486\) −6.34939e33 −1.65874
\(487\) 1.77385e33 0.451654 0.225827 0.974167i \(-0.427492\pi\)
0.225827 + 0.974167i \(0.427492\pi\)
\(488\) 1.47047e33 0.364928
\(489\) −2.30237e32 −0.0556948
\(490\) 0 0
\(491\) 7.59245e33 1.74527 0.872637 0.488370i \(-0.162408\pi\)
0.872637 + 0.488370i \(0.162408\pi\)
\(492\) 2.32949e33 0.522033
\(493\) 9.68683e33 2.11639
\(494\) −4.78120e33 −1.01847
\(495\) 0 0
\(496\) −5.02760e31 −0.0101822
\(497\) 5.45088e32 0.107649
\(498\) 4.88186e33 0.940196
\(499\) 2.93681e33 0.551593 0.275797 0.961216i \(-0.411058\pi\)
0.275797 + 0.961216i \(0.411058\pi\)
\(500\) 0 0
\(501\) 6.93353e31 0.0123875
\(502\) 4.17613e33 0.727742
\(503\) −4.24338e33 −0.721294 −0.360647 0.932702i \(-0.617444\pi\)
−0.360647 + 0.932702i \(0.617444\pi\)
\(504\) 1.49349e33 0.247640
\(505\) 0 0
\(506\) −7.90592e33 −1.24759
\(507\) −1.78215e33 −0.274376
\(508\) 6.01567e33 0.903624
\(509\) 2.39447e33 0.350943 0.175472 0.984484i \(-0.443855\pi\)
0.175472 + 0.984484i \(0.443855\pi\)
\(510\) 0 0
\(511\) −5.87761e32 −0.0820237
\(512\) 2.03101e32 0.0276591
\(513\) −3.75695e33 −0.499307
\(514\) −9.11972e33 −1.18289
\(515\) 0 0
\(516\) −1.14289e34 −1.41216
\(517\) 8.98796e33 1.08400
\(518\) 2.04955e33 0.241289
\(519\) −3.53376e33 −0.406111
\(520\) 0 0
\(521\) 8.32276e33 0.911582 0.455791 0.890087i \(-0.349356\pi\)
0.455791 + 0.890087i \(0.349356\pi\)
\(522\) −1.67221e34 −1.78817
\(523\) 1.32749e34 1.38599 0.692993 0.720944i \(-0.256292\pi\)
0.692993 + 0.720944i \(0.256292\pi\)
\(524\) 1.16563e34 1.18829
\(525\) 0 0
\(526\) −1.43183e34 −1.39178
\(527\) 9.88950e33 0.938732
\(528\) −7.67185e31 −0.00711174
\(529\) −2.74629e33 −0.248629
\(530\) 0 0
\(531\) −1.19435e34 −1.03146
\(532\) 3.72494e33 0.314213
\(533\) −8.26815e33 −0.681269
\(534\) −6.58627e33 −0.530119
\(535\) 0 0
\(536\) 7.15459e33 0.549572
\(537\) −7.29983e33 −0.547815
\(538\) 2.46129e33 0.180461
\(539\) 1.06769e34 0.764865
\(540\) 0 0
\(541\) 1.45952e34 0.998260 0.499130 0.866527i \(-0.333653\pi\)
0.499130 + 0.866527i \(0.333653\pi\)
\(542\) −2.65622e34 −1.77530
\(543\) 1.19160e34 0.778277
\(544\) −2.01986e34 −1.28925
\(545\) 0 0
\(546\) 6.98453e33 0.425823
\(547\) 3.28646e34 1.95834 0.979168 0.203054i \(-0.0650867\pi\)
0.979168 + 0.203054i \(0.0650867\pi\)
\(548\) −5.16018e34 −3.00544
\(549\) −4.32138e33 −0.246019
\(550\) 0 0
\(551\) −1.58314e34 −0.861242
\(552\) −9.30579e33 −0.494897
\(553\) −1.27270e34 −0.661701
