Properties

Label 825.4.a.w.1.3
Level $825$
Weight $4$
Character 825.1
Self dual yes
Analytic conductor $48.677$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,4,Mod(1,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-4,-15,46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 41x^{3} + 3x^{2} + 294x - 200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.729174\) of defining polynomial
Character \(\chi\) \(=\) 825.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.270826 q^{2} -3.00000 q^{3} -7.92665 q^{4} +0.812479 q^{6} +33.4133 q^{7} +4.31336 q^{8} +9.00000 q^{9} +11.0000 q^{11} +23.7800 q^{12} +33.5174 q^{13} -9.04920 q^{14} +62.2451 q^{16} +71.1540 q^{17} -2.43744 q^{18} -48.9667 q^{19} -100.240 q^{21} -2.97909 q^{22} -66.7490 q^{23} -12.9401 q^{24} -9.07738 q^{26} -27.0000 q^{27} -264.856 q^{28} -66.8864 q^{29} +145.759 q^{31} -51.3644 q^{32} -33.0000 q^{33} -19.2704 q^{34} -71.3399 q^{36} +37.8491 q^{37} +13.2615 q^{38} -100.552 q^{39} -344.036 q^{41} +27.1476 q^{42} -34.4830 q^{43} -87.1932 q^{44} +18.0774 q^{46} +270.887 q^{47} -186.735 q^{48} +773.448 q^{49} -213.462 q^{51} -265.681 q^{52} -666.088 q^{53} +7.31231 q^{54} +144.123 q^{56} +146.900 q^{57} +18.1146 q^{58} +876.971 q^{59} +783.523 q^{61} -39.4753 q^{62} +300.720 q^{63} -484.050 q^{64} +8.93727 q^{66} -876.724 q^{67} -564.013 q^{68} +200.247 q^{69} -523.428 q^{71} +38.8202 q^{72} -91.0973 q^{73} -10.2505 q^{74} +388.142 q^{76} +367.546 q^{77} +27.2322 q^{78} -96.9287 q^{79} +81.0000 q^{81} +93.1741 q^{82} +1395.68 q^{83} +794.567 q^{84} +9.33889 q^{86} +200.659 q^{87} +47.4469 q^{88} +508.117 q^{89} +1119.93 q^{91} +529.096 q^{92} -437.276 q^{93} -73.3634 q^{94} +154.093 q^{96} +644.082 q^{97} -209.470 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 4 q^{2} - 15 q^{3} + 46 q^{4} + 12 q^{6} + 38 q^{7} - 72 q^{8} + 45 q^{9} + 55 q^{11} - 138 q^{12} - 43 q^{13} + 55 q^{14} + 634 q^{16} - 150 q^{17} - 36 q^{18} - 337 q^{19} - 114 q^{21} - 44 q^{22}+ \cdots + 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.270826 −0.0957515 −0.0478758 0.998853i \(-0.515245\pi\)
−0.0478758 + 0.998853i \(0.515245\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.92665 −0.990832
\(5\) 0 0
\(6\) 0.812479 0.0552822
\(7\) 33.4133 1.80415 0.902074 0.431581i \(-0.142044\pi\)
0.902074 + 0.431581i \(0.142044\pi\)
\(8\) 4.31336 0.190625
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 23.7800 0.572057
\(13\) 33.5174 0.715081 0.357540 0.933898i \(-0.383615\pi\)
0.357540 + 0.933898i \(0.383615\pi\)
\(14\) −9.04920 −0.172750
\(15\) 0 0
\(16\) 62.2451 0.972579
\(17\) 71.1540 1.01514 0.507570 0.861610i \(-0.330544\pi\)
0.507570 + 0.861610i \(0.330544\pi\)
\(18\) −2.43744 −0.0319172
\(19\) −48.9667 −0.591249 −0.295625 0.955304i \(-0.595528\pi\)
−0.295625 + 0.955304i \(0.595528\pi\)
\(20\) 0 0
\(21\) −100.240 −1.04163
\(22\) −2.97909 −0.0288702
\(23\) −66.7490 −0.605136 −0.302568 0.953128i \(-0.597844\pi\)
−0.302568 + 0.953128i \(0.597844\pi\)
\(24\) −12.9401 −0.110058
\(25\) 0 0
\(26\) −9.07738 −0.0684701
\(27\) −27.0000 −0.192450
\(28\) −264.856 −1.78761
\(29\) −66.8864 −0.428293 −0.214146 0.976802i \(-0.568697\pi\)
−0.214146 + 0.976802i \(0.568697\pi\)
\(30\) 0 0
\(31\) 145.759 0.844486 0.422243 0.906483i \(-0.361243\pi\)
0.422243 + 0.906483i \(0.361243\pi\)
\(32\) −51.3644 −0.283751
\(33\) −33.0000 −0.174078
\(34\) −19.2704 −0.0972013
\(35\) 0 0
\(36\) −71.3399 −0.330277
\(37\) 37.8491 0.168172 0.0840859 0.996459i \(-0.473203\pi\)
0.0840859 + 0.996459i \(0.473203\pi\)
\(38\) 13.2615 0.0566130
\(39\) −100.552 −0.412852
\(40\) 0 0
\(41\) −344.036 −1.31047 −0.655237 0.755423i \(-0.727431\pi\)
−0.655237 + 0.755423i \(0.727431\pi\)
\(42\) 27.1476 0.0997373
\(43\) −34.4830 −0.122293 −0.0611465 0.998129i \(-0.519476\pi\)
−0.0611465 + 0.998129i \(0.519476\pi\)
\(44\) −87.1932 −0.298747
\(45\) 0 0
\(46\) 18.0774 0.0579427
\(47\) 270.887 0.840701 0.420351 0.907362i \(-0.361907\pi\)
0.420351 + 0.907362i \(0.361907\pi\)
\(48\) −186.735 −0.561519
\(49\) 773.448 2.25495
\(50\) 0 0
\(51\) −213.462 −0.586092
\(52\) −265.681 −0.708524
\(53\) −666.088 −1.72631 −0.863154 0.504941i \(-0.831514\pi\)
−0.863154 + 0.504941i \(0.831514\pi\)
\(54\) 7.31231 0.0184274
\(55\) 0 0
\(56\) 144.123 0.343916
\(57\) 146.900 0.341358
\(58\) 18.1146 0.0410097
\(59\) 876.971 1.93512 0.967559 0.252645i \(-0.0813006\pi\)
0.967559 + 0.252645i \(0.0813006\pi\)
\(60\) 0 0
\(61\) 783.523 1.64459 0.822294 0.569063i \(-0.192694\pi\)
0.822294 + 0.569063i \(0.192694\pi\)
\(62\) −39.4753 −0.0808608
\(63\) 300.720 0.601383
\(64\) −484.050 −0.945409
\(65\) 0 0
\(66\) 8.93727 0.0166682
\(67\) −876.724 −1.59864 −0.799320 0.600906i \(-0.794807\pi\)
−0.799320 + 0.600906i \(0.794807\pi\)
\(68\) −564.013 −1.00583
\(69\) 200.247 0.349375
