Properties

Label 2475.4
Level 2475
Weight 4
Dimension 463274
Nonzero newspaces 84
Sturm bound 1728000
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 84 \)
Sturm bound: \(1728000\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(2475))\).

Total New Old
Modular forms 652480 466594 185886
Cusp forms 643520 463274 180246
Eisenstein series 8960 3320 5640

Trace form

\( 463274 q - 161 q^{2} - 206 q^{3} - 93 q^{4} - 198 q^{5} - 358 q^{6} - 163 q^{7} + 13 q^{8} - 46 q^{9} - 340 q^{10} - 161 q^{11} - 672 q^{12} - 933 q^{13} - 2082 q^{14} - 592 q^{15} - 2041 q^{16} - 721 q^{17}+ \cdots + 16083 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(2475))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2475.4.a \(\chi_{2475}(1, \cdot)\) 2475.4.a.a 1 1
2475.4.a.b 1
2475.4.a.c 1
2475.4.a.d 1
2475.4.a.e 1
2475.4.a.f 1
2475.4.a.g 1
2475.4.a.h 1
2475.4.a.i 1
2475.4.a.j 1
2475.4.a.k 1
2475.4.a.l 2
2475.4.a.m 2
2475.4.a.n 2
2475.4.a.o 2
2475.4.a.p 2
2475.4.a.q 2
2475.4.a.r 2
2475.4.a.s 3
2475.4.a.t 3
2475.4.a.u 3
2475.4.a.v 3
2475.4.a.w 3
2475.4.a.x 3
2475.4.a.y 3
2475.4.a.z 3
2475.4.a.ba 3
2475.4.a.bb 4
2475.4.a.bc 4
2475.4.a.bd 4
2475.4.a.be 4
2475.4.a.bf 5
2475.4.a.bg 5
2475.4.a.bh 5
2475.4.a.bi 5
2475.4.a.bj 5
2475.4.a.bk 5
2475.4.a.bl 5
2475.4.a.bm 5
2475.4.a.bn 6
2475.4.a.bo 7
2475.4.a.bp 7
2475.4.a.bq 7
2475.4.a.br 7
2475.4.a.bs 7
2475.4.a.bt 7
2475.4.a.bu 10
2475.4.a.bv 10
2475.4.a.bw 10
2475.4.a.bx 10
2475.4.a.by 10
2475.4.a.bz 16
2475.4.a.ca 16
2475.4.c \(\chi_{2475}(199, \cdot)\) n/a 224 1
2475.4.d \(\chi_{2475}(2474, \cdot)\) n/a 216 1
2475.4.f \(\chi_{2475}(2276, \cdot)\) n/a 228 1
2475.4.i \(\chi_{2475}(826, \cdot)\) n/a 1140 2
2475.4.k \(\chi_{2475}(307, \cdot)\) n/a 536 2
2475.4.l \(\chi_{2475}(782, \cdot)\) n/a 360 2
2475.4.n \(\chi_{2475}(361, \cdot)\) n/a 1792 4
2475.4.o \(\chi_{2475}(676, \cdot)\) n/a 1128 4
2475.4.p \(\chi_{2475}(631, \cdot)\) n/a 1792 4
2475.4.q \(\chi_{2475}(181, \cdot)\) n/a 1792 4
2475.4.r \(\chi_{2475}(496, \cdot)\) n/a 1496 4
2475.4.s \(\chi_{2475}(91, \cdot)\) n/a 1792 4
2475.4.u \(\chi_{2475}(626, \cdot)\) n/a 1356 2
2475.4.w \(\chi_{2475}(824, \cdot)\) n/a 1288 2
2475.4.z \(\chi_{2475}(1024, \cdot)\) n/a 1080 2
2475.4.ba \(\chi_{2475}(1304, \cdot)\) n/a 1440 4
2475.4.bd \(\chi_{2475}(379, \cdot)\) n/a 1792 4
2475.4.bf \(\chi_{2475}(296, \cdot)\) n/a 1440 4
2475.4.bl \(\chi_{2475}(1106, \cdot)\) n/a 1440 4
2475.4.bn \(\chi_{2475}(611, \cdot)\) n/a 1440 4
2475.4.bq \(\chi_{2475}(701, \cdot)\) n/a 912 4
2475.4.br \(\chi_{2475}(116, \cdot)\) n/a 1440 4
2475.4.bt \(\chi_{2475}(694, \cdot)\) n/a 1504 4
2475.4.bw \(\chi_{2475}(134, \cdot)\) n/a 1440 4
2475.4.bz \(\chi_{2475}(809, \cdot)\) n/a 1440 4
2475.4.ca \(\chi_{2475}(899, \cdot)\) n/a 864 4
2475.4.cc \(\chi_{2475}(359, \cdot)\) n/a 1440 4
2475.4.cd \(\chi_{2475}(289, \cdot)\) n/a 1792 4
2475.4.cf \(\chi_{2475}(874, \cdot)\) n/a 1072 4
2475.4.cg \(\chi_{2475}(64, \cdot)\) n/a 1792 4
