Properties

Label 2475.2.c.t.199.3
Level $2475$
Weight $2$
Character 2475.199
Analytic conductor $19.763$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2475,2,Mod(199,2475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2475, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2475.199"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-16,0,0,0,0,0,0,8,0,0,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.7629745003\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.9488318464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 16x^{6} + 82x^{4} + 136x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: no (minimal twist has level 495)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.3
Root \(-1.85206i\) of defining polynomial
Character \(\chi\) \(=\) 2475.199
Dual form 2475.2.c.t.199.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.85206i q^{2} -1.43013 q^{4} +4.90749i q^{7} -1.05543i q^{8} +1.00000 q^{11} +4.61162i q^{13} +9.08898 q^{14} -4.81499 q^{16} -3.76776i q^{17} -4.84386 q^{19} -1.85206i q^{22} -0.860262i q^{23} +8.54100 q^{26} -7.01836i q^{28} -10.3794 q^{29} +7.81499 q^{31} +6.80679i q^{32} -6.97811 q^{34} -4.67525i q^{37} +8.97113i q^{38} -2.97113 q^{41} +0.907494i q^{43} -1.43013 q^{44} -1.59326 q^{46} +13.2232i q^{47} -17.0835 q^{49} -6.59522i q^{52} +5.13974i q^{53} +5.17953 q^{56} +19.2232i q^{58} -12.5480 q^{59} -11.2232 q^{61} -14.4738i q^{62} +2.97661 q^{64} +4.26851i q^{67} +5.38838i q^{68} +5.13974 q^{71} +4.61162i q^{73} -8.65885 q^{74} +6.92735 q^{76} +4.90749i q^{77} +0.843861 q^{79} +5.50271i q^{82} -5.75135i q^{83} +1.68073 q^{86} -1.05543i q^{88} +1.40825 q^{89} -22.6315 q^{91} +1.23029i q^{92} +24.4902 q^{94} +8.54798i q^{97} +31.6397i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{4} + 8 q^{11} - 16 q^{14} + 24 q^{16} - 8 q^{19} + 32 q^{26} - 8 q^{29} - 8 q^{34} + 8 q^{41} - 16 q^{44} - 32 q^{46} - 40 q^{49} + 96 q^{56} - 48 q^{59} + 16 q^{61} + 32 q^{71} + 24 q^{74}+ \cdots + 80 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2475\mathbb{Z}\right)^\times\).

\(n\) \(551\) \(2026\) \(2377\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.85206i − 1.30961i −0.755800 0.654803i \(-0.772752\pi\)
0.755800 0.654803i \(-0.227248\pi\)
\(3\) 0 0
\(4\) −1.43013 −0.715065
\(5\) 0 0
\(6\) 0 0
\(7\) 4.90749i 1.85486i 0.373999 + 0.927429i \(0.377986\pi\)
−0.373999 + 0.927429i \(0.622014\pi\)
\(8\) − 1.05543i − 0.373152i
\(9\) 0 0
\(10\) 0 0
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) 4.61162i 1.27903i 0.768778 + 0.639516i \(0.220865\pi\)
−0.768778 + 0.639516i \(0.779135\pi\)
\(14\) 9.08898 2.42913
\(15\) 0 0
\(16\) −4.81499 −1.20375
\(17\) − 3.76776i − 0.913815i −0.889514 0.456907i \(-0.848957\pi\)
0.889514 0.456907i \(-0.151043\pi\)
\(18\) 0 0
\(19\) −4.84386 −1.11126 −0.555629 0.831430i \(-0.687522\pi\)
−0.555629 + 0.831430i \(0.687522\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 1.85206i − 0.394861i