\(554\) −2.77494e34 −1.41053
\(555\) 0 0
\(556\) 1.46726e34 0.712973
\(557\) −2.79942e34 −1.33008 −0.665042 0.746806i \(-0.731586\pi\)
−0.665042 + 0.746806i \(0.731586\pi\)
\(558\) −1.70720e34 −0.793151
\(559\) 4.05651e34 1.84291
\(560\) 0 0
\(561\) 1.50908e34 0.655658
\(562\) 3.54410e34 1.50592
\(563\) 2.94294e34 1.22300 0.611500 0.791244i \(-0.290566\pi\)
0.611500 + 0.791244i \(0.290566\pi\)
\(564\) 2.78708e34 1.13282
\(565\) 0 0
\(566\) 4.76623e34 1.85340
\(567\) −1.09594e33 −0.0416869
\(568\) −7.61413e33 −0.283313
\(569\) 1.44033e34 0.524275 0.262137 0.965031i \(-0.415573\pi\)
0.262137 + 0.965031i \(0.415573\pi\)
\(570\) 0 0
\(571\) −6.02200e33 −0.209792 −0.104896 0.994483i \(-0.533451\pi\)
−0.104896 + 0.994483i \(0.533451\pi\)
\(572\) −5.11522e34 −1.74347
\(573\) 3.67710e32 0.0122623
\(574\) 1.04380e34 0.340579
\(575\) 0 0
\(576\) 3.45732e34 1.08009
\(577\) 3.36622e34 1.02907 0.514534 0.857470i \(-0.327965\pi\)
0.514534 + 0.857470i \(0.327965\pi\)
\(578\) 3.38030e34 1.01125
\(579\) 3.46201e34 1.01355
\(580\) 0 0
\(581\) 1.34994e34 0.378542
\(582\) 1.75597e34 0.481925
\(583\) −5.45376e34 −1.46500
\(584\) 8.21021e33 0.215871
\(585\) 0 0
\(586\) −5.88482e34 −1.48256
\(587\) 2.29972e34 0.567152 0.283576 0.958950i \(-0.408479\pi\)
0.283576 + 0.958950i \(0.408479\pi\)
\(588\) 3.31080e34 0.799312
\(589\) −1.61627e34 −0.382007
\(590\) 0 0
\(591\) 2.51736e33 0.0570298
\(592\) 2.47775e32 0.00549587
\(593\) 2.56446e34 0.556945 0.278472 0.960444i \(-0.410172\pi\)
0.278472 + 0.960444i \(0.410172\pi\)
\(594\) −6.51311e34 −1.38503
\(595\) 0 0
\(596\) 1.60443e34 0.327146
\(597\) 1.99858e34 0.399064
\(598\) 8.70138e34 1.70147
\(599\) −6.53223e34 −1.25091 −0.625455 0.780260i \(-0.715087\pi\)
−0.625455 + 0.780260i \(0.715087\pi\)
\(600\) 0 0
\(601\) 1.46105e34 0.268370 0.134185 0.990956i \(-0.457158\pi\)
0.134185 + 0.990956i \(0.457158\pi\)
\(602\) −5.12107e34 −0.921308
\(603\) −2.10258e34 −0.370498
\(604\) 1.33387e34 0.230224
\(605\) 0 0
\(606\) 5.18704e34 0.859038
\(607\) 1.63446e34 0.265165 0.132582 0.991172i \(-0.457673\pi\)
0.132582 + 0.991172i \(0.457673\pi\)
\(608\) 3.30112e34 0.524646
\(609\) 2.31271e34 0.360085
\(610\) 0 0
\(611\) −9.89229e34 −1.47837
\(612\) −9.35625e34 −1.36996
\(613\) 6.22253e34 0.892712 0.446356 0.894855i \(-0.352722\pi\)
0.446356 + 0.894855i \(0.352722\pi\)
\(614\) 1.03271e34 0.145169
\(615\) 0 0
\(616\) 2.45124e34 0.330846