2475.4.cj \(\chi_{2475}(559, \cdot)\) n/a 1792 4
2475.4.cm \(\chi_{2475}(494, \cdot)\) n/a 1440 4
2475.4.co \(\chi_{2475}(161, \cdot)\) n/a 1440 4
2475.4.cq \(\chi_{2475}(518, \cdot)\) n/a 2160 4
2475.4.ct \(\chi_{2475}(43, \cdot)\) n/a 2576 4
2475.4.cu \(\chi_{2475}(31, \cdot)\) n/a 8608 8
2475.4.cv \(\chi_{2475}(166, \cdot)\) n/a 7200 8
2475.4.cw \(\chi_{2475}(196, \cdot)\) n/a 8608 8
2475.4.cx \(\chi_{2475}(421, \cdot)\) n/a 8608 8
2475.4.cy \(\chi_{2475}(301, \cdot)\) n/a 5424 8
2475.4.cz \(\chi_{2475}(16, \cdot)\) n/a 8608 8
2475.4.da \(\chi_{2475}(323, \cdot)\) n/a 2880 8
2475.4.dd \(\chi_{2475}(28, \cdot)\) n/a 3584 8
2475.4.de \(\chi_{2475}(127, \cdot)\) n/a 3584 8
2475.4.dk \(\chi_{2475}(188, \cdot)\) n/a 2400 8
2475.4.dl \(\chi_{2475}(368, \cdot)\) n/a 1728 8
2475.4.dm \(\chi_{2475}(53, \cdot)\) n/a 2880 8
2475.4.dn \(\chi_{2475}(152, \cdot)\) n/a 2880 8
2475.4.do \(\chi_{2475}(118, \cdot)\) n/a 2144 8
2475.4.dp \(\chi_{2475}(1063, \cdot)\) n/a 3584 8
2475.4.dq \(\chi_{2475}(172, \cdot)\) n/a 3584 8
2475.4.dr \(\chi_{2475}(208, \cdot)\) n/a 3584 8
2475.4.dx \(\chi_{2475}(278, \cdot)\) n/a 2880 8
2475.4.dy \(\chi_{2475}(41, \cdot)\) n/a 8608 8
2475.4.ec \(\chi_{2475}(164, \cdot)\) n/a 8608 8
2475.4.ed \(\chi_{2475}(169, \cdot)\) n/a 8608 8
2475.4.ef \(\chi_{2475}(4, \cdot)\) n/a 8608 8
2475.4.eg \(\chi_{2475}(49, \cdot)\) n/a 5152 8
2475.4.ej \(\chi_{2475}(229, \cdot)\) n/a 8608 8
2475.4.em \(\chi_{2475}(239, \cdot)\) n/a 8608 8
2475.4.ep \(\chi_{2475}(74, \cdot)\) n/a 5152 8
2475.4.eq \(\chi_{2475}(29, \cdot)\) n/a 8608 8
2475.4.es \(\chi_{2475}(194, \cdot)\) n/a 8608 8
2475.4.et \(\chi_{2475}(34, \cdot)\) n/a 7200 8
2475.4.ey \(\chi_{2475}(761, \cdot)\) n/a 8608 8
2475.4.ez \(\chi_{2475}(101, \cdot)\) n/a 5424 8
2475.4.fb \(\chi_{2475}(266, \cdot)\) n/a 8608 8
2475.4.fd \(\chi_{2475}(281, \cdot)\) n/a 8608 8
2475.4.fj \(\chi_{2475}(131, \cdot)\) n/a 8608 8
2475.4.fl \(\chi_{2475}(394, \cdot)\) n/a 8608 8
2475.4.fm \(\chi_{2475}(479, \cdot)\) n/a 8608 8
2475.4.fp \(\chi_{2475}(47, \cdot)\) n/a 17216 16
2475.4.fq \(\chi_{2475}(277, \cdot)\) n/a 17216 16
2475.4.fr \(\chi_{2475}(52, \cdot)\) n/a 17216 16
2475.4.fs \(\chi_{2475}(7, \cdot)\) n/a 10304 16
2475.4.ft \(\chi_{2475}(142, \cdot)\) n/a 17216 16
2475.4.gc \(\chi_{2475}(23, \cdot)\) n/a 14400 16
2475.4.gd \(\chi_{2475}(38, \cdot)\) n/a 17216 16
2475.4.ge \(\chi_{2475}(488, \cdot)\) n/a 17216 16
2475.4.gf \(\chi_{2475}(218, \cdot)\) n/a 10304 16
2475.4.gg \(\chi_{2475}(13, \cdot)\) n/a 17216 16
2475.4.gj \(\chi_{2475}(502, \cdot)\) n/a 17216 16
2475.4.gk \(\chi_{2475}(113, \cdot)\) n/a 17216 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(2475))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(2475)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 18}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(225))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(495))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(825))\)\(^{\oplus 2}\)