Properties

Label 2475.4.a.bm.1.3
Level $2475$
Weight $4$
Character 2475.1
Self dual yes
Analytic conductor $146.030$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2475,4,Mod(1,2475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2475.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2475.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,4,0,46,0,0,38,72,0,0,-55] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(146.029727264\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 41x^{3} + 3x^{2} + 294x - 200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 825)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.729174\) of defining polynomial
Character \(\chi\) \(=\) 2475.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.270826 q^{2} -7.92665 q^{4} +33.4133 q^{7} -4.31336 q^{8} -11.0000 q^{11} +33.5174 q^{13} +9.04920 q^{14} +62.2451 q^{16} -71.1540 q^{17} -48.9667 q^{19} -2.97909 q^{22} +66.7490 q^{23} +9.07738 q^{26} -264.856 q^{28} +66.8864 q^{29} +145.759 q^{31} +51.3644 q^{32} -19.2704 q^{34} +37.8491 q^{37} -13.2615 q^{38} +344.036 q^{41} -34.4830 q^{43} +87.1932 q^{44} +18.0774 q^{46} -270.887 q^{47} +773.448 q^{49} -265.681 q^{52} +666.088 q^{53} -144.123 q^{56} +18.1146 q^{58} -876.971 q^{59} +783.523 q^{61} +39.4753 q^{62} -484.050 q^{64} -876.724 q^{67} +564.013 q^{68} +523.428 q^{71} -91.0973 q^{73} +10.2505 q^{74} +388.142 q^{76} -367.546 q^{77} -96.9287 q^{79} +93.1741 q^{82} -1395.68 q^{83} -9.33889 q^{86} +47.4469 q^{88} -508.117 q^{89} +1119.93 q^{91} -529.096 q^{92} -73.3634 q^{94} +644.082 q^{97} +209.470 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 46 q^{4} + 38 q^{7} + 72 q^{8} - 55 q^{11} - 43 q^{13} - 55 q^{14} + 634 q^{16} + 150 q^{17} - 337 q^{19} - 44 q^{22} - 201 q^{23} - 359 q^{26} + 441 q^{28} + 153 q^{29} + 263 q^{31} + 280 q^{32}+ \cdots + 9417 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.270826 0.0957515 0.0478758 0.998853i \(-0.484755\pi\)
0.0478758 + 0.998853i \(0.484755\pi\)
\(3\) 0 0
\(4\) −7.92665 −0.990832
\(5\) 0 0
\(6\) 0 0
\(7\) 33.4133 1.80415 0.902074 0.431581i \(-0.142044\pi\)
0.902074 + 0.431581i \(0.142044\pi\)
\(8\) −4.31336 −0.190625
\(9\) 0 0
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) 0 0
\(13\) 33.5174 0.715081 0.357540 0.933898i \(-0.383615\pi\)
0.357540 + 0.933898i \(0.383615\pi\)
\(14\) 9.04920 0.172750
\(15\) 0 0
\(16\) 62.2451 0.972579
\(17\) −71.1540 −1.01514 −0.507570 0.861610i \(-0.669456\pi\)
−0.507570 + 0.861610i \(0.669456\pi\)
\(18\) 0 0
\(19\) −48.9667 −0.591249 −0.295625 0.955304i \(-0.595528\pi\)
−0.295625 + 0.955304i \(0.595528\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.97909 −0.0288702
\(23\) 66.7490 0.605136 0.302568 0.953128i \(-0.402156\pi\)
0.302568 + 0.953128i \(0.402156\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 9.07738 0.0684701
\(27\) 0 0
\(28\) −264.856 −1.78761
\(29\) 66.8864 0.428293 0.214146 0.976802i \(-0.431303\pi\)
0.214146 + 0.976802i \(0.431303\pi\)
\(30\) 0 0
\(31\) 145.759 0.844486 0.422243 0.906483i \(-0.361243\pi\)
0.422243 + 0.906483i \(0.361243\pi\)
\(32\) 51.3644 0.283751
\(33\) 0 0
\(34\) −19.2704 −0.0972013
\(35\) 0 0
\(36\) 0 0
\(37\) 37.8491 0.168172 0.0840859 0.996459i \(-0.473203\pi\)
0.0840859 + 0.996459i \(0.473203\pi\)
\(38\) −13.2615 −0.0566130
\(39\) 0 0
\(40\) 0 0
\(41\) 344.036 1.31047 0.655237 0.755423i \(-0.272569\pi\)
0.655237 + 0.755423i \(0.272569\pi\)
\(42\) 0 0
\(43\) −34.4830 −0.122293 −0.0611465 0.998129i \(-0.519476\pi\)
−0.0611465 + 0.998129i \(0.519476\pi\)
\(44\) 87.1932 0.298747
\(45\) 0 0
\(46\) 18.0774 0.0579427
\(47\) −270.887 −0.840701 −0.420351 0.907362i \(-0.638093\pi\)
−0.420351 + 0.907362i \(0.638093\pi\)
\(48\) 0 0
\(49\) 773.448 2.25495
\(50\) 0 0
\(51\) 0 0
\(52\) −265.681 −0.708524
\(53\) 666.088 1.72631 0.863154 0.504941i \(-0.168486\pi\)
0.863154 + 0.504941i \(0.168486\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −144.123 −0.343916
\(57\) 0 0
\(58\) 18.1146 0.0410097
\(59\) −876.971 −1.93512 −0.967559 0.252645i \(-0.918699\pi\)
−0.967559 + 0.252645i \(0.918699\pi\)
\(60\) 0 0
\(61\) 783.523 1.64459 0.822294 0.569063i \(-0.192694\pi\)
0.822294 + 0.569063i \(0.192694\pi\)
\(62\) 39.4753 0.0808608
\(63\) 0 0
\(64\) −484.050 −0.945409
\(65\) 0 0
\(66\) 0 0
\(67\) −876.724 −1.59864 −0.799320 0.600906i \(-0.794807\pi\)