\(23\) − 0.860262i − 0.179377i −0.995970 0.0896885i \(-0.971413\pi\)
0.995970 0.0896885i \(-0.0285871\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 8.54100 1.67503
\(27\) 0 0
\(28\) − 7.01836i − 1.32635i
\(29\) −10.3794 −1.92740 −0.963700 0.266986i \(-0.913972\pi\)
−0.963700 + 0.266986i \(0.913972\pi\)
\(30\) 0 0
\(31\) 7.81499 1.40361 0.701807 0.712368i \(-0.252377\pi\)
0.701807 + 0.712368i \(0.252377\pi\)
\(32\) 6.80679i 1.20328i
\(33\) 0 0
\(34\) −6.97811 −1.19674
\(35\) 0 0
\(36\) 0 0
\(37\) − 4.67525i − 0.768606i −0.923207 0.384303i \(-0.874442\pi\)
0.923207 0.384303i \(-0.125558\pi\)
\(38\) 8.97113i 1.45531i
\(39\) 0 0
\(40\) 0 0
\(41\) −2.97113 −0.464012 −0.232006 0.972714i \(-0.574529\pi\)
−0.232006 + 0.972714i \(0.574529\pi\)
\(42\) 0 0
\(43\) 0.907494i 0.138391i 0.997603 + 0.0691957i \(0.0220433\pi\)
−0.997603 + 0.0691957i \(0.977957\pi\)
\(44\) −1.43013 −0.215600
\(45\) 0 0
\(46\) −1.59326 −0.234913
\(47\) 13.2232i 1.92881i 0.264436 + 0.964403i \(0.414814\pi\)
−0.264436 + 0.964403i \(0.585186\pi\)
\(48\) 0 0
\(49\) −17.0835 −2.44050
\(50\) 0 0
\(51\) 0 0
\(52\) − 6.59522i − 0.914592i
\(53\) 5.13974i 0.705997i 0.935624 + 0.352999i \(0.114838\pi\)
−0.935624 + 0.352999i \(0.885162\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.17953 0.692144
\(57\) 0 0
\(58\) 19.2232i 2.52413i
\(59\) −12.5480 −1.63361 −0.816804 0.576915i \(-0.804256\pi\)
−0.816804 + 0.576915i \(0.804256\pi\)
\(60\) 0 0
\(61\) −11.2232 −1.43699 −0.718494 0.695533i \(-0.755168\pi\)
−0.718494 + 0.695533i \(0.755168\pi\)
\(62\) − 14.4738i − 1.83818i
\(63\) 0 0
\(64\) 2.97661 0.372076
\(65\) 0 0
\(66\) 0 0
\(67\) 4.26851i 0.521481i 0.965409 + 0.260741i \(0.0839667\pi\)
−0.965409 + 0.260741i \(0.916033\pi\)
\(68\) 5.38838i 0.653438i
\(69\) 0 0
\(70\) 0 0
\(71\) 5.13974 0.609975 0.304987 0.952356i \(-0.401348\pi\)
0.304987 + 0.952356i \(0.401348\pi\)
\(72\) 0 0
\(73\) 4.61162i 0.539749i 0.962896 + 0.269874i \(0.0869822\pi\)
−0.962896 + 0.269874i \(0.913018\pi\)
\(74\) −8.65885 −1.00657
\(75\) 0 0
\(76\) 6.92735 0.794622
\(77\) 4.90749i 0.559261i
\(78\) 0 0
\(79\) 0.843861 0.0949417 0.0474709 0.998873i \(-0.484884\pi\)
0.0474709 + 0.998873i \(0.484884\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 5.50271i 0.607673i
\(83\) − 5.75135i − 0.631293i −0.948877 0.315647i \(-0.897779\pi\)
0.948877 0.315647i \(-0.102221\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 1.68073 0.181238
\(87\) 0 0
\(88\) − 1.05543i − 0.112509i
\(89\) 1.40825 0.149274 0.0746368 0.997211i \(-0.476220\pi\)
0.0746368 + 0.997211i \(0.476220\pi\)
\(90\) 0 0
\(91\) −22.6315 −2.37242
\(92\) 1.23029i 0.128266i
\(93\) 0 0
\(94\) 24.4902 2.52598
\(95\) 0 0
\(96\) 0 0
\(97\) 8.54798i 0.867916i 0.900933 + 0.433958i \(0.142883\pi\)
−0.900933 + 0.433958i \(0.857117\pi\)
\(98\) 31.6397i 3.19609i
\(99\) 0 0
\(100\) 0 0
\(101\) 4.56438 0.454173 0.227087 0.973875i \(-0.427080\pi\)
0.227087 + 0.973875i \(0.427080\pi\)