\(617\) −4.34980e34 −0.575314 −0.287657 0.957733i \(-0.592876\pi\)
−0.287657 + 0.957733i \(0.592876\pi\)
\(618\) −7.73574e34 −1.00264
\(619\) −1.76940e34 −0.224747 −0.112373 0.993666i \(-0.535845\pi\)
−0.112373 + 0.993666i \(0.535845\pi\)
\(620\) 0 0
\(621\) 6.83733e34 0.834145
\(622\) 2.26430e35 2.70741
\(623\) −1.82125e34 −0.213437
\(624\) 8.44376e32 0.00969903
\(625\) 0 0
\(626\) −1.55689e35 −1.71822
\(627\) −2.46633e34 −0.266813
\(628\) 3.51140e34 0.372379
\(629\) −4.87384e34 −0.506685
\(630\) 0 0
\(631\) 1.04208e35 1.04120 0.520601 0.853800i \(-0.325708\pi\)
0.520601 + 0.853800i \(0.325708\pi\)
\(632\) 1.77778e35 1.74147
\(633\) −1.11669e34 −0.107248
\(634\) 2.72540e35 2.56634
\(635\) 0 0
\(636\) −1.69116e35 −1.53098
\(637\) −1.17511e35 −1.04313
\(638\) −2.74457e35 −2.38899
\(639\) 2.23762e34 0.190997
\(640\) 0 0
\(641\) −8.19994e34 −0.673109 −0.336555 0.941664i \(-0.609262\pi\)
−0.336555 + 0.941664i \(0.609262\pi\)
\(642\) −1.94807e35 −1.56825
\(643\) 5.73324e34 0.452650 0.226325 0.974052i \(-0.427329\pi\)
0.226325 + 0.974052i \(0.427329\pi\)
\(644\) −6.77908e34 −0.524925
\(645\) 0 0
\(646\) −1.43535e35 −1.06918
\(647\) −1.81756e35 −1.32796 −0.663979 0.747751i \(-0.731134\pi\)
−0.663979 + 0.747751i \(0.731134\pi\)
\(648\) 1.53088e34 0.109712
\(649\) −1.96027e35 −1.37803
\(650\) 0 0
\(651\) 2.36110e34 0.159717
\(652\) 2.34286e34 0.155472
\(653\) −1.90602e35 −1.24083 −0.620415 0.784274i \(-0.713036\pi\)
−0.620415 + 0.784274i \(0.713036\pi\)
\(654\) −9.80226e34 −0.626043
\(655\) 0 0
\(656\) 1.26187e33 0.00775742
\(657\) −2.41280e34 −0.145531
\(658\) 1.24884e35 0.739064
\(659\) −6.08809e34 −0.353520 −0.176760 0.984254i \(-0.556562\pi\)
−0.176760 + 0.984254i \(0.556562\pi\)
\(660\) 0 0
\(661\) −2.17257e35 −1.21466 −0.607332 0.794448i \(-0.707760\pi\)
−0.607332 + 0.794448i \(0.707760\pi\)
\(662\) 1.81376e35 0.995074
\(663\) −1.66092e35 −0.894190
\(664\) −1.88568e35 −0.996249
\(665\) 0 0
\(666\) 8.41357e34 0.428107
\(667\) 2.88119e35 1.43879
\(668\) −7.05547e33 −0.0345796
\(669\) −1.57516e35 −0.757700
\(670\) 0 0
\(671\) −7.09259e34 −0.328680
\(672\) −4.82238e34 −0.219354
\(673\) −7.80776e34 −0.348609 −0.174304 0.984692i \(-0.555768\pi\)
−0.174304 + 0.984692i \(0.555768\pi\)
\(674\) 2.40542e34 0.105425
\(675\) 0 0
\(676\) 1.81349e35 0.765918
\(677\) −2.43537e35 −1.00973 −0.504866 0.863198i \(-0.668458\pi\)
−0.504866 + 0.863198i \(0.668458\pi\)
\(678\) 2.09968e35 0.854636