−0.799320 + 0.600906i \(0.794807\pi\)
\(68\) 564.013 1.00583
\(69\) 0 0
\(70\) 0 0
\(71\) 523.428 0.874922 0.437461 0.899237i \(-0.355878\pi\)
0.437461 + 0.899237i \(0.355878\pi\)
\(72\) 0 0
\(73\) −91.0973 −0.146057 −0.0730283 0.997330i \(-0.523266\pi\)
−0.0730283 + 0.997330i \(0.523266\pi\)
\(74\) 10.2505 0.0161027
\(75\) 0 0
\(76\) 388.142 0.585829
\(77\) −367.546 −0.543971
\(78\) 0 0
\(79\) −96.9287 −0.138042 −0.0690211 0.997615i \(-0.521988\pi\)
−0.0690211 + 0.997615i \(0.521988\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 93.1741 0.125480
\(83\) −1395.68 −1.84574 −0.922868 0.385116i \(-0.874161\pi\)
−0.922868 + 0.385116i \(0.874161\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −9.33889 −0.0117097
\(87\) 0 0
\(88\) 47.4469 0.0574757
\(89\) −508.117 −0.605172 −0.302586 0.953122i \(-0.597850\pi\)
−0.302586 + 0.953122i \(0.597850\pi\)
\(90\) 0 0
\(91\) 1119.93 1.29011
\(92\) −529.096 −0.599588
\(93\) 0 0
\(94\) −73.3634 −0.0804984
\(95\) 0 0
\(96\) 0 0
\(97\) 644.082 0.674192 0.337096 0.941470i \(-0.390555\pi\)
0.337096 + 0.941470i \(0.390555\pi\)
\(98\) 209.470 0.215915
\(99\) 0 0
\(100\) 0 0
\(101\) −1485.24 −1.46324 −0.731618 0.681715i \(-0.761234\pi\)
−0.731618 + 0.681715i \(0.761234\pi\)
\(102\) 0 0
\(103\) −605.952 −0.579672 −0.289836 0.957076i \(-0.593601\pi\)
−0.289836 + 0.957076i \(0.593601\pi\)
\(104\) −144.572 −0.136312
\(105\) 0 0
\(106\) 180.394 0.165297
\(107\) −352.908 −0.318850 −0.159425 0.987210i \(-0.550964\pi\)
−0.159425 + 0.987210i \(0.550964\pi\)
\(108\) 0 0
\(109\) 1413.29 1.24191 0.620957 0.783844i \(-0.286744\pi\)
0.620957 + 0.783844i \(0.286744\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2079.81 1.75468
\(113\) 103.753 0.0863741 0.0431870 0.999067i \(-0.486249\pi\)
0.0431870 + 0.999067i \(0.486249\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −530.185 −0.424366
\(117\) 0 0
\(118\) −237.507 −0.185291
\(119\) −2377.49 −1.83146
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 212.199 0.157472
\(123\) 0 0
\(124\) −1155.38 −0.836743
\(125\) 0 0
\(126\) 0 0
\(127\) 1576.66 1.10162 0.550809 0.834631i \(-0.314319\pi\)
0.550809 + 0.834631i \(0.314319\pi\)
\(128\) −542.009 −0.374276
\(129\) 0 0
\(130\) 0 0
\(131\) 1085.16 0.723747 0.361873 0.932227i \(-0.382137\pi\)
0.361873 + 0.932227i \(0.382137\pi\)
\(132\) 0 0
\(133\) −1636.14 −1.06670
\(134\) −237.440 −0.153072
\(135\) 0 0
\(136\) 306.913 0.193511
\(137\) 1389.46 0.866496 0.433248 0.901275i \(-0.357367\pi\)
0.433248 + 0.901275i \(0.357367\pi\)
\(138\) 0 0
\(139\) 500.066 0.305144 0.152572 0.988292i \(-0.451244\pi\)
0.152572 + 0.988292i \(0.451244\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 141.758 0.0837751
\(143\) −368.691 −0.215605
\(144\) 0 0
\(145\) 0 0
\(146\) −24.6715 −0.0139851
\(147\) 0 0
\(148\) −300.017 −0.166630
\(149\) −685.689 −0.377005 −0.188503 0.982073i \(-0.560363\pi\)
−0.188503 + 0.982073i \(0.560363\pi\)
\(150\) 0 0
\(151\) −1208.96 −0.651550 −0.325775 0.945447i \(-0.605625\pi\)
−0.325775 + 0.945447i \(0.605625\pi\)
\(152\) 211.211 0.112707
\(153\) 0 0
\(154\) −99.5412 −0.0520861
\(155\) 0 0
\(156\) 0 0
\(157\) 3322.47 1.68893 0.844465 0.535610i \(-0.179918\pi\)
0.844465 + 0.535610i \(0.179918\pi\)
\(158\) −26.2509 −0.0132178
\(159\) 0 0
\(160\) 0 0
\(161\) 2230.30 1.09176
\(162\) 0 0
\(163\) −2448.31 −1.17648 −0.588240 0.808686i \(-0.700179\pi\)
−0.588240 + 0.808686i \(0.700179\pi\)
\(164\) −2727.06 −1.29846
\(165\) 0 0
\(166\) −377.988 −0.176732
\(167\) −1518.71 −0.703720 −0.351860 0.936053i \(-0.614451\pi\)
−0.351860 + 0.936053i \(0.614451\pi\)
\(168\) 0 0
\(169\) −1073.59 −0.488660
\(170\) 0 0
\(171\) 0 0
\(172\) 273.334 0.121172
\(173\) 2636.80 1.15880 0.579399 0.815044i \(-0.303287\pi\)
0.579399 + 0.815044i \(0.303287\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −684.696 −0.293244
\(177\) 0 0
\(178\) −137.611 −0.0579461
\(179\) 1773.31 0.740466 0.370233 0.928939i \(-0.379278\pi\)
0.370233 + 0.928939i \(0.379278\pi\)
\(180\) 0 0
\(181\) 529.751 0.217547 0.108774 0.994067i \(-0.465308\pi\)
0.108774 + 0.994067i \(0.465308\pi\)
\(182\) 303.305 0.123530
\(183\) 0 0
\(184\) −287.912 −0.115354
\(185\) 0 0
\(186\) 0 0
\(187\) 782.694 0.306076
\(188\) 2147.23 0.832993
\(189\) 0 0
\(190\) 0 0
\(191\) −2061.93 −0.781130 −0.390565 0.920575i \(-0.627720\pi\)
−0.390565 + 0.920575i \(0.627720\pi\)