\(102\) 0 0
\(103\) 4.73300i 0.466356i 0.972434 + 0.233178i \(0.0749125\pi\)
−0.972434 + 0.233178i \(0.925088\pi\)
\(104\) 4.86725 0.477273
\(105\) 0 0
\(106\) 9.51911 0.924578
\(107\) − 7.34461i − 0.710030i −0.934861 0.355015i \(-0.884476\pi\)
0.934861 0.355015i \(-0.115524\pi\)
\(108\) 0 0
\(109\) −9.40825 −0.901146 −0.450573 0.892739i \(-0.648780\pi\)
−0.450573 + 0.892739i \(0.648780\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 23.6295i − 2.23278i
\(113\) 10.9547i 1.03053i 0.857030 + 0.515267i \(0.172307\pi\)
−0.857030 + 0.515267i \(0.827693\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 14.8439 1.37822
\(117\) 0 0
\(118\) 23.2396i 2.13938i
\(119\) 18.4902 1.69500
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 20.7861i 1.88189i
\(123\) 0 0
\(124\) −11.1765 −1.00368
\(125\) 0 0
\(126\) 0 0
\(127\) 6.62802i 0.588141i 0.955784 + 0.294071i \(0.0950101\pi\)
−0.955784 + 0.294071i \(0.904990\pi\)
\(128\) 8.10071i 0.716008i
\(129\) 0 0
\(130\) 0 0
\(131\) −13.2232 −1.15532 −0.577660 0.816278i \(-0.696034\pi\)
−0.577660 + 0.816278i \(0.696034\pi\)
\(132\) 0 0
\(133\) − 23.7712i − 2.06123i
\(134\) 7.90554 0.682934
\(135\) 0 0
\(136\) −3.97661 −0.340992
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) 12.9711 1.10020 0.550098 0.835100i \(-0.314590\pi\)
0.550098 + 0.835100i \(0.314590\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 9.51911i − 0.798826i
\(143\) 4.61162i 0.385643i
\(144\) 0 0
\(145\) 0 0
\(146\) 8.54100 0.706858
\(147\) 0 0
\(148\) 6.68622i 0.549604i
\(149\) −0.0273705 −0.00224228 −0.00112114 0.999999i \(-0.500357\pi\)
−0.00112114 + 0.999999i \(0.500357\pi\)
\(150\) 0 0
\(151\) 4.84386 0.394188 0.197094 0.980385i \(-0.436850\pi\)
0.197094 + 0.980385i \(0.436850\pi\)
\(152\) 5.11237i 0.414668i
\(153\) 0 0
\(154\) 9.08898 0.732411
\(155\) 0 0
\(156\) 0 0
\(157\) 2.12727i 0.169774i 0.996391 + 0.0848872i \(0.0270530\pi\)
−0.996391 + 0.0848872i \(0.972947\pi\)
\(158\) − 1.56288i − 0.124336i
\(159\) 0 0
\(160\) 0 0
\(161\) 4.22173 0.332719
\(162\) 0 0
\(163\) − 10.0835i − 0.789800i −0.918724 0.394900i \(-0.870779\pi\)
0.918724 0.394900i \(-0.129221\pi\)
\(164\) 4.24910 0.331799
\(165\) 0 0
\(166\) −10.6519 −0.826745
\(167\) − 17.7514i − 1.37364i −0.726827 0.686821i \(-0.759006\pi\)
0.726827 0.686821i \(-0.240994\pi\)
\(168\) 0 0
\(169\) −8.26700 −0.635923
\(170\) 0 0
\(171\) 0 0
\(172\) − 1.29783i − 0.0989590i
\(173\) 15.7678i 1.19880i 0.800450 + 0.599400i \(0.204594\pi\)
−0.800450 + 0.599400i \(0.795406\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.81499 −0.362943
\(177\) 0 0
\(178\) − 2.60816i − 0.195490i
\(179\) 7.40825 0.553718 0.276859 0.960911i \(-0.410706\pi\)
0.276859 + 0.960911i \(0.410706\pi\)
\(180\) 0 0
\(181\) 7.26700 0.540152 0.270076 0.962839i \(-0.412951\pi\)
0.270076 + 0.962839i \(0.412951\pi\)
\(182\) 41.9149i 3.10694i
\(183\) 0 0
\(184\) −0.907948 −0.0669348
\(185\) 0 0
\(186\) 0 0
\(187\) − 3.76776i − 0.275526i