\(679\) 4.85565e34 0.194033
\(680\) 0 0
\(681\) 1.53611e35 0.591674
\(682\) −2.80199e35 −1.05965
\(683\) 4.30905e35 1.60001 0.800004 0.599994i \(-0.204830\pi\)
0.800004 + 0.599994i \(0.204830\pi\)
\(684\) 1.52912e35 0.557492
\(685\) 0 0
\(686\) 3.21083e35 1.12867
\(687\) −7.37149e34 −0.254446
\(688\) −6.19098e33 −0.0209848
\(689\) 6.00249e35 1.99798
\(690\) 0 0
\(691\) 2.98951e35 0.959675 0.479838 0.877357i \(-0.340696\pi\)
0.479838 + 0.877357i \(0.340696\pi\)
\(692\) 3.59590e35 1.13366
\(693\) −7.20364e34 −0.223042
\(694\) 3.45371e35 1.05025
\(695\) 0 0
\(696\) −3.23053e35 −0.947674
\(697\) −2.48215e35 −0.715186
\(698\) 8.33483e35 2.35887
\(699\) −5.35880e34 −0.148971
\(700\) 0 0
\(701\) −5.64961e35 −1.51546 −0.757728 0.652570i \(-0.773691\pi\)
−0.757728 + 0.652570i \(0.773691\pi\)
\(702\) 7.16843e35 1.88890
\(703\) 7.96544e34 0.206190
\(704\) 5.67444e35 1.44299
\(705\) 0 0
\(706\) 1.11208e36 2.72945
\(707\) 1.43433e35 0.345866
\(708\) −6.07861e35 −1.44009
\(709\) −3.85512e35 −0.897345 −0.448672 0.893696i \(-0.648103\pi\)
−0.448672 + 0.893696i \(0.648103\pi\)
\(710\) 0 0
\(711\) −5.22452e35 −1.17402
\(712\) 2.54403e35 0.561724
\(713\) 2.94147e35 0.638183
\(714\) 2.09680e35 0.447023
\(715\) 0 0
\(716\) 7.42821e35 1.52922
\(717\) 2.81256e35 0.569000
\(718\) −3.21200e35 −0.638588
\(719\) −9.36871e35 −1.83050 −0.915248 0.402892i \(-0.868005\pi\)
−0.915248 + 0.402892i \(0.868005\pi\)
\(720\) 0 0
\(721\) −2.13910e35 −0.403684
\(722\) −6.36757e35 −1.18102
\(723\) 2.14856e34 0.0391669
\(724\) −1.21256e36 −2.17256
\(725\) 0 0
\(726\) 1.11525e35 0.193047
\(727\) −3.25564e35 −0.553931 −0.276966 0.960880i \(-0.589329\pi\)
−0.276966 + 0.960880i \(0.589329\pi\)
\(728\) −2.69787e35 −0.451210
\(729\) 2.92991e35 0.481681
\(730\) 0 0
\(731\) 1.21779e36 1.93466
\(732\) −2.19935e35 −0.343483
\(733\) −2.07689e35 −0.318870 −0.159435 0.987208i \(-0.550967\pi\)
−0.159435 + 0.987208i \(0.550967\pi\)
\(734\) 1.70223e36 2.56931
\(735\) 0 0
\(736\) −6.00776e35 −0.876475
\(737\) −3.45092e35 −0.494984
\(738\) 4.28487e35 0.604273
\(739\) −1.12620e36 −1.56156 −0.780781 0.624805i \(-0.785179\pi\)
−0.780781 + 0.624805i \(0.785179\pi\)
\(740\) 0 0
\(741\) 2.71449e35 0.363881
\(742\) −7.57774e35 −0.998829
\(743\) −7.41657e35 −0.961264 −0.480632 0.876922i \(-0.659593\pi\)
−0.480632 + 0.876922i \(0.659593\pi\)
\(744\) −3.29812e35 −0.420344
\(745\) 0 0
\(746\) 4.28304e35 0.527858