\(70\) 0 0
\(71\) −523.428 −0.874922 −0.437461 0.899237i \(-0.644122\pi\)
−0.437461 + 0.899237i \(0.644122\pi\)
\(72\) 38.8202 0.0635417
\(73\) −91.0973 −0.146057 −0.0730283 0.997330i \(-0.523266\pi\)
−0.0730283 + 0.997330i \(0.523266\pi\)
\(74\) −10.2505 −0.0161027
\(75\) 0 0
\(76\) 388.142 0.585829
\(77\) 367.546 0.543971
\(78\) 27.2322 0.0395312
\(79\) −96.9287 −0.138042 −0.0690211 0.997615i \(-0.521988\pi\)
−0.0690211 + 0.997615i \(0.521988\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 93.1741 0.125480
\(83\) 1395.68 1.84574 0.922868 0.385116i \(-0.125839\pi\)
0.922868 + 0.385116i \(0.125839\pi\)
\(84\) 794.567 1.03208
\(85\) 0 0
\(86\) 9.33889 0.0117097
\(87\) 200.659 0.247275
\(88\) 47.4469 0.0574757
\(89\) 508.117 0.605172 0.302586 0.953122i \(-0.402150\pi\)
0.302586 + 0.953122i \(0.402150\pi\)
\(90\) 0 0
\(91\) 1119.93 1.29011
\(92\) 529.096 0.599588
\(93\) −437.276 −0.487564
\(94\) −73.3634 −0.0804984
\(95\) 0 0
\(96\) 154.093 0.163824
\(97\) 644.082 0.674192 0.337096 0.941470i \(-0.390555\pi\)
0.337096 + 0.941470i \(0.390555\pi\)
\(98\) −209.470 −0.215915
\(99\) 99.0000 0.100504
\(100\) 0 0
\(101\) 1485.24 1.46324 0.731618 0.681715i \(-0.238766\pi\)
0.731618 + 0.681715i \(0.238766\pi\)
\(102\) 57.8111 0.0561192
\(103\) −605.952 −0.579672 −0.289836 0.957076i \(-0.593601\pi\)
−0.289836 + 0.957076i \(0.593601\pi\)
\(104\) 144.572 0.136312
\(105\) 0 0
\(106\) 180.394 0.165297
\(107\) 352.908 0.318850 0.159425 0.987210i \(-0.449036\pi\)
0.159425 + 0.987210i \(0.449036\pi\)
\(108\) 214.020 0.190686
\(109\) 1413.29 1.24191 0.620957 0.783844i \(-0.286744\pi\)
0.620957 + 0.783844i \(0.286744\pi\)
\(110\) 0 0
\(111\) −113.547 −0.0970940
\(112\) 2079.81 1.75468
\(113\) −103.753 −0.0863741 −0.0431870 0.999067i \(-0.513751\pi\)
−0.0431870 + 0.999067i \(0.513751\pi\)
\(114\) −39.7844 −0.0326856
\(115\) 0 0
\(116\) 530.185 0.424366
\(117\) 301.656 0.238360
\(118\) −237.507 −0.185291
\(119\) 2377.49 1.83146
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −212.199 −0.157472
\(123\) 1032.11 0.756603
\(124\) −1155.38 −0.836743
\(125\) 0 0
\(126\) −81.4428 −0.0575833
\(127\) 1576.66 1.10162 0.550809 0.834631i \(-0.314319\pi\)
0.550809 + 0.834631i \(0.314319\pi\)
\(128\) 542.009 0.374276
\(129\) 103.449 0.0706059
\(130\) 0 0
\(131\) −1085.16 −0.723747 −0.361873 0.932227i \(-0.617863\pi\)
−0.361873 + 0.932227i \(0.617863\pi\)
\(132\) 261.580 0.172482
\(133\) −1636.14 −1.06670
\(134\) 237.440 0.153072
\(135\) 0 0
\(136\) 306.913 0.193511
\(137\) −1389.46 −0.866496 −0.433248 0.901275i \(-0.642633\pi\)
−0.433248 + 0.901275i \(0.642633\pi\)
\(138\) −54.2321 −0.0334532
\(139\) 500.066 0.305144 0.152572 0.988292i \(-0.451244\pi\)
0.152572 + 0.988292i \(0.451244\pi\)
\(140\) 0 0
\(141\) −812.662 −0.485379
\(142\) 141.758 0.0837751
\(143\) 368.691 0.215605
\(144\) 560.205 0.324193
\(145\) 0 0
\(146\) 24.6715 0.0139851
\(147\) −2320.35 −1.30190
\(148\) −300.017 −0.166630
\(149\) 685.689 0.377005 0.188503 0.982073i \(-0.439637\pi\)
0.188503 + 0.982073i \(0.439637\pi\)
\(150\) 0 0
\(151\) −1208.96 −0.651550 −0.325775 0.945447i \(-0.605625\pi\)
−0.325775 + 0.945447i \(0.605625\pi\)
\(152\) −211.211 −0.112707
\(153\) 640.386 0.338380
\(154\) −99.5412 −0.0520861
\(155\) 0 0
\(156\) 797.042 0.409067
\(157\) 3322.47 1.68893 0.844465 0.535610i \(-0.179918\pi\)
0.844465 + 0.535610i \(0.179918\pi\)
\(158\) 26.2509 0.0132178
\(159\) 1998.27 0.996684
\(160\) 0 0
\(161\) −2230.30 −1.09176
\(162\) −21.9369 −0.0106391
\(163\) −2448.31 −1.17648 −0.588240 0.808686i \(-0.700179\pi\)
−0.588240 + 0.808686i \(0.700179\pi\)
\(164\) 2727.06 1.29846
\(165\) 0 0
\(166\) −377.988 −0.176732
\(167\) 1518.71 0.703720 0.351860 0.936053i \(-0.385549\pi\)
0.351860 + 0.936053i \(0.385549\pi\)
\(168\) −432.370 −0.198560
\(169\) −1073.59 −0.488660
\(170\) 0 0
\(171\) −440.701 −0.197083
\(172\) 273.334 0.121172
\(173\) −2636.80 −1.15880 −0.579399 0.815044i \(-0.696713\pi\)
−0.579399 + 0.815044i \(0.696713\pi\)
\(174\) −54.3438 −0.0236770
\(175\) 0 0
\(176\) 684.696 0.293244
\(177\) −2630.91 −1.11724
\(178\) −137.611 −0.0579461
\(179\) −1773.31 −0.740466 −0.370233 0.928939i \(-0.620722\pi\)
−0.370233 + 0.928939i \(0.620722\pi\)
\(180\) 0 0
\(181\) 529.751 0.217547 0.108774 0.994067i \(-0.465308\pi\)
0.108774 + 0.994067i \(0.465308\pi\)
\(182\) −303.305 −0.123530
\(183\) −2350.57 −0.949503
\(184\) −287.912 −0.115354
\(185\) 0 0
\(186\) 118.426 0.0466850
\(187\) 782.694 0.306076
\(188\) −2147.23 −0.832993
\(189\) −902.159 −0.347209
\(190\) 0 0
\(191\) 2061.93 0.781130 0.390565 0.920575i \(-0.372280\pi\)
0.390565 + 0.920575i \(0.372280\pi\)
\(192\) 1452.15 0.545832
\(193\) 1637.24 0.610627 0.305314 0.952252i \(-0.401239\pi\)
0.305314 + 0.952252i \(0.401239\pi\)
\(194\) −174.434 −0.0645550