\(188\) − 18.9110i − 1.37922i
\(189\) 0 0
\(190\) 0 0
\(191\) 2.87123 0.207755 0.103877 0.994590i \(-0.466875\pi\)
0.103877 + 0.994590i \(0.466875\pi\)
\(192\) 0 0
\(193\) − 18.8911i − 1.35981i −0.733300 0.679905i \(-0.762021\pi\)
0.733300 0.679905i \(-0.237979\pi\)
\(194\) 15.8314 1.13663
\(195\) 0 0
\(196\) 24.4316 1.74512
\(197\) − 14.0472i − 1.00082i −0.865787 0.500412i \(-0.833182\pi\)
0.865787 0.500412i \(-0.166818\pi\)
\(198\) 0 0
\(199\) −3.40825 −0.241604 −0.120802 0.992677i \(-0.538547\pi\)
−0.120802 + 0.992677i \(0.538547\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 8.45352i − 0.594788i
\(203\) − 50.9367i − 3.57506i
\(204\) 0 0
\(205\) 0 0
\(206\) 8.76580 0.610742
\(207\) 0 0
\(208\) − 22.2049i − 1.53963i
\(209\) −4.84386 −0.335057
\(210\) 0 0
\(211\) −24.4738 −1.68485 −0.842424 0.538815i \(-0.818872\pi\)
−0.842424 + 0.538815i \(0.818872\pi\)
\(212\) − 7.35050i − 0.504834i
\(213\) 0 0
\(214\) −13.6027 −0.929859
\(215\) 0 0
\(216\) 0 0
\(217\) 38.3520i 2.60350i
\(218\) 17.4246i 1.18015i
\(219\) 0 0
\(220\) 0 0
\(221\) 17.3754 1.16880
\(222\) 0 0
\(223\) 11.5355i 0.772475i 0.922399 + 0.386237i \(0.126225\pi\)
−0.922399 + 0.386237i \(0.873775\pi\)
\(224\) −33.4043 −2.23192
\(225\) 0 0
\(226\) 20.2888 1.34959
\(227\) 1.15960i 0.0769653i 0.999259 + 0.0384827i \(0.0122524\pi\)
−0.999259 + 0.0384827i \(0.987748\pi\)
\(228\) 0 0
\(229\) 24.4465 1.61547 0.807734 0.589547i \(-0.200694\pi\)
0.807734 + 0.589547i \(0.200694\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.9547i 0.719213i
\(233\) 9.45548i 0.619449i 0.950826 + 0.309724i \(0.100237\pi\)
−0.950826 + 0.309724i \(0.899763\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 17.9453 1.16814
\(237\) 0 0
\(238\) − 34.2451i − 2.21978i
\(239\) −14.9438 −0.966631 −0.483316 0.875446i \(-0.660568\pi\)
−0.483316 + 0.875446i \(0.660568\pi\)
\(240\) 0 0
\(241\) 7.81499 0.503408 0.251704 0.967804i \(-0.419009\pi\)
0.251704 + 0.967804i \(0.419009\pi\)
\(242\) − 1.85206i − 0.119055i
\(243\) 0 0
\(244\) 16.0507 1.02754
\(245\) 0 0
\(246\) 0 0
\(247\) − 22.3380i − 1.42133i
\(248\) − 8.24819i − 0.523761i
\(249\) 0 0
\(250\) 0 0
\(251\) −3.41921 −0.215819 −0.107909 0.994161i \(-0.534416\pi\)
−0.107909 + 0.994161i \(0.534416\pi\)
\(252\) 0 0
\(253\) − 0.860262i − 0.0540842i
\(254\) 12.2755 0.770233
\(255\) 0 0
\(256\) 20.9562 1.30976
\(257\) − 1.53551i − 0.0957826i −0.998853 0.0478913i \(-0.984750\pi\)
0.998853 0.0478913i \(-0.0152501\pi\)
\(258\) 0 0
\(259\) 22.9438 1.42566
\(260\) 0 0
\(261\) 0 0
\(262\) 24.4902i 1.51301i
\(263\) − 0.190899i − 0.0117713i −0.999983 0.00588567i \(-0.998127\pi\)
0.999983 0.00588567i \(-0.00187348\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −44.0257 −2.69939
\(267\) 0 0
\(268\) − 6.10452i − 0.372893i
\(269\) 14.4465 0.880817 0.440408 0.897798i \(-0.354834\pi\)
0.440408 + 0.897798i \(0.354834\pi\)
\(270\) 0 0
\(271\) −9.97263 −0.605794 −0.302897 0.953023i \(-0.597954\pi\)