\(747\) 5.54161e35 0.671628
\(748\) −1.53562e36 −1.83027
\(749\) −5.38685e35 −0.631411
\(750\) 0 0
\(751\) −9.24971e35 −1.04865 −0.524323 0.851520i \(-0.675681\pi\)
−0.524323 + 0.851520i \(0.675681\pi\)
\(752\) 1.50975e34 0.0168338
\(753\) −2.37096e35 −0.260008
\(754\) 3.02071e36 3.25812
\(755\) 0 0
\(756\) −5.58479e35 −0.582753
\(757\) 2.20319e35 0.226127 0.113064 0.993588i \(-0.463934\pi\)
0.113064 + 0.993588i \(0.463934\pi\)
\(758\) −4.88369e35 −0.493041
\(759\) 4.48852e35 0.445739
\(760\) 0 0
\(761\) −3.87186e35 −0.372059 −0.186029 0.982544i \(-0.559562\pi\)
−0.186029 + 0.982544i \(0.559562\pi\)
\(762\) −5.53427e35 −0.523147
\(763\) −2.71054e35 −0.252057
\(764\) −3.74176e34 −0.0342302
\(765\) 0 0
\(766\) −1.54507e36 −1.36801
\(767\) 2.15750e36 1.87936
\(768\) 6.58601e35 0.564426
\(769\) −5.73844e35 −0.483854 −0.241927 0.970294i \(-0.577779\pi\)
−0.241927 + 0.970294i \(0.577779\pi\)
\(770\) 0 0
\(771\) 5.17765e35 0.422623
\(772\) −3.52289e36 −2.82932
\(773\) −1.94109e35 −0.153392 −0.0766959 0.997055i \(-0.524437\pi\)
−0.0766959 + 0.997055i \(0.524437\pi\)
\(774\) −2.10224e36 −1.63463
\(775\) 0 0
\(776\) −6.78267e35 −0.510657
\(777\) −1.16362e35 −0.0862080
\(778\) 2.79766e36 2.03962
\(779\) 4.05665e35 0.291038
\(780\) 0 0
\(781\) 3.67257e35 0.255171
\(782\) 2.61221e36 1.78617
\(783\) 2.37360e36 1.59730
\(784\) 1.79344e34 0.0118778
\(785\) 0 0
\(786\) −1.07235e36 −0.687949
\(787\) −7.50226e35 −0.473705 −0.236852 0.971546i \(-0.576116\pi\)
−0.236852 + 0.971546i \(0.576116\pi\)
\(788\) −2.56163e35 −0.159198
\(789\) 8.12912e35 0.497257
\(790\) 0 0
\(791\) 5.80607e35 0.344093
\(792\) 1.00625e36 0.587004
\(793\) 7.80622e35 0.448256
\(794\) −3.73434e36 −2.11085
\(795\) 0 0
\(796\) −2.03373e36 −1.11399
\(797\) 2.78320e36 1.50077 0.750387 0.660998i \(-0.229867\pi\)
0.750387 + 0.660998i \(0.229867\pi\)
\(798\) −3.42686e35 −0.181911
\(799\) −2.96973e36 −1.55197
\(800\) 0 0
\(801\) −7.47636e35 −0.378690
\(802\) 9.78801e35 0.488107
\(803\) −3.96008e35 −0.194429
\(804\) −1.07010e36 −0.517276
\(805\) 0 0
\(806\) 3.08391e36 1.44515
\(807\) −1.39738e35 −0.0644754
\(808\) −2.00357e36 −0.910252
\(809\) 2.84960e36 1.27476 0.637379 0.770550i \(-0.280018\pi\)
0.637379 + 0.770550i \(0.280018\pi\)
\(810\) 0 0
\(811\) −2.18452e36 −0.947535 −0.473767 0.880650i \(-0.657106\pi\)
−0.473767 + 0.880650i \(0.657106\pi\)
\(812\) −2.35338e36 −1.00518
\(813\) 1.50804e36 0.634282
\(814\) 1.38090e36 0.571950