\(195\) 0 0
\(196\) −6130.86 −2.23428
\(197\) −3414.86 −1.23502 −0.617510 0.786563i \(-0.711858\pi\)
−0.617510 + 0.786563i \(0.711858\pi\)
\(198\) −26.8118 −0.00962339
\(199\) 3938.93 1.40313 0.701566 0.712605i \(-0.252485\pi\)
0.701566 + 0.712605i \(0.252485\pi\)
\(200\) 0 0
\(201\) 2630.17 0.922975
\(202\) −402.242 −0.140107
\(203\) −2234.90 −0.772704
\(204\) 1692.04 0.580718
\(205\) 0 0
\(206\) 164.108 0.0555045
\(207\) −600.741 −0.201712
\(208\) 2086.29 0.695472
\(209\) −538.634 −0.178268
\(210\) 0 0
\(211\) 3543.14 1.15602 0.578009 0.816031i \(-0.303830\pi\)
0.578009 + 0.816031i \(0.303830\pi\)
\(212\) 5279.85 1.71048
\(213\) 1570.28 0.505136
\(214\) −95.5768 −0.0305304
\(215\) 0 0
\(216\) −116.461 −0.0366858
\(217\) 4870.28 1.52358
\(218\) −382.756 −0.118915
\(219\) 273.292 0.0843258
\(220\) 0 0
\(221\) 2384.90 0.725907
\(222\) 30.7516 0.00929690
\(223\) 850.930 0.255527 0.127763 0.991805i \(-0.459220\pi\)
0.127763 + 0.991805i \(0.459220\pi\)
\(224\) −1716.26 −0.511929
\(225\) 0 0
\(226\) 28.0991 0.00827045
\(227\) −5040.56 −1.47381 −0.736903 0.675999i \(-0.763712\pi\)
−0.736903 + 0.675999i \(0.763712\pi\)
\(228\) −1164.43 −0.338228
\(229\) −3624.34 −1.04587 −0.522933 0.852374i \(-0.675162\pi\)
−0.522933 + 0.852374i \(0.675162\pi\)
\(230\) 0 0
\(231\) −1102.64 −0.314062
\(232\) −288.505 −0.0816434
\(233\) 2984.56 0.839164 0.419582 0.907718i \(-0.362177\pi\)
0.419582 + 0.907718i \(0.362177\pi\)
\(234\) −81.6965 −0.0228234
\(235\) 0 0
\(236\) −6951.45 −1.91738
\(237\) 290.786 0.0796987
\(238\) −643.887 −0.175366
\(239\) 1298.11 0.351331 0.175665 0.984450i \(-0.443792\pi\)
0.175665 + 0.984450i \(0.443792\pi\)
\(240\) 0 0
\(241\) 3978.71 1.06345 0.531725 0.846917i \(-0.321544\pi\)
0.531725 + 0.846917i \(0.321544\pi\)
\(242\) −32.7700 −0.00870469
\(243\) −243.000 −0.0641500
\(244\) −6210.71 −1.62951
\(245\) 0 0
\(246\) −279.522 −0.0724459
\(247\) −1641.24 −0.422791
\(248\) 628.710 0.160980
\(249\) −4187.05 −1.06564
\(250\) 0 0
\(251\) −1884.05 −0.473784 −0.236892 0.971536i \(-0.576129\pi\)
−0.236892 + 0.971536i \(0.576129\pi\)
\(252\) −2383.70 −0.595869
\(253\) −734.239 −0.182455
\(254\) −427.000 −0.105482
\(255\) 0 0
\(256\) 3725.61 0.909572
\(257\) 4012.23 0.973836 0.486918 0.873448i \(-0.338121\pi\)
0.486918 + 0.873448i \(0.338121\pi\)
\(258\) −28.0167 −0.00676063
\(259\) 1264.66 0.303407
\(260\) 0 0
\(261\) −601.978 −0.142764
\(262\) 293.890 0.0692999
\(263\) −290.429 −0.0680935 −0.0340468 0.999420i \(-0.510840\pi\)
−0.0340468 + 0.999420i \(0.510840\pi\)
\(264\) −142.341 −0.0331836
\(265\) 0 0
\(266\) 443.110 0.102138
\(267\) −1524.35 −0.349396
\(268\) 6949.48 1.58398
\(269\) −6743.15 −1.52839 −0.764196 0.644985i \(-0.776864\pi\)
−0.764196 + 0.644985i \(0.776864\pi\)
\(270\) 0 0
\(271\) 7182.11 1.60990 0.804949 0.593344i \(-0.202193\pi\)
0.804949 + 0.593344i \(0.202193\pi\)
\(272\) 4428.99 0.987304
\(273\) −3359.78 −0.744846
\(274\) 376.304 0.0829683
\(275\) 0 0
\(276\) −1587.29 −0.346172
\(277\) 5708.35 1.23820 0.619100 0.785312i \(-0.287498\pi\)
0.619100 + 0.785312i \(0.287498\pi\)
\(278\) −135.431 −0.0292180
\(279\) 1311.83 0.281495
\(280\) 0 0
\(281\) 8740.94 1.85566 0.927831 0.373002i \(-0.121672\pi\)
0.927831 + 0.373002i \(0.121672\pi\)
\(282\) 220.090 0.0464758
\(283\) 7883.57 1.65593 0.827967 0.560777i \(-0.189497\pi\)
0.827967 + 0.560777i \(0.189497\pi\)
\(284\) 4149.03 0.866900
\(285\) 0 0
\(286\) −99.8512 −0.0206445
\(287\) −11495.4 −2.36429
\(288\) −462.280 −0.0945837
\(289\) 149.897 0.0305102
\(290\) 0 0
\(291\) −1932.25 −0.389245
\(292\) 722.097 0.144718
\(293\) −2328.54 −0.464282 −0.232141 0.972682i \(-0.574573\pi\)
−0.232141 + 0.972682i \(0.574573\pi\)
\(294\) 628.410 0.124659
\(295\) 0 0
\(296\) 163.257 0.0320578
\(297\) −297.000 −0.0580259
\(298\) −185.703 −0.0360989
\(299\) −2237.25 −0.432721
\(300\) 0 0
\(301\) −1152.19 −0.220635
\(302\) 327.419 0.0623869
\(303\) −4455.72 −0.844799
\(304\) −3047.94 −0.575037
\(305\) 0 0
\(306\) −173.433 −0.0324004
\(307\) −2830.31 −0.526170 −0.263085 0.964773i \(-0.584740\pi\)
−0.263085 + 0.964773i \(0.584740\pi\)
\(308\) −2913.41 −0.538984
\(309\) 1817.86 0.334674
\(310\) 0 0
\(311\) −6580.67 −1.19986 −0.599929 0.800053i \(-0.704804\pi\)
−0.599929 + 0.800053i \(0.704804\pi\)
\(312\) −433.717 −0.0787000
\(313\) 7837.96 1.41542 0.707712 0.706501i \(-0.249728\pi\)
0.707712 + 0.706501i \(0.249728\pi\)
\(314\) −899.813 −0.161718
\(315\) 0 0
\(316\) 768.321 0.136777
\(317\) −5853.61 −1.03713 −0.518567 0.855037i \(-0.673534\pi\)
−0.518567 + 0.855037i \(0.673534\pi\)
\(318\) −541.183 −0.0954340
\(319\) −735.751 −0.129135
\(320\) 0 0
\(321\) −1058.72 −0.184088
\(322\) 604.025 0.104537
\(323\) −3484.18 −0.600201
\(324\) −642.059 −0.110092
\(325\) 0 0
\(326\) 663.066 0.112650
\(327\) −4239.87 −0.717020