\(192\) 0 0
\(193\) 1637.24 0.610627 0.305314 0.952252i \(-0.401239\pi\)
0.305314 + 0.952252i \(0.401239\pi\)
\(194\) 174.434 0.0645550
\(195\) 0 0
\(196\) −6130.86 −2.23428
\(197\) 3414.86 1.23502 0.617510 0.786563i \(-0.288142\pi\)
0.617510 + 0.786563i \(0.288142\pi\)
\(198\) 0 0
\(199\) 3938.93 1.40313 0.701566 0.712605i \(-0.252485\pi\)
0.701566 + 0.712605i \(0.252485\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −402.242 −0.140107
\(203\) 2234.90 0.772704
\(204\) 0 0
\(205\) 0 0
\(206\) −164.108 −0.0555045
\(207\) 0 0
\(208\) 2086.29 0.695472
\(209\) 538.634 0.178268
\(210\) 0 0
\(211\) 3543.14 1.15602 0.578009 0.816031i \(-0.303830\pi\)
0.578009 + 0.816031i \(0.303830\pi\)
\(212\) −5279.85 −1.71048
\(213\) 0 0
\(214\) −95.5768 −0.0305304
\(215\) 0 0
\(216\) 0 0
\(217\) 4870.28 1.52358
\(218\) 382.756 0.118915
\(219\) 0 0
\(220\) 0 0
\(221\) −2384.90 −0.725907
\(222\) 0 0
\(223\) 850.930 0.255527 0.127763 0.991805i \(-0.459220\pi\)
0.127763 + 0.991805i \(0.459220\pi\)
\(224\) 1716.26 0.511929
\(225\) 0 0
\(226\) 28.0991 0.00827045
\(227\) 5040.56 1.47381 0.736903 0.675999i \(-0.236288\pi\)
0.736903 + 0.675999i \(0.236288\pi\)
\(228\) 0 0
\(229\) −3624.34 −1.04587 −0.522933 0.852374i \(-0.675162\pi\)
−0.522933 + 0.852374i \(0.675162\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −288.505 −0.0816434
\(233\) −2984.56 −0.839164 −0.419582 0.907718i \(-0.637823\pi\)
−0.419582 + 0.907718i \(0.637823\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6951.45 1.91738
\(237\) 0 0
\(238\) −643.887 −0.175366
\(239\) −1298.11 −0.351331 −0.175665 0.984450i \(-0.556208\pi\)
−0.175665 + 0.984450i \(0.556208\pi\)
\(240\) 0 0
\(241\) 3978.71 1.06345 0.531725 0.846917i \(-0.321544\pi\)
0.531725 + 0.846917i \(0.321544\pi\)
\(242\) 32.7700 0.00870469
\(243\) 0 0
\(244\) −6210.71 −1.62951
\(245\) 0 0
\(246\) 0 0
\(247\) −1641.24 −0.422791
\(248\) −628.710 −0.160980
\(249\) 0 0
\(250\) 0 0
\(251\) 1884.05 0.473784 0.236892 0.971536i \(-0.423871\pi\)
0.236892 + 0.971536i \(0.423871\pi\)
\(252\) 0 0
\(253\) −734.239 −0.182455
\(254\) 427.000 0.105482
\(255\) 0 0
\(256\) 3725.61 0.909572
\(257\) −4012.23 −0.973836 −0.486918 0.873448i \(-0.661879\pi\)
−0.486918 + 0.873448i \(0.661879\pi\)
\(258\) 0 0
\(259\) 1264.66 0.303407
\(260\) 0 0
\(261\) 0 0
\(262\) 293.890 0.0692999
\(263\) 290.429 0.0680935 0.0340468 0.999420i \(-0.489160\pi\)
0.0340468 + 0.999420i \(0.489160\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −443.110 −0.102138
\(267\) 0 0
\(268\) 6949.48 1.58398
\(269\) 6743.15 1.52839 0.764196 0.644985i \(-0.223136\pi\)
0.764196 + 0.644985i \(0.223136\pi\)
\(270\) 0 0
\(271\) 7182.11 1.60990 0.804949 0.593344i \(-0.202193\pi\)
0.804949 + 0.593344i \(0.202193\pi\)
\(272\) −4428.99 −0.987304
\(273\) 0 0
\(274\) 376.304 0.0829683
\(275\) 0 0
\(276\) 0 0
\(277\) 5708.35 1.23820 0.619100 0.785312i \(-0.287498\pi\)
0.619100 + 0.785312i \(0.287498\pi\)
\(278\) 135.431 0.0292180
\(279\) 0 0
\(280\) 0 0
\(281\) −8740.94 −1.85566 −0.927831 0.373002i \(-0.878328\pi\)
−0.927831 + 0.373002i \(0.878328\pi\)
\(282\) 0 0
\(283\) 7883.57 1.65593 0.827967 0.560777i \(-0.189497\pi\)
0.827967 + 0.560777i \(0.189497\pi\)
\(284\) −4149.03 −0.866900
\(285\) 0 0
\(286\) −99.8512 −0.0206445
\(287\) 11495.4 2.36429
\(288\) 0 0
\(289\) 149.897 0.0305102
\(290\) 0 0
\(291\) 0 0
\(292\) 722.097 0.144718
\(293\) 2328.54 0.464282 0.232141 0.972682i \(-0.425427\pi\)
0.232141 + 0.972682i \(0.425427\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −163.257 −0.0320578
\(297\) 0 0
\(298\) −185.703 −0.0360989
\(299\) 2237.25 0.432721
\(300\) 0 0
\(301\) −1152.19 −0.220635
\(302\) −327.419 −0.0623869
\(303\) 0 0
\(304\) −3047.94 −0.575037
\(305\) 0 0
\(306\) 0 0
\(307\) −2830.31 −0.526170 −0.263085 0.964773i \(-0.584740\pi\)
−0.263085 + 0.964773i \(0.584740\pi\)
\(308\) 2913.41 0.538984
\(309\) 0 0
\(310\) 0 0
\(311\) 6580.67 1.19986 0.599929 0.800053i \(-0.295196\pi\)
0.599929 + 0.800053i \(0.295196\pi\)
\(312\) 0 0
\(313\) 7837.96 1.41542 0.707712 0.706501i \(-0.249728\pi\)
0.707712 + 0.706501i \(0.249728\pi\)
\(314\) 899.813 0.161718
\(315\) 0 0
\(316\) 768.321 0.136777
\(317\) 5853.61 1.03713 0.518567 0.855037i \(-0.326466\pi\)
0.518567 + 0.855037i \(0.326466\pi\)
\(318\) 0 0
\(319\) −735.751 −0.129135
\(320\) 0 0
\(321\) 0 0
\(322\) 604.025 0.104537