\(815\) 0 0
\(816\) 2.53487e34 0.0101819
\(817\) −1.99027e36 −0.787291
\(818\) 5.56920e36 2.16958
\(819\) 7.92844e35 0.304186
\(820\) 0 0
\(821\) −3.44892e36 −1.28349 −0.641746 0.766917i \(-0.721790\pi\)
−0.641746 + 0.766917i \(0.721790\pi\)
\(822\) 4.74724e36 1.73998
\(823\) 6.75510e35 0.243856 0.121928 0.992539i \(-0.461092\pi\)
0.121928 + 0.992539i \(0.461092\pi\)
\(824\) 2.98803e36 1.06242
\(825\) 0 0
\(826\) −2.72370e36 −0.939527
\(827\) −1.98402e36 −0.674105 −0.337053 0.941486i \(-0.609430\pi\)
−0.337053 + 0.941486i \(0.609430\pi\)
\(828\) −2.78286e36 −0.931349
\(829\) 1.25430e36 0.413496 0.206748 0.978394i \(-0.433712\pi\)
0.206748 + 0.978394i \(0.433712\pi\)
\(830\) 0 0
\(831\) 1.57545e36 0.503955
\(832\) −6.24537e36 −1.96796
\(833\) −3.52777e36 −1.09506
\(834\) −1.34985e36 −0.412771
\(835\) 0 0
\(836\) 2.50971e36 0.744808
\(837\) 2.42326e36 0.708487
\(838\) −1.04488e37 −3.00965
\(839\) 3.59072e36 1.01896 0.509480 0.860483i \(-0.329838\pi\)
0.509480 + 0.860483i \(0.329838\pi\)
\(840\) 0 0
\(841\) 6.37178e36 1.75514
\(842\) −4.61106e36 −1.25141
\(843\) −2.01214e36 −0.538038
\(844\) 1.13633e36 0.299381
\(845\) 0 0
\(846\) 5.12656e36 1.31128
\(847\) 3.08390e35 0.0777245
\(848\) −9.16091e34 −0.0227505
\(849\) −2.70599e36 −0.662185
\(850\) 0 0
\(851\) −1.44964e36 −0.344462
\(852\) 1.13883e36 0.266664
\(853\) −4.77260e35 −0.110127 −0.0550633 0.998483i \(-0.517536\pi\)
−0.0550633 + 0.998483i \(0.517536\pi\)
\(854\) −9.85483e35 −0.224092
\(855\) 0 0
\(856\) 7.52468e36 1.66175
\(857\) 3.37504e36 0.734545 0.367272 0.930113i \(-0.380292\pi\)
0.367272 + 0.930113i \(0.380292\pi\)
\(858\) 4.70588e36 1.00937
\(859\) 4.53153e36 0.957923 0.478961 0.877836i \(-0.341013\pi\)
0.478961 + 0.877836i \(0.341013\pi\)
\(860\) 0 0
\(861\) −5.92608e35 −0.121683
\(862\) −4.41394e35 −0.0893276
\(863\) 2.57027e36 0.512677 0.256338 0.966587i \(-0.417484\pi\)
0.256338 + 0.966587i \(0.417484\pi\)
\(864\) −4.94935e36 −0.973030
\(865\) 0 0
\(866\) −3.38162e34 −0.00645878
\(867\) −1.91914e36 −0.361299
\(868\) −2.40262e36 −0.445849
\(869\) −8.57490e36 −1.56849
\(870\) 0 0
\(871\) 3.79814e36 0.675062
\(872\) 3.78625e36 0.663366
\(873\) 1.99328e36 0.344262
\(874\) −4.26920e36 −0.726865
\(875\) 0 0
\(876\) −1.22798e36 −0.203185
\(877\) −1.02943e37 −1.67919 −0.839595 0.543213i \(-0.817208\pi\)
−0.839595 + 0.543213i \(0.817208\pi\)
\(878\) 3.34234e36 0.537488
\(879\) 3.34106e36 0.529692