\(328\) −1483.95 −0.249809
\(329\) 9051.23 1.51675
\(330\) 0 0
\(331\) 5347.61 0.888010 0.444005 0.896024i \(-0.353557\pi\)
0.444005 + 0.896024i \(0.353557\pi\)
\(332\) −11063.1 −1.82881
\(333\) 340.642 0.0560573
\(334\) −411.306 −0.0673823
\(335\) 0 0
\(336\) −6239.44 −1.01306
\(337\) −2763.99 −0.446779 −0.223389 0.974729i \(-0.571712\pi\)
−0.223389 + 0.974729i \(0.571712\pi\)
\(338\) 290.755 0.0467899
\(339\) 311.259 0.0498681
\(340\) 0 0
\(341\) 1603.35 0.254622
\(342\) 119.353 0.0188710
\(343\) 14382.7 2.26412
\(344\) −148.737 −0.0233121
\(345\) 0 0
\(346\) 714.114 0.110957
\(347\) −5038.66 −0.779509 −0.389754 0.920919i \(-0.627440\pi\)
−0.389754 + 0.920919i \(0.627440\pi\)
\(348\) −1590.56 −0.245008
\(349\) −7429.49 −1.13952 −0.569759 0.821812i \(-0.692963\pi\)
−0.569759 + 0.821812i \(0.692963\pi\)
\(350\) 0 0
\(351\) −904.969 −0.137617
\(352\) −565.009 −0.0855542
\(353\) 3151.84 0.475228 0.237614 0.971360i \(-0.423635\pi\)
0.237614 + 0.971360i \(0.423635\pi\)
\(354\) 712.521 0.106978
\(355\) 0 0
\(356\) −4027.67 −0.599623
\(357\) −7132.47 −1.05740
\(358\) 480.259 0.0709008
\(359\) 903.954 0.132894 0.0664469 0.997790i \(-0.478834\pi\)
0.0664469 + 0.997790i \(0.478834\pi\)
\(360\) 0 0
\(361\) −4461.26 −0.650424
\(362\) −143.470 −0.0208305
\(363\) −363.000 −0.0524864
\(364\) −8877.26 −1.27828
\(365\) 0 0
\(366\) 636.596 0.0909164
\(367\) −3978.31 −0.565848 −0.282924 0.959142i \(-0.591304\pi\)
−0.282924 + 0.959142i \(0.591304\pi\)
\(368\) −4154.79 −0.588543
\(369\) −3096.33 −0.436825
\(370\) 0 0
\(371\) −22256.2 −3.11451
\(372\) 3466.14 0.483094
\(373\) 5493.67 0.762605 0.381302 0.924450i \(-0.375476\pi\)
0.381302 + 0.924450i \(0.375476\pi\)
\(374\) −211.974 −0.0293073
\(375\) 0 0
\(376\) 1168.43 0.160259
\(377\) −2241.86 −0.306264
\(378\) 244.328 0.0332458
\(379\) 3035.93 0.411465 0.205733 0.978608i \(-0.434042\pi\)
0.205733 + 0.978608i \(0.434042\pi\)
\(380\) 0 0
\(381\) −4729.97 −0.636020
\(382\) −558.424 −0.0747944
\(383\) 3556.77 0.474524 0.237262 0.971446i \(-0.423750\pi\)
0.237262 + 0.971446i \(0.423750\pi\)
\(384\) −1626.03 −0.216088
\(385\) 0 0
\(386\) −443.408 −0.0584685
\(387\) −310.347 −0.0407644
\(388\) −5105.42 −0.668011
\(389\) −5211.56 −0.679272 −0.339636 0.940557i \(-0.610304\pi\)
−0.339636 + 0.940557i \(0.610304\pi\)
\(390\) 0 0
\(391\) −4749.46 −0.614298
\(392\) 3336.16 0.429851
\(393\) 3255.48 0.417855
\(394\) 924.835 0.118255
\(395\) 0 0
\(396\) −784.739 −0.0995823
\(397\) 6547.28 0.827704 0.413852 0.910344i \(-0.364183\pi\)
0.413852 + 0.910344i \(0.364183\pi\)
\(398\) −1066.76 −0.134352
\(399\) 4908.42 0.615860
\(400\) 0 0
\(401\) −1661.59 −0.206922 −0.103461 0.994634i \(-0.532992\pi\)
−0.103461 + 0.994634i \(0.532992\pi\)
\(402\) −712.319 −0.0883763
\(403\) 4885.45 0.603875
\(404\) −11773.0 −1.44982
\(405\) 0 0
\(406\) 605.268 0.0739876
\(407\) 416.340 0.0507057
\(408\) −920.738 −0.111724
\(409\) 7278.96 0.880004 0.440002 0.897997i \(-0.354978\pi\)
0.440002 + 0.897997i \(0.354978\pi\)
\(410\) 0 0
\(411\) 4168.39 0.500272
\(412\) 4803.17 0.574357
\(413\) 29302.5 3.49124
\(414\) 162.696 0.0193142
\(415\) 0 0
\(416\) −1721.60 −0.202905
\(417\) −1500.20 −0.176175
\(418\) 145.876 0.0170695
\(419\) −5892.15 −0.686994 −0.343497 0.939154i \(-0.611611\pi\)
−0.343497 + 0.939154i \(0.611611\pi\)
\(420\) 0 0
\(421\) 11086.3 1.28340 0.641700 0.766955i \(-0.278229\pi\)
0.641700 + 0.766955i \(0.278229\pi\)
\(422\) −959.575 −0.110690
\(423\) 2437.98 0.280234
\(424\) −2873.08 −0.329078
\(425\) 0 0
\(426\) −425.274 −0.0483676
\(427\) 26180.1 2.96708
\(428\) −2797.38 −0.315926
\(429\) −1106.07 −0.124480
\(430\) 0 0
\(431\) 5658.06 0.632341 0.316170 0.948702i \(-0.397603\pi\)
0.316170 + 0.948702i \(0.397603\pi\)
\(432\) −1680.62 −0.187173
\(433\) −3065.03 −0.340176 −0.170088 0.985429i \(-0.554405\pi\)
−0.170088 + 0.985429i \(0.554405\pi\)
\(434\) −1319.00 −0.145885
\(435\) 0 0
\(436\) −11202.7 −1.23053
\(437\) 3268.48 0.357786
\(438\) −74.0146 −0.00807433
\(439\) −3017.50 −0.328058 −0.164029 0.986456i \(-0.552449\pi\)
−0.164029 + 0.986456i \(0.552449\pi\)
\(440\) 0 0
\(441\) 6961.04 0.751650
\(442\) −645.893 −0.0695067
\(443\) −17098.3 −1.83378 −0.916888 0.399144i \(-0.869307\pi\)
−0.916888 + 0.399144i \(0.869307\pi\)
\(444\) 900.050 0.0962038
\(445\) 0 0
\(446\) −230.454 −0.0244671
\(447\) −2057.07 −0.217664
\(448\) −16173.7 −1.70566
\(449\) −10823.4 −1.13762 −0.568808 0.822470i \(-0.692595\pi\)
−0.568808 + 0.822470i \(0.692595\pi\)
\(450\) 0 0
\(451\) −3784.40 −0.395123
\(452\) 822.415 0.0855821
\(453\) 3626.89 0.376172
\(454\) 1365.12 0.141119
\(455\) 0 0
\(456\) 633.633 0.0650714
\(457\) 6859.01 0.702081 0.351040 0.936360i \(-0.385828\pi\)
0.351040 + 0.936360i \(0.385828\pi\)
\(458\) 981.567 0.100143
\(459\) −1921.16 −0.195364