\(323\) 3484.18 0.600201
\(324\) 0 0
\(325\) 0 0
\(326\) −663.066 −0.112650
\(327\) 0 0
\(328\) −1483.95 −0.249809
\(329\) −9051.23 −1.51675
\(330\) 0 0
\(331\) 5347.61 0.888010 0.444005 0.896024i \(-0.353557\pi\)
0.444005 + 0.896024i \(0.353557\pi\)
\(332\) 11063.1 1.82881
\(333\) 0 0
\(334\) −411.306 −0.0673823
\(335\) 0 0
\(336\) 0 0
\(337\) −2763.99 −0.446779 −0.223389 0.974729i \(-0.571712\pi\)
−0.223389 + 0.974729i \(0.571712\pi\)
\(338\) −290.755 −0.0467899
\(339\) 0 0
\(340\) 0 0
\(341\) −1603.35 −0.254622
\(342\) 0 0
\(343\) 14382.7 2.26412
\(344\) 148.737 0.0233121
\(345\) 0 0
\(346\) 714.114 0.110957
\(347\) 5038.66 0.779509 0.389754 0.920919i \(-0.372560\pi\)
0.389754 + 0.920919i \(0.372560\pi\)
\(348\) 0 0
\(349\) −7429.49 −1.13952 −0.569759 0.821812i \(-0.692963\pi\)
−0.569759 + 0.821812i \(0.692963\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −565.009 −0.0855542
\(353\) −3151.84 −0.475228 −0.237614 0.971360i \(-0.576365\pi\)
−0.237614 + 0.971360i \(0.576365\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4027.67 0.599623
\(357\) 0 0
\(358\) 480.259 0.0709008
\(359\) −903.954 −0.132894 −0.0664469 0.997790i \(-0.521166\pi\)
−0.0664469 + 0.997790i \(0.521166\pi\)
\(360\) 0 0
\(361\) −4461.26 −0.650424
\(362\) 143.470 0.0208305
\(363\) 0 0
\(364\) −8877.26 −1.27828
\(365\) 0 0
\(366\) 0 0
\(367\) −3978.31 −0.565848 −0.282924 0.959142i \(-0.591304\pi\)
−0.282924 + 0.959142i \(0.591304\pi\)
\(368\) 4154.79 0.588543
\(369\) 0 0
\(370\) 0 0
\(371\) 22256.2 3.11451
\(372\) 0 0
\(373\) 5493.67 0.762605 0.381302 0.924450i \(-0.375476\pi\)
0.381302 + 0.924450i \(0.375476\pi\)
\(374\) 211.974 0.0293073
\(375\) 0 0
\(376\) 1168.43 0.160259
\(377\) 2241.86 0.306264
\(378\) 0 0
\(379\) 3035.93 0.411465 0.205733 0.978608i \(-0.434042\pi\)
0.205733 + 0.978608i \(0.434042\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −558.424 −0.0747944
\(383\) −3556.77 −0.474524 −0.237262 0.971446i \(-0.576250\pi\)
−0.237262 + 0.971446i \(0.576250\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 443.408 0.0584685
\(387\) 0 0
\(388\) −5105.42 −0.668011
\(389\) 5211.56 0.679272 0.339636 0.940557i \(-0.389696\pi\)
0.339636 + 0.940557i \(0.389696\pi\)
\(390\) 0 0
\(391\) −4749.46 −0.614298
\(392\) −3336.16 −0.429851
\(393\) 0 0
\(394\) 924.835 0.118255
\(395\) 0 0
\(396\) 0 0
\(397\) 6547.28 0.827704 0.413852 0.910344i \(-0.364183\pi\)
0.413852 + 0.910344i \(0.364183\pi\)
\(398\) 1066.76 0.134352
\(399\) 0 0
\(400\) 0 0
\(401\) 1661.59 0.206922 0.103461 0.994634i \(-0.467008\pi\)
0.103461 + 0.994634i \(0.467008\pi\)
\(402\) 0 0
\(403\) 4885.45 0.603875
\(404\) 11773.0 1.44982
\(405\) 0 0
\(406\) 605.268 0.0739876
\(407\) −416.340 −0.0507057
\(408\) 0 0
\(409\) 7278.96 0.880004 0.440002 0.897997i \(-0.354978\pi\)
0.440002 + 0.897997i \(0.354978\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 4803.17 0.574357
\(413\) −29302.5 −3.49124
\(414\) 0 0
\(415\) 0 0
\(416\) 1721.60 0.202905
\(417\) 0 0
\(418\) 145.876 0.0170695
\(419\) 5892.15 0.686994 0.343497 0.939154i \(-0.388389\pi\)
0.343497 + 0.939154i \(0.388389\pi\)
\(420\) 0 0
\(421\) 11086.3 1.28340 0.641700 0.766955i \(-0.278229\pi\)
0.641700 + 0.766955i \(0.278229\pi\)
\(422\) 959.575 0.110690
\(423\) 0 0
\(424\) −2873.08 −0.329078
\(425\) 0 0
\(426\) 0 0
\(427\) 26180.1 2.96708
\(428\) 2797.38 0.315926
\(429\) 0 0
\(430\) 0 0
\(431\) −5658.06 −0.632341 −0.316170 0.948702i \(-0.602397\pi\)
−0.316170 + 0.948702i \(0.602397\pi\)
\(432\) 0 0
\(433\) −3065.03 −0.340176 −0.170088 0.985429i \(-0.554405\pi\)
−0.170088 + 0.985429i \(0.554405\pi\)
\(434\) 1319.00 0.145885
\(435\) 0 0
\(436\) −11202.7 −1.23053
\(437\) −3268.48 −0.357786
\(438\) 0 0
\(439\) −3017.50 −0.328058 −0.164029 0.986456i \(-0.552449\pi\)
−0.164029 + 0.986456i \(0.552449\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −645.893 −0.0695067
\(443\) 17098.3 1.83378 0.916888 0.399144i \(-0.130693\pi\)
0.916888 + 0.399144i \(0.130693\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 230.454 0.0244671
\(447\) 0 0
\(448\) −16173.7 −1.70566
\(449\) 10823.4 1.13762 0.568808 0.822470i \(-0.307405\pi\)
0.568808 + 0.822470i \(0.307405\pi\)
\(450\) 0 0
\(451\) −3784.40 −0.395123
\(452\) −822.415 −0.0855821
\(453\) 0 0
\(454\) 1365.12 0.141119
\(455\) 0 0
\(456\) 0 0
\(457\) 6859.01 0.702081 0.351040 0.936360i \(-0.385828\pi\)