\(880\) 0 0
\(881\) −1.32860e36 −0.204737 −0.102369 0.994747i \(-0.532642\pi\)
−0.102369 + 0.994747i \(0.532642\pi\)
\(882\) 6.08989e36 0.925235
\(883\) −8.24109e36 −1.23446 −0.617228 0.786784i \(-0.711745\pi\)
−0.617228 + 0.786784i \(0.711745\pi\)
\(884\) 1.69013e37 2.49613
\(885\) 0 0
\(886\) −1.44937e37 −2.08093
\(887\) 2.45432e36 0.347445 0.173722 0.984795i \(-0.444421\pi\)
0.173722 + 0.984795i \(0.444421\pi\)
\(888\) 1.62541e36 0.226883
\(889\) −1.53035e36 −0.210629
\(890\) 0 0
\(891\) −7.38400e35 −0.0988144
\(892\) 1.60286e37 2.11512
\(893\) 4.85351e36 0.631557
\(894\) −1.47604e36 −0.189399
\(895\) 0 0
\(896\) 4.83989e36 0.603928
\(897\) −4.94014e36 −0.607902
\(898\) 2.33778e37 2.83693
\(899\) 1.02114e37 1.22205
\(900\) 0 0
\(901\) 1.80199e37 2.09745
\(902\) 7.03267e36 0.807307
\(903\) 2.90745e36 0.329166
\(904\) −8.11028e36 −0.905587
\(905\) 0 0
\(906\) −1.22713e36 −0.133287
\(907\) −7.87438e36 −0.843578 −0.421789 0.906694i \(-0.638598\pi\)
−0.421789 + 0.906694i \(0.638598\pi\)
\(908\) −1.56312e37 −1.65166
\(909\) 5.88804e36 0.613652
\(910\) 0 0
\(911\) −1.36078e37 −1.37978 −0.689889 0.723915i \(-0.742341\pi\)
−0.689889 + 0.723915i \(0.742341\pi\)
\(912\) −4.14280e34 −0.00414342
\(913\) 9.09534e36 0.897293
\(914\) −3.71758e36 −0.361770
\(915\) 0 0
\(916\) 7.50112e36 0.710286
\(917\) −2.96530e36 −0.276982
\(918\) 2.15201e37 1.98294
\(919\) −9.86137e35 −0.0896382 −0.0448191 0.998995i \(-0.514271\pi\)
−0.0448191 + 0.998995i \(0.514271\pi\)
\(920\) 0 0
\(921\) −5.86315e35 −0.0518663
\(922\) −7.56338e36 −0.660054
\(923\) −4.04209e36 −0.348004
\(924\) −3.66626e36 −0.311404
\(925\) 0 0
\(926\) −9.33494e36 −0.771746
\(927\) −8.78117e36 −0.716236
\(928\) −2.08561e37 −1.67835
\(929\) 3.38052e36 0.268403 0.134202 0.990954i \(-0.457153\pi\)
0.134202 + 0.990954i \(0.457153\pi\)
\(930\) 0 0
\(931\) 5.76553e36 0.445623
\(932\) 5.45304e36 0.415853
\(933\) −1.28554e37 −0.967305
\(934\) −3.21709e37 −2.38851
\(935\) 0 0
\(936\) −1.10749e37 −0.800559
\(937\) 1.23256e37 0.879151 0.439576 0.898206i \(-0.355129\pi\)
0.439576 + 0.898206i \(0.355129\pi\)
\(938\) −4.79489e36 −0.337476
\(939\) 8.83912e36 0.613888
\(940\) 0 0
\(941\) 6.55312e36 0.443178 0.221589 0.975140i \(-0.428876\pi\)
0.221589 + 0.975140i \(0.428876\pi\)
\(942\) −3.23040e36 −0.215586
\(943\) −7.38276e36 −0.486208
\(944\) −3.29275e35 −0.0213997
\(945\) 0 0
\(946\) −3.45036e37 −2.18386