−0.302897 + 0.953023i \(0.597954\pi\)
\(272\) 18.1417i 1.10000i
\(273\) 0 0
\(274\) 11.1124 0.671323
\(275\) 0 0
\(276\) 0 0
\(277\) 12.5788i 0.755788i 0.925849 + 0.377894i \(0.123352\pi\)
−0.925849 + 0.377894i \(0.876648\pi\)
\(278\) − 24.0233i − 1.44082i
\(279\) 0 0
\(280\) 0 0
\(281\) 16.6917 0.995740 0.497870 0.867252i \(-0.334116\pi\)
0.497870 + 0.867252i \(0.334116\pi\)
\(282\) 0 0
\(283\) 21.5937i 1.28361i 0.766867 + 0.641806i \(0.221815\pi\)
−0.766867 + 0.641806i \(0.778185\pi\)
\(284\) −7.35050 −0.436172
\(285\) 0 0
\(286\) 8.54100 0.505040
\(287\) − 14.5808i − 0.860677i
\(288\) 0 0
\(289\) 2.80402 0.164942
\(290\) 0 0
\(291\) 0 0
\(292\) − 6.59522i − 0.385956i
\(293\) 33.0855i 1.93287i 0.256906 + 0.966436i \(0.417297\pi\)
−0.256906 + 0.966436i \(0.582703\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −4.93441 −0.286807
\(297\) 0 0
\(298\) 0.0506919i 0.00293650i
\(299\) 3.96720 0.229429
\(300\) 0 0
\(301\) −4.45352 −0.256697
\(302\) − 8.97113i − 0.516230i
\(303\) 0 0
\(304\) 23.3231 1.33767
\(305\) 0 0
\(306\) 0 0
\(307\) 7.72398i 0.440831i 0.975406 + 0.220416i \(0.0707413\pi\)
−0.975406 + 0.220416i \(0.929259\pi\)
\(308\) − 7.01836i − 0.399908i
\(309\) 0 0
\(310\) 0 0
\(311\) 12.1780 0.690549 0.345274 0.938502i \(-0.387786\pi\)
0.345274 + 0.938502i \(0.387786\pi\)
\(312\) 0 0
\(313\) 2.95473i 0.167011i 0.996507 + 0.0835055i \(0.0266116\pi\)
−0.996507 + 0.0835055i \(0.973388\pi\)
\(314\) 3.93983 0.222337
\(315\) 0 0
\(316\) −1.20683 −0.0678896
\(317\) − 27.4917i − 1.54409i −0.635568 0.772045i \(-0.719234\pi\)
0.635568 0.772045i \(-0.280766\pi\)
\(318\) 0 0
\(319\) −10.3794 −0.581133
\(320\) 0 0
\(321\) 0 0
\(322\) − 7.81890i − 0.435730i
\(323\) 18.2505i 1.01548i
\(324\) 0 0
\(325\) 0 0
\(326\) −18.6752 −1.03433
\(327\) 0 0
\(328\) 3.13582i 0.173147i
\(329\) −64.8929 −3.57766
\(330\) 0 0
\(331\) 16.5737 0.910975 0.455487 0.890242i \(-0.349465\pi\)
0.455487 + 0.890242i \(0.349465\pi\)
\(332\) 8.22519i 0.451416i
\(333\) 0 0
\(334\) −32.8766 −1.79893
\(335\) 0 0
\(336\) 0 0
\(337\) 4.64442i 0.252998i 0.991967 + 0.126499i \(0.0403740\pi\)
−0.991967 + 0.126499i \(0.959626\pi\)
\(338\) 15.3110i 0.832809i
\(339\) 0 0
\(340\) 0 0
\(341\) 7.81499 0.423205
\(342\) 0 0
\(343\) − 49.4847i − 2.67192i
\(344\) 0.957798 0.0516410
\(345\) 0 0
\(346\) 29.2028 1.56995
\(347\) − 23.6936i − 1.27194i −0.771714 0.635970i \(-0.780600\pi\)
0.771714 0.635970i \(-0.219400\pi\)
\(348\) 0 0
\(349\) 21.7572 1.16464 0.582319 0.812960i \(-0.302145\pi\)
0.582319 + 0.812960i \(0.302145\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 6.80679i 0.362803i
\(353\) 6.49024i 0.345440i 0.984971 + 0.172720i \(0.0552556\pi\)
−0.984971 + 0.172720i \(0.944744\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2.01397 −0.106740
\(357\) 0 0
\(358\) − 13.7205i − 0.725152i
\(359\) 19.1655 1.01152 0.505758 0.862676i \(-0.331213\pi\)
0.505758 + 0.862676i \(0.331213\pi\)
\(360\) 0 0
\(361\) 4.46299 0.234894