0.351040 + 0.936360i \(0.385828\pi\)
\(458\) −981.567 −0.100143
\(459\) 0 0
\(460\) 0 0
\(461\) −9651.72 −0.975109 −0.487555 0.873093i \(-0.662111\pi\)
−0.487555 + 0.873093i \(0.662111\pi\)
\(462\) 0 0
\(463\) 4744.49 0.476232 0.238116 0.971237i \(-0.423470\pi\)
0.238116 + 0.971237i \(0.423470\pi\)
\(464\) 4163.35 0.416549
\(465\) 0 0
\(466\) −808.298 −0.0803512
\(467\) −11038.1 −1.09376 −0.546878 0.837213i \(-0.684184\pi\)
−0.546878 + 0.837213i \(0.684184\pi\)
\(468\) 0 0
\(469\) −29294.2 −2.88418
\(470\) 0 0
\(471\) 0 0
\(472\) 3782.69 0.368882
\(473\) 379.313 0.0368727
\(474\) 0 0
\(475\) 0 0
\(476\) 18845.5 1.81467
\(477\) 0 0
\(478\) −351.563 −0.0336404
\(479\) −17476.9 −1.66710 −0.833550 0.552444i \(-0.813695\pi\)
−0.833550 + 0.552444i \(0.813695\pi\)
\(480\) 0 0
\(481\) 1268.60 0.120256
\(482\) 1077.54 0.101827
\(483\) 0 0
\(484\) −959.125 −0.0900756
\(485\) 0 0
\(486\) 0 0
\(487\) −17014.6 −1.58317 −0.791586 0.611058i \(-0.790744\pi\)
−0.791586 + 0.611058i \(0.790744\pi\)
\(488\) −3379.61 −0.313500
\(489\) 0 0
\(490\) 0 0
\(491\) −19673.8 −1.80828 −0.904142 0.427233i \(-0.859488\pi\)
−0.904142 + 0.427233i \(0.859488\pi\)
\(492\) 0 0
\(493\) −4759.24 −0.434778
\(494\) −444.490 −0.0404829
\(495\) 0 0
\(496\) 9072.76 0.821329
\(497\) 17489.4 1.57849
\(498\) 0 0
\(499\) −15754.6 −1.41337 −0.706687 0.707526i \(-0.749811\pi\)
−0.706687 + 0.707526i \(0.749811\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 510.249 0.0453656
\(503\) −16457.2 −1.45883 −0.729414 0.684073i \(-0.760207\pi\)
−0.729414 + 0.684073i \(0.760207\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −198.851 −0.0174704
\(507\) 0 0
\(508\) −12497.6 −1.09152
\(509\) −13852.0 −1.20625 −0.603124 0.797647i \(-0.706078\pi\)
−0.603124 + 0.797647i \(0.706078\pi\)
\(510\) 0 0
\(511\) −3043.86 −0.263508
\(512\) 5345.06 0.461368
\(513\) 0 0
\(514\) −1086.62 −0.0932463
\(515\) 0 0
\(516\) 0 0
\(517\) 2979.76 0.253481
\(518\) 342.504 0.0290517
\(519\) 0 0
\(520\) 0 0
\(521\) 12295.8 1.03395 0.516976 0.856000i \(-0.327058\pi\)
0.516976 + 0.856000i \(0.327058\pi\)
\(522\) 0 0
\(523\) −1971.83 −0.164861 −0.0824305 0.996597i \(-0.526268\pi\)
−0.0824305 + 0.996597i \(0.526268\pi\)
\(524\) −8601.68 −0.717111
\(525\) 0 0
\(526\) 78.6557 0.00652006
\(527\) −10371.3 −0.857271
\(528\) 0 0
\(529\) −7711.57 −0.633810
\(530\) 0 0
\(531\) 0 0
\(532\) 12969.1 1.05692
\(533\) 11531.2 0.937095
\(534\) 0 0
\(535\) 0 0
\(536\) 3781.62 0.304741
\(537\) 0 0
\(538\) 1826.22 0.146346
\(539\) −8507.93 −0.679893
\(540\) 0 0
\(541\) −8849.45 −0.703267 −0.351634 0.936138i \(-0.614374\pi\)
−0.351634 + 0.936138i \(0.614374\pi\)
\(542\) 1945.10 0.154150
\(543\) 0 0
\(544\) −3654.79 −0.288047
\(545\) 0 0
\(546\) 0 0
\(547\) −10687.9 −0.835435 −0.417717 0.908577i \(-0.637170\pi\)
−0.417717 + 0.908577i \(0.637170\pi\)
\(548\) −11013.8 −0.858552
\(549\) 0 0
\(550\) 0 0
\(551\) −3275.21 −0.253228
\(552\) 0 0
\(553\) −3238.71 −0.249049
\(554\) 1545.97 0.118560
\(555\) 0 0
\(556\) −3963.85 −0.302346
\(557\) 23864.2 1.81537 0.907684 0.419655i \(-0.137849\pi\)
0.907684 + 0.419655i \(0.137849\pi\)
\(558\) 0 0
\(559\) −1155.78 −0.0874494
\(560\) 0 0
\(561\) 0 0
\(562\) −2367.28 −0.177682
\(563\) 13610.5 1.01886 0.509428 0.860513i \(-0.329857\pi\)
0.509428 + 0.860513i \(0.329857\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 2135.08 0.158558
\(567\) 0 0
\(568\) −2257.73 −0.166782
\(569\) −8564.56 −0.631011 −0.315505 0.948924i \(-0.602174\pi\)
−0.315505 + 0.948924i \(0.602174\pi\)
\(570\) 0 0
\(571\) 15329.9 1.12353 0.561764 0.827298i \(-0.310123\pi\)
0.561764 + 0.827298i \(0.310123\pi\)
\(572\) 2922.49 0.213628
\(573\) 0 0
\(574\) 3113.25 0.226384
\(575\) 0 0
\(576\) 0 0
\(577\) 9594.47 0.692241 0.346120 0.938190i \(-0.387499\pi\)
0.346120 + 0.938190i \(0.387499\pi\)
\(578\) 40.5959 0.00292140
\(579\) 0 0
\(580\) 0 0
\(581\) −46634.4 −3.32998
\(582\) 0 0
\(583\) −7326.97 −0.520501
\(584\) 392.935 0.0278421
\(585\) 0 0
\(586\) 630.629 0.0444557
\(587\) 16659.5 1.17140 0.585698 0.810530i \(-0.300821\pi\)
0.585698 + 0.810530i \(0.300821\pi\)
\(588\) 0 0
\(589\) −7137.33 −0.499302
\(590\) 0 0
\(591\) 0 0
\(592\) 2355.92 0.163560
\(593\) 459.030 0.0317877 0.0158939 0.999874i \(-0.494941\pi\)
0.0158939 + 0.999874i \(0.494941\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 5435.22 0.373549
