Properties

Label 25.26
Level 25
Weight 26
Dimension 566
Nonzero newspaces 4
Sturm bound 1300
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 25 = 5^{2} \)
Weight: \( k \) = \( 26 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(1300\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_1(25))\).

Total New Old
Modular forms 639 587 52
Cusp forms 611 566 45
Eisenstein series 28 21 7

Trace form

\( 566 q + 8138 q^{2} + 932194 q^{3} + 67111166 q^{4} - 51693845 q^{5} - 24674084018 q^{6} - 130328049202 q^{7} + 192500599910 q^{8} + 5592654983229 q^{9} - 3201442653520 q^{10} + 32495626235442 q^{11} + 117136828552278 q^{12}+ \cdots + 18\!\cdots\!88 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_1(25))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
25.26.a \(\chi_{25}(1, \cdot)\) 25.26.a.a 1 1
25.26.a.b 4
25.26.a.c 5
25.26.a.d 8
25.26.a.e 8
25.26.a.f 12
25.26.b \(\chi_{25}(24, \cdot)\) 25.26.b.a 2 1
25.26.b.b 8
25.26.b.c 10
25.26.b.d 16
25.26.d \(\chi_{25}(6, \cdot)\) n/a 244 4
25.26.e \(\chi_{25}(4, \cdot)\) n/a 248 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_1(25))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_1(25)) \cong \) \(S_{26}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 3}\)\(\oplus\)\(S_{26}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)