\(362\) − 13.4589i − 0.707386i
\(363\) 0 0
\(364\) 32.3660 1.69644
\(365\) 0 0
\(366\) 0 0
\(367\) − 10.1850i − 0.531653i −0.964021 0.265827i \(-0.914355\pi\)
0.964021 0.265827i \(-0.0856449\pi\)
\(368\) 4.14215i 0.215924i
\(369\) 0 0
\(370\) 0 0
\(371\) −25.2232 −1.30952
\(372\) 0 0
\(373\) − 19.0184i − 0.984733i −0.870388 0.492367i \(-0.836132\pi\)
0.870388 0.492367i \(-0.163868\pi\)
\(374\) −6.97811 −0.360830
\(375\) 0 0
\(376\) 13.9562 0.719738
\(377\) − 47.8657i − 2.46521i
\(378\) 0 0
\(379\) −11.0710 −0.568680 −0.284340 0.958723i \(-0.591774\pi\)
−0.284340 + 0.958723i \(0.591774\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 5.31770i − 0.272077i
\(383\) − 12.7330i − 0.650626i −0.945606 0.325313i \(-0.894530\pi\)
0.945606 0.325313i \(-0.105470\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −34.9875 −1.78081
\(387\) 0 0
\(388\) − 12.2247i − 0.620617i
\(389\) −32.7587 −1.66093 −0.830467 0.557068i \(-0.811926\pi\)
−0.830467 + 0.557068i \(0.811926\pi\)
\(390\) 0 0
\(391\) −3.24126 −0.163917
\(392\) 18.0305i 0.910676i
\(393\) 0 0
\(394\) −26.0163 −1.31068
\(395\) 0 0
\(396\) 0 0
\(397\) − 15.0820i − 0.756943i −0.925613 0.378472i \(-0.876450\pi\)
0.925613 0.378472i \(-0.123550\pi\)
\(398\) 6.31228i 0.316406i
\(399\) 0 0
\(400\) 0 0
\(401\) −18.7259 −0.935129 −0.467564 0.883959i \(-0.654868\pi\)
−0.467564 + 0.883959i \(0.654868\pi\)
\(402\) 0 0
\(403\) 36.0397i 1.79527i
\(404\) −6.52767 −0.324764
\(405\) 0 0
\(406\) −94.3379 −4.68191
\(407\) − 4.67525i − 0.231744i
\(408\) 0 0
\(409\) −24.4793 −1.21042 −0.605211 0.796065i \(-0.706911\pi\)
−0.605211 + 0.796065i \(0.706911\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 6.76880i − 0.333475i
\(413\) − 61.5791i − 3.03011i
\(414\) 0 0
\(415\) 0 0
\(416\) −31.3903 −1.53904
\(417\) 0 0
\(418\) 8.97113i 0.438792i
\(419\) 9.12877 0.445970 0.222985 0.974822i \(-0.428420\pi\)
0.222985 + 0.974822i \(0.428420\pi\)
\(420\) 0 0
\(421\) −13.5465 −0.660215 −0.330108 0.943943i \(-0.607085\pi\)
−0.330108 + 0.943943i \(0.607085\pi\)
\(422\) 45.3270i 2.20649i
\(423\) 0 0
\(424\) 5.42465 0.263444
\(425\) 0 0
\(426\) 0 0
\(427\) − 55.0779i − 2.66541i
\(428\) 10.5038i 0.507718i
\(429\) 0 0
\(430\) 0 0
\(431\) 26.4465 1.27388 0.636941 0.770913i \(-0.280200\pi\)
0.636941 + 0.770913i \(0.280200\pi\)
\(432\) 0 0
\(433\) 16.1780i 0.777463i 0.921351 + 0.388732i \(0.127087\pi\)
−0.921351 + 0.388732i \(0.872913\pi\)
\(434\) 71.0303 3.40956
\(435\) 0 0
\(436\) 13.4550 0.644379
\(437\) 4.16699i 0.199334i
\(438\) 0 0
\(439\) 7.02887 0.335470 0.167735 0.985832i \(-0.446355\pi\)
0.167735 + 0.985832i \(0.446355\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 32.1804i − 1.53066i
\(443\) − 24.3630i − 1.15752i −0.815498 0.578760i \(-0.803537\pi\)
0.815498 0.578760i \(-0.196463\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 21.3645 1.01164
\(447\) 0 0
\(448\) 14.6077i 0.690149i
\(449\) −38.3887 −1.81168 −0.905838 0.423625i \(-0.860758\pi\)