\(460\) 0 0
\(461\) 9651.72 0.975109 0.487555 0.873093i \(-0.337889\pi\)
0.487555 + 0.873093i \(0.337889\pi\)
\(462\) 298.624 0.0300719
\(463\) 4744.49 0.476232 0.238116 0.971237i \(-0.423470\pi\)
0.238116 + 0.971237i \(0.423470\pi\)
\(464\) −4163.35 −0.416549
\(465\) 0 0
\(466\) −808.298 −0.0803512
\(467\) 11038.1 1.09376 0.546878 0.837213i \(-0.315816\pi\)
0.546878 + 0.837213i \(0.315816\pi\)
\(468\) −2391.13 −0.236175
\(469\) −29294.2 −2.88418
\(470\) 0 0
\(471\) −9967.42 −0.975105
\(472\) 3782.69 0.368882
\(473\) −379.313 −0.0368727
\(474\) −78.7526 −0.00763128
\(475\) 0 0
\(476\) −18845.5 −1.81467
\(477\) −5994.80 −0.575436
\(478\) −351.563 −0.0336404
\(479\) 17476.9 1.66710 0.833550 0.552444i \(-0.186305\pi\)
0.833550 + 0.552444i \(0.186305\pi\)
\(480\) 0 0
\(481\) 1268.60 0.120256
\(482\) −1077.54 −0.101827
\(483\) 6690.91 0.630325
\(484\) −959.125 −0.0900756
\(485\) 0 0
\(486\) 65.8108 0.00614246
\(487\) −17014.6 −1.58317 −0.791586 0.611058i \(-0.790744\pi\)
−0.791586 + 0.611058i \(0.790744\pi\)
\(488\) 3379.61 0.313500
\(489\) 7344.92 0.679241
\(490\) 0 0
\(491\) 19673.8 1.80828 0.904142 0.427233i \(-0.140512\pi\)
0.904142 + 0.427233i \(0.140512\pi\)
\(492\) −8181.17 −0.749666
\(493\) −4759.24 −0.434778
\(494\) 444.490 0.0404829
\(495\) 0 0
\(496\) 9072.76 0.821329
\(497\) −17489.4 −1.57849
\(498\) 1133.96 0.102036
\(499\) −15754.6 −1.41337 −0.706687 0.707526i \(-0.749811\pi\)
−0.706687 + 0.707526i \(0.749811\pi\)
\(500\) 0 0
\(501\) −4556.13 −0.406293
\(502\) 510.249 0.0453656
\(503\) 16457.2 1.45883 0.729414 0.684073i \(-0.239793\pi\)
0.729414 + 0.684073i \(0.239793\pi\)
\(504\) 1297.11 0.114639
\(505\) 0 0
\(506\) 198.851 0.0174704
\(507\) 3220.76 0.282128
\(508\) −12497.6 −1.09152
\(509\) 13852.0 1.20625 0.603124 0.797647i \(-0.293922\pi\)
0.603124 + 0.797647i \(0.293922\pi\)
\(510\) 0 0
\(511\) −3043.86 −0.263508
\(512\) −5345.06 −0.461368
\(513\) 1322.10 0.113786
\(514\) −1086.62 −0.0932463
\(515\) 0 0
\(516\) −820.003 −0.0699586
\(517\) 2979.76 0.253481
\(518\) −342.504 −0.0290517
\(519\) 7910.39 0.669032
\(520\) 0 0
\(521\) −12295.8 −1.03395 −0.516976 0.856000i \(-0.672942\pi\)
−0.516976 + 0.856000i \(0.672942\pi\)
\(522\) 163.031 0.0136699
\(523\) −1971.83 −0.164861 −0.0824305 0.996597i \(-0.526268\pi\)
−0.0824305 + 0.996597i \(0.526268\pi\)
\(524\) 8601.68 0.717111
\(525\) 0 0
\(526\) 78.6557 0.00652006
\(527\) 10371.3 0.857271
\(528\) −2054.09 −0.169304
\(529\) −7711.57 −0.633810
\(530\) 0 0
\(531\) 7892.74 0.645039
\(532\) 12969.1 1.05692
\(533\) −11531.2 −0.937095
\(534\) 412.834 0.0334552
\(535\) 0 0
\(536\) −3781.62 −0.304741
\(537\) 5319.93 0.427508
\(538\) 1826.22 0.146346
\(539\) 8507.93 0.679893
\(540\) 0 0
\(541\) −8849.45 −0.703267 −0.351634 0.936138i \(-0.614374\pi\)
−0.351634 + 0.936138i \(0.614374\pi\)
\(542\) −1945.10 −0.154150
\(543\) −1589.25 −0.125601
\(544\) −3654.79 −0.288047
\(545\) 0 0
\(546\) 909.916 0.0713202
\(547\) −10687.9 −0.835435 −0.417717 0.908577i \(-0.637170\pi\)
−0.417717 + 0.908577i \(0.637170\pi\)
\(548\) 11013.8 0.858552
\(549\) 7051.71 0.548196
\(550\) 0 0
\(551\) 3275.21 0.253228
\(552\) 863.737 0.0665998
\(553\) −3238.71 −0.249049
\(554\) −1545.97 −0.118560
\(555\) 0 0
\(556\) −3963.85 −0.302346
\(557\) −23864.2 −1.81537 −0.907684 0.419655i \(-0.862151\pi\)
−0.907684 + 0.419655i \(0.862151\pi\)
\(558\) −355.278 −0.0269536
\(559\) −1155.78 −0.0874494
\(560\) 0 0
\(561\) −2348.08 −0.176713
\(562\) −2367.28 −0.177682
\(563\) −13610.5 −1.01886 −0.509428 0.860513i \(-0.670143\pi\)
−0.509428 + 0.860513i \(0.670143\pi\)
\(564\) 6441.69 0.480929
\(565\) 0 0
\(566\) −2135.08 −0.158558
\(567\) 2706.48 0.200461
\(568\) −2257.73 −0.166782
\(569\) 8564.56 0.631011 0.315505 0.948924i \(-0.397826\pi\)
0.315505 + 0.948924i \(0.397826\pi\)
\(570\) 0 0
\(571\) 15329.9 1.12353 0.561764 0.827298i \(-0.310123\pi\)
0.561764 + 0.827298i \(0.310123\pi\)
\(572\) −2922.49 −0.213628
\(573\) −6185.78 −0.450985
\(574\) 3113.25 0.226384
\(575\) 0 0
\(576\) −4356.45 −0.315136
\(577\) 9594.47 0.692241 0.346120 0.938190i \(-0.387499\pi\)
0.346120 + 0.938190i \(0.387499\pi\)
\(578\) −40.5959 −0.00292140
\(579\) −4911.72 −0.352546
\(580\) 0 0
\(581\) 46634.4 3.32998
\(582\) 523.303 0.0372708
\(583\) −7326.97 −0.520501
\(584\) −392.935 −0.0278421
\(585\) 0 0
\(586\) 630.629 0.0444557
\(587\) −16659.5 −1.17140 −0.585698 0.810530i \(-0.699179\pi\)
−0.585698 + 0.810530i \(0.699179\pi\)
\(588\) 18392.6 1.28996
\(589\) −7137.33 −0.499302
\(590\) 0 0
\(591\) 10244.6 0.713039
\(592\) 2355.92 0.163560
\(593\) −459.030 −0.0317877 −0.0158939 0.999874i \(-0.505059\pi\)
−0.0158939 + 0.999874i \(0.505059\pi\)
\(594\) 80.4354 0.00555607
\(595\) 0 0
\(596\) −5435.22 −0.373549
\(597\) −11816.8 −0.810098
\(598\) 605.906 0.0414337