\(597\) 0 0
\(598\) 605.906 0.0414337
\(599\) −869.305 −0.0592969 −0.0296485 0.999560i \(-0.509439\pi\)
−0.0296485 + 0.999560i \(0.509439\pi\)
\(600\) 0 0
\(601\) −5455.29 −0.370259 −0.185130 0.982714i \(-0.559271\pi\)
−0.185130 + 0.982714i \(0.559271\pi\)
\(602\) −312.043 −0.0211261
\(603\) 0 0
\(604\) 9583.03 0.645576
\(605\) 0 0
\(606\) 0 0
\(607\) −27152.9 −1.81565 −0.907826 0.419347i \(-0.862259\pi\)
−0.907826 + 0.419347i \(0.862259\pi\)
\(608\) −2515.15 −0.167768
\(609\) 0 0
\(610\) 0 0
\(611\) −9079.43 −0.601169
\(612\) 0 0
\(613\) 10313.6 0.679546 0.339773 0.940507i \(-0.389650\pi\)
0.339773 + 0.940507i \(0.389650\pi\)
\(614\) −766.521 −0.0503816
\(615\) 0 0
\(616\) 1585.36 0.103695
\(617\) −27148.4 −1.77140 −0.885699 0.464259i \(-0.846321\pi\)
−0.885699 + 0.464259i \(0.846321\pi\)
\(618\) 0 0
\(619\) 13110.4 0.851294 0.425647 0.904889i \(-0.360047\pi\)
0.425647 + 0.904889i \(0.360047\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1782.22 0.114888
\(623\) −16977.9 −1.09182
\(624\) 0 0
\(625\) 0 0
\(626\) 2122.72 0.135529
\(627\) 0 0
\(628\) −26336.1 −1.67345
\(629\) −2693.12 −0.170718
\(630\) 0 0
\(631\) 30199.9 1.90529 0.952647 0.304078i \(-0.0983482\pi\)
0.952647 + 0.304078i \(0.0983482\pi\)
\(632\) 418.088 0.0263143
\(633\) 0 0
\(634\) 1585.31 0.0993072
\(635\) 0 0
\(636\) 0 0
\(637\) 25924.0 1.61247
\(638\) −199.261 −0.0123649
\(639\) 0 0
\(640\) 0 0
\(641\) 8889.43 0.547756 0.273878 0.961764i \(-0.411694\pi\)
0.273878 + 0.961764i \(0.411694\pi\)
\(642\) 0 0
\(643\) 16570.2 1.01627 0.508137 0.861276i \(-0.330334\pi\)
0.508137 + 0.861276i \(0.330334\pi\)
\(644\) −17678.8 −1.08175
\(645\) 0 0
\(646\) 943.608 0.0574702
\(647\) −13356.3 −0.811576 −0.405788 0.913967i \(-0.633003\pi\)
−0.405788 + 0.913967i \(0.633003\pi\)
\(648\) 0 0
\(649\) 9646.69 0.583460
\(650\) 0 0
\(651\) 0 0
\(652\) 19406.9 1.16569
\(653\) 32689.5 1.95902 0.979510 0.201394i \(-0.0645473\pi\)
0.979510 + 0.201394i \(0.0645473\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 21414.6 1.27454
\(657\) 0 0
\(658\) −2451.31 −0.145231
\(659\) −16123.3 −0.953071 −0.476536 0.879155i \(-0.658108\pi\)
−0.476536 + 0.879155i \(0.658108\pi\)
\(660\) 0 0
\(661\) 22340.9 1.31461 0.657306 0.753624i \(-0.271696\pi\)
0.657306 + 0.753624i \(0.271696\pi\)
\(662\) 1448.27 0.0850283
\(663\) 0 0
\(664\) 6020.08 0.351844
\(665\) 0 0
\(666\) 0 0
\(667\) 4464.60 0.259175
\(668\) 12038.3 0.697268
\(669\) 0 0
\(670\) 0 0
\(671\) −8618.75 −0.495862
\(672\) 0 0
\(673\) 3415.65 0.195637 0.0978184 0.995204i \(-0.468814\pi\)
0.0978184 + 0.995204i \(0.468814\pi\)
\(674\) −748.562 −0.0427797
\(675\) 0 0
\(676\) 8509.94 0.484180
\(677\) 32841.9 1.86442 0.932212 0.361912i \(-0.117876\pi\)
0.932212 + 0.361912i \(0.117876\pi\)
\(678\) 0 0
\(679\) 21520.9 1.21634
\(680\) 0 0
\(681\) 0 0
\(682\) −434.228 −0.0243804
\(683\) −7227.43 −0.404905 −0.202452 0.979292i \(-0.564891\pi\)
−0.202452 + 0.979292i \(0.564891\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3895.21 0.216793
\(687\) 0 0
\(688\) −2146.39 −0.118940
\(689\) 22325.5 1.23445
\(690\) 0 0
\(691\) 15397.5 0.847682 0.423841 0.905737i \(-0.360681\pi\)
0.423841 + 0.905737i \(0.360681\pi\)
\(692\) −20901.0 −1.14817
\(693\) 0 0
\(694\) 1364.60 0.0746392
\(695\) 0 0
\(696\) 0 0
\(697\) −24479.6 −1.33032
\(698\) −2012.10 −0.109111
\(699\) 0 0
\(700\) 0 0
\(701\) 22130.1 1.19236 0.596180 0.802851i \(-0.296685\pi\)
0.596180 + 0.802851i \(0.296685\pi\)
\(702\) 0 0
\(703\) −1853.35 −0.0994315
\(704\) 5324.55 0.285052
\(705\) 0 0
\(706\) −853.601 −0.0455038
\(707\) −49626.7 −2.63989
\(708\) 0 0
\(709\) 10062.6 0.533018 0.266509 0.963832i \(-0.414130\pi\)
0.266509 + 0.963832i \(0.414130\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 2191.69 0.115361
\(713\) 9729.25 0.511029
\(714\) 0 0
\(715\) 0 0
\(716\) −14056.4 −0.733677
\(717\) 0 0
\(718\) −244.814 −0.0127248
\(719\) 18629.7 0.966303 0.483151 0.875537i \(-0.339492\pi\)
0.483151 + 0.875537i \(0.339492\pi\)
\(720\) 0 0
\(721\) −20246.9 −1.04581
\(722\) −1208.23 −0.0622791
\(723\) 0 0
\(724\) −4199.15 −0.215553
\(725\) 0 0
\(726\) 0 0
\(727\) 21605.8 1.10222 0.551112 0.834431i \(-0.314204\pi\)
0.551112 + 0.834431i \(0.314204\pi\)
\(728\) −4830.64 −0.245928
\(729\) 0 0
\(730\) 0 0
\(731\) 2453.60 0.124145
\(732\) 0 0
\(733\) −23668.1 −1.19264 −0.596318 0.802749i \(-0.703370\pi\)