−0.905838 + 0.423625i \(0.860758\pi\)
\(450\) 0 0
\(451\) −2.97113 −0.139905
\(452\) − 15.6667i − 0.736899i
\(453\) 0 0
\(454\) 2.14765 0.100794
\(455\) 0 0
\(456\) 0 0
\(457\) 21.9621i 1.02734i 0.857987 + 0.513672i \(0.171715\pi\)
−0.857987 + 0.513672i \(0.828285\pi\)
\(458\) − 45.2764i − 2.11562i
\(459\) 0 0
\(460\) 0 0
\(461\) −27.5698 −1.28405 −0.642027 0.766682i \(-0.721906\pi\)
−0.642027 + 0.766682i \(0.721906\pi\)
\(462\) 0 0
\(463\) 24.8860i 1.15655i 0.815842 + 0.578275i \(0.196274\pi\)
−0.815842 + 0.578275i \(0.803726\pi\)
\(464\) 49.9765 2.32010
\(465\) 0 0
\(466\) 17.5121 0.811233
\(467\) 29.0273i 1.34322i 0.740904 + 0.671610i \(0.234397\pi\)
−0.740904 + 0.671610i \(0.765603\pi\)
\(468\) 0 0
\(469\) −20.9477 −0.967274
\(470\) 0 0
\(471\) 0 0
\(472\) 13.2435i 0.609584i
\(473\) 0.907494i 0.0417266i
\(474\) 0 0
\(475\) 0 0
\(476\) −26.4435 −1.21203
\(477\) 0 0
\(478\) 27.6768i 1.26591i
\(479\) 29.4450 1.34537 0.672687 0.739927i \(-0.265140\pi\)
0.672687 + 0.739927i \(0.265140\pi\)
\(480\) 0 0
\(481\) 21.5605 0.983072
\(482\) − 14.4738i − 0.659265i
\(483\) 0 0
\(484\) −1.43013 −0.0650060
\(485\) 0 0
\(486\) 0 0
\(487\) 27.5285i 1.24743i 0.781650 + 0.623717i \(0.214378\pi\)
−0.781650 + 0.623717i \(0.785622\pi\)
\(488\) 11.8454i 0.536214i
\(489\) 0 0
\(490\) 0 0
\(491\) −22.2795 −1.00546 −0.502729 0.864444i \(-0.667671\pi\)
−0.502729 + 0.864444i \(0.667671\pi\)
\(492\) 0 0
\(493\) 39.1069i 1.76129i
\(494\) −41.3714 −1.86139
\(495\) 0 0
\(496\) −37.6291 −1.68959
\(497\) 25.2232i 1.13142i
\(498\) 0 0
\(499\) 35.0382 1.56853 0.784263 0.620428i \(-0.213041\pi\)
0.784263 + 0.620428i \(0.213041\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 6.33259i 0.282638i
\(503\) − 33.9731i − 1.51478i −0.652960 0.757392i \(-0.726473\pi\)
0.652960 0.757392i \(-0.273527\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −1.59326 −0.0708289
\(507\) 0 0
\(508\) − 9.47893i − 0.420560i
\(509\) 13.3505 0.591750 0.295875 0.955227i \(-0.404389\pi\)
0.295875 + 0.955227i \(0.404389\pi\)
\(510\) 0 0
\(511\) −22.6315 −1.00116
\(512\) − 22.6108i − 0.999266i
\(513\) 0 0
\(514\) −2.84386 −0.125437
\(515\) 0 0
\(516\) 0 0
\(517\) 13.2232i 0.581557i
\(518\) − 42.4932i − 1.86705i
\(519\) 0 0
\(520\) 0 0
\(521\) 7.46599 0.327091 0.163546 0.986536i \(-0.447707\pi\)
0.163546 + 0.986536i \(0.447707\pi\)
\(522\) 0 0
\(523\) 15.9785i 0.698692i 0.936994 + 0.349346i \(0.113596\pi\)
−0.936994 + 0.349346i \(0.886404\pi\)
\(524\) 18.9110 0.826129
\(525\) 0 0
\(526\) −0.353557 −0.0154158
\(527\) − 29.4450i − 1.28264i
\(528\) 0 0
\(529\) 22.2599 0.967824
\(530\) 0 0
\(531\) 0 0
\(532\) 33.9960i 1.47391i
\(533\) − 13.7017i − 0.593486i
\(534\) 0 0
\(535\) 0 0
\(536\) 4.50512 0.194592
\(537\) 0 0
\(538\) − 26.7557i − 1.15352i
\(539\) −17.0835 −0.735838
\(540\) 0 0
\(541\) −5.46299 −0.234872 −0.117436 0.993080i \(-0.537468\pi\)
−0.117436 + 0.993080i \(0.537468\pi\)
\(542\) 18.4699i 0.793351i
\(543\) 0 0