\(599\) 869.305 0.0592969 0.0296485 0.999560i \(-0.490561\pi\)
0.0296485 + 0.999560i \(0.490561\pi\)
\(600\) 0 0
\(601\) −5455.29 −0.370259 −0.185130 0.982714i \(-0.559271\pi\)
−0.185130 + 0.982714i \(0.559271\pi\)
\(602\) 312.043 0.0211261
\(603\) −7890.51 −0.532880
\(604\) 9583.03 0.645576
\(605\) 0 0
\(606\) 1206.72 0.0808908
\(607\) −27152.9 −1.81565 −0.907826 0.419347i \(-0.862259\pi\)
−0.907826 + 0.419347i \(0.862259\pi\)
\(608\) 2515.15 0.167768
\(609\) 6704.69 0.446121
\(610\) 0 0
\(611\) 9079.43 0.601169
\(612\) −5076.12 −0.335278
\(613\) 10313.6 0.679546 0.339773 0.940507i \(-0.389650\pi\)
0.339773 + 0.940507i \(0.389650\pi\)
\(614\) 766.521 0.0503816
\(615\) 0 0
\(616\) 1585.36 0.103695
\(617\) 27148.4 1.77140 0.885699 0.464259i \(-0.153679\pi\)
0.885699 + 0.464259i \(0.153679\pi\)
\(618\) −492.323 −0.0320455
\(619\) 13110.4 0.851294 0.425647 0.904889i \(-0.360047\pi\)
0.425647 + 0.904889i \(0.360047\pi\)
\(620\) 0 0
\(621\) 1802.22 0.116458
\(622\) 1782.22 0.114888
\(623\) 16977.9 1.09182
\(624\) −6258.87 −0.401531
\(625\) 0 0
\(626\) −2122.72 −0.135529
\(627\) 1615.90 0.102923
\(628\) −26336.1 −1.67345
\(629\) 2693.12 0.170718
\(630\) 0 0
\(631\) 30199.9 1.90529 0.952647 0.304078i \(-0.0983482\pi\)
0.952647 + 0.304078i \(0.0983482\pi\)
\(632\) −418.088 −0.0263143
\(633\) −10629.4 −0.667427
\(634\) 1585.31 0.0993072
\(635\) 0 0
\(636\) −15839.6 −0.987546
\(637\) 25924.0 1.61247
\(638\) 199.261 0.0123649
\(639\) −4710.85 −0.291641
\(640\) 0 0
\(641\) −8889.43 −0.547756 −0.273878 0.961764i \(-0.588306\pi\)
−0.273878 + 0.961764i \(0.588306\pi\)
\(642\) 286.730 0.0176267
\(643\) 16570.2 1.01627 0.508137 0.861276i \(-0.330334\pi\)
0.508137 + 0.861276i \(0.330334\pi\)
\(644\) 17678.8 1.08175
\(645\) 0 0
\(646\) 943.608 0.0574702
\(647\) 13356.3 0.811576 0.405788 0.913967i \(-0.366997\pi\)
0.405788 + 0.913967i \(0.366997\pi\)
\(648\) 349.382 0.0211806
\(649\) 9646.69 0.583460
\(650\) 0 0
\(651\) −14610.8 −0.879638
\(652\) 19406.9 1.16569
\(653\) −32689.5 −1.95902 −0.979510 0.201394i \(-0.935453\pi\)
−0.979510 + 0.201394i \(0.935453\pi\)
\(654\) 1148.27 0.0686558
\(655\) 0 0
\(656\) −21414.6 −1.27454
\(657\) −819.876 −0.0486855
\(658\) −2451.31 −0.145231
\(659\) 16123.3 0.953071 0.476536 0.879155i \(-0.341892\pi\)
0.476536 + 0.879155i \(0.341892\pi\)
\(660\) 0 0
\(661\) 22340.9 1.31461 0.657306 0.753624i \(-0.271696\pi\)
0.657306 + 0.753624i \(0.271696\pi\)
\(662\) −1448.27 −0.0850283
\(663\) −7154.69 −0.419103
\(664\) 6020.08 0.351844
\(665\) 0 0
\(666\) −92.2548 −0.00536757
\(667\) 4464.60 0.259175
\(668\) −12038.3 −0.697268
\(669\) −2552.79 −0.147528
\(670\) 0 0
\(671\) 8618.75 0.495862
\(672\) 5148.77 0.295562
\(673\) 3415.65 0.195637 0.0978184 0.995204i \(-0.468814\pi\)
0.0978184 + 0.995204i \(0.468814\pi\)
\(674\) 748.562 0.0427797
\(675\) 0 0
\(676\) 8509.94 0.484180
\(677\) −32841.9 −1.86442 −0.932212 0.361912i \(-0.882124\pi\)
−0.932212 + 0.361912i \(0.882124\pi\)
\(678\) −84.2972 −0.00477495
\(679\) 21520.9 1.21634
\(680\) 0 0
\(681\) 15121.7 0.850902
\(682\) −434.228 −0.0243804
\(683\) 7227.43 0.404905 0.202452 0.979292i \(-0.435109\pi\)
0.202452 + 0.979292i \(0.435109\pi\)
\(684\) 3493.28 0.195276
\(685\) 0 0
\(686\) −3895.21 −0.216793
\(687\) 10873.0 0.603831
\(688\) −2146.39 −0.118940
\(689\) −22325.5 −1.23445
\(690\) 0 0
\(691\) 15397.5 0.847682 0.423841 0.905737i \(-0.360681\pi\)
0.423841 + 0.905737i \(0.360681\pi\)
\(692\) 20901.0 1.14817
\(693\) 3307.92 0.181324
\(694\) 1364.60 0.0746392
\(695\) 0 0
\(696\) 865.515 0.0471369
\(697\) −24479.6 −1.33032
\(698\) 2012.10 0.109111
\(699\) −8953.68 −0.484491
\(700\) 0 0
\(701\) −22130.1 −1.19236 −0.596180 0.802851i \(-0.703315\pi\)
−0.596180 + 0.802851i \(0.703315\pi\)
\(702\) 245.089 0.0131771
\(703\) −1853.35 −0.0994315
\(704\) −5324.55 −0.285052
\(705\) 0 0
\(706\) −853.601 −0.0455038
\(707\) 49626.7 2.63989
\(708\) 20854.3 1.10700
\(709\) 10062.6 0.533018 0.266509 0.963832i \(-0.414130\pi\)
0.266509 + 0.963832i \(0.414130\pi\)
\(710\) 0 0
\(711\) −872.359 −0.0460141
\(712\) 2191.69 0.115361
\(713\) −9729.25 −0.511029
\(714\) 1931.66 0.101247
\(715\) 0 0
\(716\) 14056.4 0.733677
\(717\) −3894.34 −0.202841
\(718\) −244.814 −0.0127248
\(719\) −18629.7 −0.966303 −0.483151 0.875537i \(-0.660508\pi\)
−0.483151 + 0.875537i \(0.660508\pi\)
\(720\) 0 0
\(721\) −20246.9 −1.04581
\(722\) 1208.23 0.0622791
\(723\) −11936.1 −0.613983
\(724\) −4199.15 −0.215553
\(725\) 0 0
\(726\) 98.3099 0.00502565
\(727\) 21605.8 1.10222 0.551112 0.834431i \(-0.314204\pi\)
0.551112 + 0.834431i \(0.314204\pi\)
\(728\) 4830.64 0.245928
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −2453.60 −0.124145
\(732\) 18632.1 0.940798
\(733\) −23668.1 −1.19264 −0.596318 0.802749i \(-0.703370\pi\)
−0.596318 + 0.802749i \(0.703370\pi\)