−0.596318 + 0.802749i \(0.703370\pi\)
\(734\) −1077.43 −0.0541808
\(735\) 0 0
\(736\) 3428.52 0.171708
\(737\) 9643.96 0.482008
\(738\) 0 0
\(739\) −8475.82 −0.421906 −0.210953 0.977496i \(-0.567657\pi\)
−0.210953 + 0.977496i \(0.567657\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 6027.57 0.298220
\(743\) 14491.2 0.715520 0.357760 0.933813i \(-0.383541\pi\)
0.357760 + 0.933813i \(0.383541\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 1487.83 0.0730206
\(747\) 0 0
\(748\) −6204.15 −0.303270
\(749\) −11791.8 −0.575252
\(750\) 0 0
\(751\) 11780.5 0.572408 0.286204 0.958169i \(-0.407607\pi\)
0.286204 + 0.958169i \(0.407607\pi\)
\(752\) −16861.4 −0.817648
\(753\) 0 0
\(754\) 607.154 0.0293252
\(755\) 0 0
\(756\) 0 0
\(757\) −22616.7 −1.08589 −0.542945 0.839768i \(-0.682691\pi\)
−0.542945 + 0.839768i \(0.682691\pi\)
\(758\) 822.210 0.0393984
\(759\) 0 0
\(760\) 0 0
\(761\) −2037.48 −0.0970547 −0.0485273 0.998822i \(-0.515453\pi\)
−0.0485273 + 0.998822i \(0.515453\pi\)
\(762\) 0 0
\(763\) 47222.7 2.24060
\(764\) 16344.2 0.773968
\(765\) 0 0
\(766\) −963.268 −0.0454364
\(767\) −29393.8 −1.38377
\(768\) 0 0
\(769\) 16192.1 0.759298 0.379649 0.925131i \(-0.376045\pi\)
0.379649 + 0.925131i \(0.376045\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −12977.8 −0.605029
\(773\) 39726.3 1.84845 0.924227 0.381844i \(-0.124711\pi\)
0.924227 + 0.381844i \(0.124711\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −2778.16 −0.128518
\(777\) 0 0
\(778\) 1411.43 0.0650413
\(779\) −16846.3 −0.774817
\(780\) 0 0
\(781\) −5757.71 −0.263799
\(782\) −1286.28 −0.0588200
\(783\) 0 0
\(784\) 48143.3 2.19312
\(785\) 0 0
\(786\) 0 0
\(787\) 5160.53 0.233739 0.116870 0.993147i \(-0.462714\pi\)
0.116870 + 0.993147i \(0.462714\pi\)
\(788\) −27068.4 −1.22370
\(789\) 0 0
\(790\) 0 0
\(791\) 3466.73 0.155832
\(792\) 0 0
\(793\) 26261.6 1.17601
\(794\) 1773.17 0.0792539
\(795\) 0 0
\(796\) −31222.5 −1.39027
\(797\) 9247.76 0.411007 0.205504 0.978656i \(-0.434117\pi\)
0.205504 + 0.978656i \(0.434117\pi\)
\(798\) 0 0
\(799\) 19274.7 0.853430
\(800\) 0 0
\(801\) 0 0
\(802\) 450.002 0.0198131
\(803\) 1002.07 0.0440377
\(804\) 0 0
\(805\) 0 0
\(806\) 1323.11 0.0578220
\(807\) 0 0
\(808\) 6406.36 0.278930
\(809\) −29359.7 −1.27594 −0.637968 0.770063i \(-0.720225\pi\)
−0.637968 + 0.770063i \(0.720225\pi\)
\(810\) 0 0
\(811\) 13935.0 0.603358 0.301679 0.953410i \(-0.402453\pi\)
0.301679 + 0.953410i \(0.402453\pi\)
\(812\) −17715.2 −0.765620
\(813\) 0 0
\(814\) −112.756 −0.00485515
\(815\) 0 0
\(816\) 0 0
\(817\) 1688.52 0.0723057
\(818\) 1971.33 0.0842617
\(819\) 0 0
\(820\) 0 0
\(821\) −9965.28 −0.423618 −0.211809 0.977311i \(-0.567936\pi\)
−0.211809 + 0.977311i \(0.567936\pi\)
\(822\) 0 0
\(823\) 2339.58 0.0990920 0.0495460 0.998772i \(-0.484223\pi\)
0.0495460 + 0.998772i \(0.484223\pi\)
\(824\) 2613.69 0.110500
\(825\) 0 0
\(826\) −7935.89 −0.334292
\(827\) −15883.4 −0.667861 −0.333931 0.942598i \(-0.608375\pi\)
−0.333931 + 0.942598i \(0.608375\pi\)
\(828\) 0 0
\(829\) 4388.04 0.183839 0.0919196 0.995766i \(-0.470700\pi\)
0.0919196 + 0.995766i \(0.470700\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −16224.1 −0.676044
\(833\) −55034.0 −2.28909
\(834\) 0 0
\(835\) 0 0
\(836\) −4269.57 −0.176634
\(837\) 0 0
\(838\) 1595.75 0.0657807
\(839\) −33830.2 −1.39207 −0.696036 0.718007i \(-0.745055\pi\)
−0.696036 + 0.718007i \(0.745055\pi\)
\(840\) 0 0
\(841\) −19915.2 −0.816565
\(842\) 3002.45 0.122888
\(843\) 0 0
\(844\) −28085.2 −1.14542
\(845\) 0 0
\(846\) 0 0
\(847\) 4043.01 0.164013
\(848\) 41460.7 1.67897
\(849\) 0 0
\(850\) 0 0
\(851\) 2526.39 0.101767
\(852\) 0 0
\(853\) −26047.8 −1.04556 −0.522778 0.852469i \(-0.675104\pi\)
−0.522778 + 0.852469i \(0.675104\pi\)
\(854\) 7090.25 0.284102
\(855\) 0 0
\(856\) 1522.22 0.0607808
\(857\) 17210.7 0.686006 0.343003 0.939334i \(-0.388556\pi\)
0.343003 + 0.939334i \(0.388556\pi\)
\(858\) 0 0
\(859\) 27367.9 1.08706 0.543528 0.839391i \(-0.317088\pi\)
0.543528 + 0.839391i \(0.317088\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −1532.35 −0.0605476
\(863\) 34684.4 1.36810 0.684049 0.729436i \(-0.260217\pi\)
0.684049 + 0.729436i \(0.260217\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −830.092 −0.0325724
\(867\) 0 0
\(868\) −38605.0 −1.50961
\(869\) 1066.22 0.0416213
\(870\) 0 0
\(871\) −29385.5 −1.14316