\(947\) −1.42694e37 −0.891316 −0.445658 0.895203i \(-0.647030\pi\)
−0.445658 + 0.895203i \(0.647030\pi\)
\(948\) −2.65900e37 −1.63913
\(949\) 4.35853e36 0.265163
\(950\) 0 0
\(951\) −1.54732e37 −0.916905
\(952\) −8.09918e36 −0.473673
\(953\) −2.38480e36 −0.137655 −0.0688274 0.997629i \(-0.521926\pi\)
−0.0688274 + 0.997629i \(0.521926\pi\)
\(954\) −3.11072e37 −1.77217
\(955\) 0 0
\(956\) −2.86202e37 −1.58836
\(957\) 1.55820e37 0.853543
\(958\) 4.02643e37 2.17697
\(959\) 1.31272e37 0.700549
\(960\) 0 0
\(961\) −8.80775e36 −0.457955
\(962\) −1.51984e37 −0.780028
\(963\) −2.21134e37 −1.12028
\(964\) −2.18635e36 −0.109334
\(965\) 0 0
\(966\) 6.23659e36 0.303902
\(967\) 1.64185e37 0.789774 0.394887 0.918730i \(-0.370784\pi\)
0.394887 + 0.918730i \(0.370784\pi\)
\(968\) −4.30778e36 −0.204556
\(969\) 8.14906e36 0.381997
\(970\) 0 0
\(971\) 2.07297e37 0.947007 0.473503 0.880792i \(-0.342989\pi\)
0.473503 + 0.880792i \(0.342989\pi\)
\(972\) −3.66821e37 −1.65434
\(973\) −3.73263e36 −0.166190
\(974\) 1.66060e37 0.729925
\(975\) 0 0
\(976\) −1.19137e35 −0.00510417
\(977\) 3.93106e36 0.166275 0.0831376 0.996538i \(-0.473506\pi\)
0.0831376 + 0.996538i \(0.473506\pi\)
\(978\) −2.15538e36 −0.0900093
\(979\) −1.22708e37 −0.505929
\(980\) 0 0
\(981\) −1.11270e37 −0.447213
\(982\) 7.10771e37 2.82056
\(983\) 9.80814e36 0.384298 0.192149 0.981366i \(-0.438454\pi\)
0.192149 + 0.981366i \(0.438454\pi\)
\(984\) 8.27792e36 0.320245
\(985\) 0 0
\(986\) 9.06837e37 3.42033
\(987\) −7.09017e36 −0.264054
\(988\) −2.76222e37 −1.01577
\(989\) 3.62212e37 1.31525
\(990\) 0 0
\(991\) −9.07369e36 −0.321265 −0.160632 0.987014i \(-0.551353\pi\)
−0.160632 + 0.987014i \(0.551353\pi\)
\(992\) −2.12925e37 −0.744441
\(993\) −1.02975e37 −0.355521
\(994\) 5.10287e36 0.173974
\(995\) 0 0
\(996\) 2.82038e37 0.937704
\(997\) 1.44463e37 0.474315 0.237158 0.971471i \(-0.423784\pi\)
0.237158 + 0.971471i \(0.423784\pi\)
\(998\) 2.74931e37 0.891439
\(999\) −1.19425e37 −0.382409
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 25.26.a.f.1.11 12
5.2 odd 4 5.26.b.a.4.11 yes 12
5.3 odd 4 5.26.b.a.4.2 12
5.4 even 2 inner 25.26.a.f.1.2 12
15.2 even 4 45.26.b.b.19.2 12
15.8 even 4 45.26.b.b.19.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5.26.b.a.4.2 12 5.3 odd 4
5.26.b.a.4.11 yes 12 5.2 odd 4
25.26.a.f.1.2 12 5.4 even 2 inner
25.26.a.f.1.11 12 1.1 even 1 trivial
45.26.b.b.19.2 12 15.2 even 4
45.26.b.b.19.11 12 15.8 even 4