\(734\) 1077.43 0.0541808
\(735\) 0 0
\(736\) 3428.52 0.171708
\(737\) −9643.96 −0.482008
\(738\) 838.567 0.0418267
\(739\) −8475.82 −0.421906 −0.210953 0.977496i \(-0.567657\pi\)
−0.210953 + 0.977496i \(0.567657\pi\)
\(740\) 0 0
\(741\) 4923.71 0.244098
\(742\) 6027.57 0.298220
\(743\) −14491.2 −0.715520 −0.357760 0.933813i \(-0.616459\pi\)
−0.357760 + 0.933813i \(0.616459\pi\)
\(744\) −1886.13 −0.0929420
\(745\) 0 0
\(746\) −1487.83 −0.0730206
\(747\) 12561.1 0.615245
\(748\) −6204.15 −0.303270
\(749\) 11791.8 0.575252
\(750\) 0 0
\(751\) 11780.5 0.572408 0.286204 0.958169i \(-0.407607\pi\)
0.286204 + 0.958169i \(0.407607\pi\)
\(752\) 16861.4 0.817648
\(753\) 5652.14 0.273540
\(754\) 607.154 0.0293252
\(755\) 0 0
\(756\) 7151.10 0.344025
\(757\) −22616.7 −1.08589 −0.542945 0.839768i \(-0.682691\pi\)
−0.542945 + 0.839768i \(0.682691\pi\)
\(758\) −822.210 −0.0393984
\(759\) 2202.72 0.105341
\(760\) 0 0
\(761\) 2037.48 0.0970547 0.0485273 0.998822i \(-0.484547\pi\)
0.0485273 + 0.998822i \(0.484547\pi\)
\(762\) 1281.00 0.0608999
\(763\) 47222.7 2.24060
\(764\) −16344.2 −0.773968
\(765\) 0 0
\(766\) −963.268 −0.0454364
\(767\) 29393.8 1.38377
\(768\) −11176.8 −0.525142
\(769\) 16192.1 0.759298 0.379649 0.925131i \(-0.376045\pi\)
0.379649 + 0.925131i \(0.376045\pi\)
\(770\) 0 0
\(771\) −12036.7 −0.562245
\(772\) −12977.8 −0.605029
\(773\) −39726.3 −1.84845 −0.924227 0.381844i \(-0.875289\pi\)
−0.924227 + 0.381844i \(0.875289\pi\)
\(774\) 84.0500 0.00390325
\(775\) 0 0
\(776\) 2778.16 0.128518
\(777\) −3793.99 −0.175172
\(778\) 1411.43 0.0650413
\(779\) 16846.3 0.774817
\(780\) 0 0
\(781\) −5757.71 −0.263799
\(782\) 1286.28 0.0588200
\(783\) 1805.93 0.0824250
\(784\) 48143.3 2.19312
\(785\) 0 0
\(786\) −881.669 −0.0400103
\(787\) 5160.53 0.233739 0.116870 0.993147i \(-0.462714\pi\)
0.116870 + 0.993147i \(0.462714\pi\)
\(788\) 27068.4 1.22370
\(789\) 871.286 0.0393138
\(790\) 0 0
\(791\) −3466.73 −0.155832
\(792\) 427.022 0.0191586
\(793\) 26261.6 1.17601
\(794\) −1773.17 −0.0792539
\(795\) 0 0
\(796\) −31222.5 −1.39027
\(797\) −9247.76 −0.411007 −0.205504 0.978656i \(-0.565883\pi\)
−0.205504 + 0.978656i \(0.565883\pi\)
\(798\) −1329.33 −0.0589696
\(799\) 19274.7 0.853430
\(800\) 0 0
\(801\) 4573.05 0.201724
\(802\) 450.002 0.0198131
\(803\) −1002.07 −0.0440377
\(804\) −20848.5 −0.914513
\(805\) 0 0
\(806\) −1323.11 −0.0578220
\(807\) 20229.5 0.882417
\(808\) 6406.36 0.278930
\(809\) 29359.7 1.27594 0.637968 0.770063i \(-0.279775\pi\)
0.637968 + 0.770063i \(0.279775\pi\)
\(810\) 0 0
\(811\) 13935.0 0.603358 0.301679 0.953410i \(-0.402453\pi\)
0.301679 + 0.953410i \(0.402453\pi\)
\(812\) 17715.2 0.765620
\(813\) −21546.3 −0.929475
\(814\) −112.756 −0.00485515
\(815\) 0 0
\(816\) −13287.0 −0.570020
\(817\) 1688.52 0.0723057
\(818\) −1971.33 −0.0842617
\(819\) 10079.3 0.430037
\(820\) 0 0
\(821\) 9965.28 0.423618 0.211809 0.977311i \(-0.432064\pi\)
0.211809 + 0.977311i \(0.432064\pi\)
\(822\) −1128.91 −0.0479018
\(823\) 2339.58 0.0990920 0.0495460 0.998772i \(-0.484223\pi\)
0.0495460 + 0.998772i \(0.484223\pi\)
\(824\) −2613.69 −0.110500
\(825\) 0 0
\(826\) −7935.89 −0.334292
\(827\) 15883.4 0.667861 0.333931 0.942598i \(-0.391625\pi\)
0.333931 + 0.942598i \(0.391625\pi\)
\(828\) 4761.87 0.199863
\(829\) 4388.04 0.183839 0.0919196 0.995766i \(-0.470700\pi\)
0.0919196 + 0.995766i \(0.470700\pi\)
\(830\) 0 0
\(831\) −17125.0 −0.714875
\(832\) −16224.1 −0.676044
\(833\) 55034.0 2.28909
\(834\) 406.293 0.0168690
\(835\) 0 0
\(836\) 4269.57 0.176634
\(837\) −3935.49 −0.162521
\(838\) 1595.75 0.0657807
\(839\) 33830.2 1.39207 0.696036 0.718007i \(-0.254945\pi\)
0.696036 + 0.718007i \(0.254945\pi\)
\(840\) 0 0
\(841\) −19915.2 −0.816565
\(842\) −3002.45 −0.122888
\(843\) −26222.8 −1.07137
\(844\) −28085.2 −1.14542
\(845\) 0 0
\(846\) −660.270 −0.0268328
\(847\) 4043.01 0.164013
\(848\) −41460.7 −1.67897
\(849\) −23650.7 −0.956054
\(850\) 0 0
\(851\) −2526.39 −0.101767
\(852\) −12447.1 −0.500505
\(853\) −26047.8 −1.04556 −0.522778 0.852469i \(-0.675104\pi\)
−0.522778 + 0.852469i \(0.675104\pi\)
\(854\) −7090.25 −0.284102
\(855\) 0 0
\(856\) 1522.22 0.0607808
\(857\) −17210.7 −0.686006 −0.343003 0.939334i \(-0.611444\pi\)
−0.343003 + 0.939334i \(0.611444\pi\)
\(858\) 299.554 0.0119191
\(859\) 27367.9 1.08706 0.543528 0.839391i \(-0.317088\pi\)
0.543528 + 0.839391i \(0.317088\pi\)
\(860\) 0 0
\(861\) 34486.2 1.36502
\(862\) −1532.35 −0.0605476
\(863\) −34684.4 −1.36810 −0.684049 0.729436i \(-0.739783\pi\)
−0.684049 + 0.729436i \(0.739783\pi\)
\(864\) 1386.84 0.0546079
\(865\) 0 0
\(866\) 830.092 0.0325724
\(867\) −449.690 −0.0176151
\(868\) −38605.0 −1.50961
\(869\) −1066.22 −0.0416213
\(870\) 0 0
\(871\) −29385.5 −1.14316
\(872\) 6096.03 0.236740