\(872\) −6096.03 −0.236740
\(873\) 0 0
\(874\) −885.190 −0.0342586
\(875\) 0 0
\(876\) 0 0
\(877\) −45816.6 −1.76410 −0.882051 0.471153i \(-0.843838\pi\)
−0.882051 + 0.471153i \(0.843838\pi\)
\(878\) −817.217 −0.0314120
\(879\) 0 0
\(880\) 0 0
\(881\) 26404.8 1.00976 0.504881 0.863189i \(-0.331536\pi\)
0.504881 + 0.863189i \(0.331536\pi\)
\(882\) 0 0
\(883\) −33977.1 −1.29493 −0.647463 0.762097i \(-0.724170\pi\)
−0.647463 + 0.762097i \(0.724170\pi\)
\(884\) 18904.2 0.719252
\(885\) 0 0
\(886\) 4630.66 0.175587
\(887\) −3023.60 −0.114456 −0.0572280 0.998361i \(-0.518226\pi\)
−0.0572280 + 0.998361i \(0.518226\pi\)
\(888\) 0 0
\(889\) 52681.2 1.98748
\(890\) 0 0
\(891\) 0 0
\(892\) −6745.03 −0.253184
\(893\) 13264.5 0.497064
\(894\) 0 0
\(895\) 0 0
\(896\) −18110.3 −0.675249
\(897\) 0 0
\(898\) 2931.27 0.108929
\(899\) 9749.28 0.361687
\(900\) 0 0
\(901\) −47394.9 −1.75244
\(902\) −1024.92 −0.0378336
\(903\) 0 0
\(904\) −447.524 −0.0164651
\(905\) 0 0
\(906\) 0 0
\(907\) −23951.0 −0.876825 −0.438412 0.898774i \(-0.644459\pi\)
−0.438412 + 0.898774i \(0.644459\pi\)
\(908\) −39954.8 −1.46029
\(909\) 0 0
\(910\) 0 0
\(911\) −24198.9 −0.880071 −0.440035 0.897980i \(-0.645034\pi\)
−0.440035 + 0.897980i \(0.645034\pi\)
\(912\) 0 0
\(913\) 15352.5 0.556510
\(914\) 1857.60 0.0672253
\(915\) 0 0
\(916\) 28728.9 1.03628
\(917\) 36258.8 1.30575
\(918\) 0 0
\(919\) 11056.9 0.396880 0.198440 0.980113i \(-0.436413\pi\)
0.198440 + 0.980113i \(0.436413\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2613.94 −0.0933682
\(923\) 17543.9 0.625639
\(924\) 0 0
\(925\) 0 0
\(926\) 1284.93 0.0455999
\(927\) 0 0
\(928\) 3435.58 0.121529
\(929\) 48242.5 1.70375 0.851876 0.523744i \(-0.175465\pi\)
0.851876 + 0.523744i \(0.175465\pi\)
\(930\) 0 0
\(931\) −37873.2 −1.33324
\(932\) 23657.6 0.831470
\(933\) 0 0
\(934\) −2989.42 −0.104729
\(935\) 0 0
\(936\) 0 0
\(937\) 48721.9 1.69869 0.849346 0.527836i \(-0.176996\pi\)
0.849346 + 0.527836i \(0.176996\pi\)
\(938\) −7933.65 −0.276165
\(939\) 0 0
\(940\) 0 0
\(941\) 4978.66 0.172476 0.0862379 0.996275i \(-0.472515\pi\)
0.0862379 + 0.996275i \(0.472515\pi\)
\(942\) 0 0
\(943\) 22964.1 0.793015
\(944\) −54587.1 −1.88205
\(945\) 0 0
\(946\) 102.728 0.00353062
\(947\) 27711.4 0.950896 0.475448 0.879744i \(-0.342286\pi\)
0.475448 + 0.879744i \(0.342286\pi\)
\(948\) 0 0
\(949\) −3053.34 −0.104442
\(950\) 0 0
\(951\) 0 0
\(952\) 10255.0 0.349123
\(953\) −49175.6 −1.67152 −0.835758 0.549098i \(-0.814971\pi\)
−0.835758 + 0.549098i \(0.814971\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 10289.7 0.348109
\(957\) 0 0
\(958\) −4733.21 −0.159627
\(959\) 46426.6 1.56329
\(960\) 0 0
\(961\) −8545.37 −0.286844
\(962\) 343.571 0.0115147
\(963\) 0 0
\(964\) −31537.9 −1.05370
\(965\) 0 0
\(966\) 0 0
\(967\) 52678.5 1.75184 0.875918 0.482461i \(-0.160257\pi\)
0.875918 + 0.482461i \(0.160257\pi\)
\(968\) −521.916 −0.0173296
\(969\) 0 0
\(970\) 0 0
\(971\) −46877.5 −1.54930 −0.774651 0.632390i \(-0.782074\pi\)
−0.774651 + 0.632390i \(0.782074\pi\)
\(972\) 0 0
\(973\) 16708.8 0.550525
\(974\) −4608.00 −0.151591
\(975\) 0 0
\(976\) 48770.4 1.59949
\(977\) 1335.33 0.0437267 0.0218633 0.999761i \(-0.493040\pi\)
0.0218633 + 0.999761i \(0.493040\pi\)
\(978\) 0 0
\(979\) 5589.29 0.182466
\(980\) 0 0
\(981\) 0 0
\(982\) −5328.19 −0.173146
\(983\) 15102.0 0.490011 0.245005 0.969522i \(-0.421210\pi\)
0.245005 + 0.969522i \(0.421210\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1288.93 −0.0416306
\(987\) 0 0
\(988\) 13009.5 0.418915
\(989\) −2301.70 −0.0740039
\(990\) 0 0
\(991\) −45849.8 −1.46969 −0.734847 0.678233i \(-0.762746\pi\)
−0.734847 + 0.678233i \(0.762746\pi\)
\(992\) 7486.82 0.239624
\(993\) 0 0
\(994\) 4736.60 0.151143
\(995\) 0 0
\(996\) 0 0
\(997\) −49662.4 −1.57756 −0.788779 0.614678i \(-0.789286\pi\)
−0.788779 + 0.614678i \(0.789286\pi\)
\(998\) −4266.77 −0.135333
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.4.a.bm.1.3 5
3.2 odd 2 825.4.a.w.1.3 5
5.4 even 2 2475.4.a.bf.1.3 5
15.2 even 4 825.4.c.r.199.5 10
15.8 even 4 825.4.c.r.199.6 10
15.14 odd 2 825.4.a.z.1.3 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.4.a.w.1.3 5 3.2 odd 2
825.4.a.z.1.3 yes 5 15.14 odd 2
825.4.c.r.199.5 10 15.2 even 4
825.4.c.r.199.6 10 15.8 even 4
2475.4.a.bf.1.3 5 5.4 even 2
2475.4.a.bm.1.3 5 1.1 even 1 trivial