\(873\) 5796.74 0.224731
\(874\) −885.190 −0.0342586
\(875\) 0 0
\(876\) −2166.29 −0.0835527
\(877\) −45816.6 −1.76410 −0.882051 0.471153i \(-0.843838\pi\)
−0.882051 + 0.471153i \(0.843838\pi\)
\(878\) 817.217 0.0314120
\(879\) 6985.61 0.268053
\(880\) 0 0
\(881\) −26404.8 −1.00976 −0.504881 0.863189i \(-0.668464\pi\)
−0.504881 + 0.863189i \(0.668464\pi\)
\(882\) −1885.23 −0.0719717
\(883\) −33977.1 −1.29493 −0.647463 0.762097i \(-0.724170\pi\)
−0.647463 + 0.762097i \(0.724170\pi\)
\(884\) −18904.2 −0.719252
\(885\) 0 0
\(886\) 4630.66 0.175587
\(887\) 3023.60 0.114456 0.0572280 0.998361i \(-0.481774\pi\)
0.0572280 + 0.998361i \(0.481774\pi\)
\(888\) −489.770 −0.0185086
\(889\) 52681.2 1.98748
\(890\) 0 0
\(891\) 891.000 0.0335013
\(892\) −6745.03 −0.253184
\(893\) −13264.5 −0.497064
\(894\) 557.108 0.0208417
\(895\) 0 0
\(896\) 18110.3 0.675249
\(897\) 6711.75 0.249832
\(898\) 2931.27 0.108929
\(899\) −9749.28 −0.361687
\(900\) 0 0
\(901\) −47394.9 −1.75244
\(902\) 1024.92 0.0378336
\(903\) 3456.57 0.127384
\(904\) −447.524 −0.0164651
\(905\) 0 0
\(906\) −982.257 −0.0360191
\(907\) −23951.0 −0.876825 −0.438412 0.898774i \(-0.644459\pi\)
−0.438412 + 0.898774i \(0.644459\pi\)
\(908\) 39954.8 1.46029
\(909\) 13367.1 0.487745
\(910\) 0 0
\(911\) 24198.9 0.880071 0.440035 0.897980i \(-0.354966\pi\)
0.440035 + 0.897980i \(0.354966\pi\)
\(912\) 9143.81 0.331998
\(913\) 15352.5 0.556510
\(914\) −1857.60 −0.0672253
\(915\) 0 0
\(916\) 28728.9 1.03628
\(917\) −36258.8 −1.30575
\(918\) 520.300 0.0187064
\(919\) 11056.9 0.396880 0.198440 0.980113i \(-0.436413\pi\)
0.198440 + 0.980113i \(0.436413\pi\)
\(920\) 0 0
\(921\) 8490.92 0.303784
\(922\) −2613.94 −0.0933682
\(923\) −17543.9 −0.625639
\(924\) 8740.24 0.311182
\(925\) 0 0
\(926\) −1284.93 −0.0455999
\(927\) −5453.57 −0.193224
\(928\) 3435.58 0.121529
\(929\) −48242.5 −1.70375 −0.851876 0.523744i \(-0.824535\pi\)
−0.851876 + 0.523744i \(0.824535\pi\)
\(930\) 0 0
\(931\) −37873.2 −1.33324
\(932\) −23657.6 −0.831470
\(933\) 19742.0 0.692738
\(934\) −2989.42 −0.104729
\(935\) 0 0
\(936\) 1301.15 0.0454375
\(937\) 48721.9 1.69869 0.849346 0.527836i \(-0.176996\pi\)
0.849346 + 0.527836i \(0.176996\pi\)
\(938\) 7933.65 0.276165
\(939\) −23513.9 −0.817195
\(940\) 0 0
\(941\) −4978.66 −0.172476 −0.0862379 0.996275i \(-0.527485\pi\)
−0.0862379 + 0.996275i \(0.527485\pi\)
\(942\) 2699.44 0.0933678
\(943\) 22964.1 0.793015
\(944\) 54587.1 1.88205
\(945\) 0 0
\(946\) 102.728 0.00353062
\(947\) −27711.4 −0.950896 −0.475448 0.879744i \(-0.657714\pi\)
−0.475448 + 0.879744i \(0.657714\pi\)
\(948\) −2304.96 −0.0789680
\(949\) −3053.34 −0.104442
\(950\) 0 0
\(951\) 17560.8 0.598790
\(952\) 10255.0 0.349123
\(953\) 49175.6 1.67152 0.835758 0.549098i \(-0.185029\pi\)
0.835758 + 0.549098i \(0.185029\pi\)
\(954\) 1623.55 0.0550989
\(955\) 0 0
\(956\) −10289.7 −0.348109
\(957\) 2207.25 0.0745562
\(958\) −4733.21 −0.159627
\(959\) −46426.6 −1.56329
\(960\) 0 0
\(961\) −8545.37 −0.286844
\(962\) −343.571 −0.0115147
\(963\) 3176.17 0.106283
\(964\) −31537.9 −1.05370
\(965\) 0 0
\(966\) −1812.07 −0.0603546
\(967\) 52678.5 1.75184 0.875918 0.482461i \(-0.160257\pi\)
0.875918 + 0.482461i \(0.160257\pi\)
\(968\) 521.916 0.0173296
\(969\) 10452.5 0.346526
\(970\) 0 0
\(971\) 46877.5 1.54930 0.774651 0.632390i \(-0.217926\pi\)
0.774651 + 0.632390i \(0.217926\pi\)
\(972\) 1926.18 0.0635619
\(973\) 16708.8 0.550525
\(974\) 4608.00 0.151591
\(975\) 0 0
\(976\) 48770.4 1.59949
\(977\) −1335.33 −0.0437267 −0.0218633 0.999761i \(-0.506960\pi\)
−0.0218633 + 0.999761i \(0.506960\pi\)
\(978\) −1989.20 −0.0650384
\(979\) 5589.29 0.182466
\(980\) 0 0
\(981\) 12719.6 0.413972
\(982\) −5328.19 −0.173146
\(983\) −15102.0 −0.490011 −0.245005 0.969522i \(-0.578790\pi\)
−0.245005 + 0.969522i \(0.578790\pi\)
\(984\) 4451.85 0.144228
\(985\) 0 0
\(986\) 1288.93 0.0416306
\(987\) −27153.7 −0.875696
\(988\) 13009.5 0.418915
\(989\) 2301.70 0.0740039
\(990\) 0 0
\(991\) −45849.8 −1.46969 −0.734847 0.678233i \(-0.762746\pi\)
−0.734847 + 0.678233i \(0.762746\pi\)
\(992\) −7486.82 −0.239624
\(993\) −16042.8 −0.512693
\(994\) 4736.60 0.151143
\(995\) 0 0
\(996\) 33189.3 1.05587
\(997\) −49662.4 −1.57756 −0.788779 0.614678i \(-0.789286\pi\)
−0.788779 + 0.614678i \(0.789286\pi\)
\(998\) 4266.77 0.135333
\(999\) −1021.93 −0.0323647
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.a.w.1.3 5
3.2 odd 2 2475.4.a.bm.1.3 5
5.2 odd 4 825.4.c.r.199.5 10
5.3 odd 4 825.4.c.r.199.6 10
5.4 even 2 825.4.a.z.1.3 yes 5
15.14 odd 2 2475.4.a.bf.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.4.a.w.1.3 5 1.1 even 1 trivial
825.4.a.z.1.3 yes 5 5.4 even 2
825.4.c.r.199.5 10 5.2 odd 4
825.4.c.r.199.6 10 5.3 odd 4
2475.4.a.bf.1.3 5 15.14 odd 2
2475.4.a.bm.1.3 5 3.2 odd 2