\(544\) 25.6463 1.09958
\(545\) 0 0
\(546\) 0 0
\(547\) 38.8895i 1.66279i 0.555679 + 0.831397i \(0.312458\pi\)
−0.555679 + 0.831397i \(0.687542\pi\)
\(548\) − 8.58079i − 0.366553i
\(549\) 0 0
\(550\) 0 0
\(551\) 50.2762 2.14184
\(552\) 0 0
\(553\) 4.14124i 0.176103i
\(554\) 23.2967 0.989783
\(555\) 0 0
\(556\) −18.5504 −0.786713
\(557\) 6.58425i 0.278983i 0.990223 + 0.139492i \(0.0445469\pi\)
−0.990223 + 0.139492i \(0.955453\pi\)
\(558\) 0 0
\(559\) −4.18501 −0.177007
\(560\) 0 0
\(561\) 0 0
\(562\) − 30.9140i − 1.30403i
\(563\) − 25.0323i − 1.05499i −0.849559 0.527494i \(-0.823132\pi\)
0.849559 0.527494i \(-0.176868\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 39.9929 1.68103
\(567\) 0 0
\(568\) − 5.42465i − 0.227613i
\(569\) 34.5066 1.44659 0.723297 0.690537i \(-0.242626\pi\)
0.723297 + 0.690537i \(0.242626\pi\)
\(570\) 0 0
\(571\) −18.6588 −0.780848 −0.390424 0.920635i \(-0.627672\pi\)
−0.390424 + 0.920635i \(0.627672\pi\)
\(572\) − 6.59522i − 0.275760i
\(573\) 0 0
\(574\) −27.0045 −1.12715
\(575\) 0 0
\(576\) 0 0
\(577\) − 37.6697i − 1.56821i −0.620628 0.784105i \(-0.713122\pi\)
0.620628 0.784105i \(-0.286878\pi\)
\(578\) − 5.19321i − 0.216009i
\(579\) 0 0
\(580\) 0 0
\(581\) 28.2247 1.17096
\(582\) 0 0
\(583\) 5.13974i 0.212866i
\(584\) 4.86725 0.201408
\(585\) 0 0
\(586\) 61.2763 2.53130
\(587\) 11.0242i 0.455019i 0.973776 + 0.227510i \(0.0730583\pi\)
−0.973776 + 0.227510i \(0.926942\pi\)
\(588\) 0 0
\(589\) −37.8547 −1.55978
\(590\) 0 0
\(591\) 0 0
\(592\) 22.5113i 0.925207i
\(593\) 39.4703i 1.62085i 0.585843 + 0.810425i \(0.300764\pi\)
−0.585843 + 0.810425i \(0.699236\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0.0391434 0.00160338
\(597\) 0 0
\(598\) − 7.34749i − 0.300461i
\(599\) 2.44646 0.0999598 0.0499799 0.998750i \(-0.484084\pi\)
0.0499799 + 0.998750i \(0.484084\pi\)
\(600\) 0 0
\(601\) −37.6697 −1.53658 −0.768290 0.640103i \(-0.778892\pi\)
−0.768290 + 0.640103i \(0.778892\pi\)
\(602\) 8.24819i 0.336171i
\(603\) 0 0
\(604\) −6.92735 −0.281870
\(605\) 0 0
\(606\) 0 0
\(607\) 6.62802i 0.269023i 0.990912 + 0.134511i \(0.0429465\pi\)
−0.990912 + 0.134511i \(0.957053\pi\)
\(608\) − 32.9711i − 1.33716i
\(609\) 0 0
\(610\) 0 0
\(611\) −60.9805 −2.46701
\(612\) 0 0
\(613\) − 15.6498i − 0.632091i −0.948744 0.316045i \(-0.897645\pi\)
0.948744 0.316045i \(-0.102355\pi\)
\(614\) 14.3053 0.577315
\(615\) 0 0
\(616\) 5.17953 0.208689
\(617\) 27.7463i 1.11702i 0.829497 + 0.558511i \(0.188627\pi\)
−0.829497 + 0.558511i \(0.811373\pi\)
\(618\) 0 0
\(619\) −16.5737 −0.666154 −0.333077 0.942900i \(-0.608087\pi\)
−0.333077 + 0.942900i \(0.608087\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 22.5543i − 0.904346i
\(623\) 6.91095i 0.276882i
\(624\) 0 0
\(625\) 0 0
\(626\) 5.47233 0.218718
\(627\) 0 0
\(628\) − 3.04227i − 0.121400i
\(629\) −17.6152 −0.702364
\(630\) 0 0
\(631\) −37.8547 −1.50697 −0.753486 0.657464i \(-0.771629\pi\)
−0.753486 + 0.657464i \(0.771629\pi\)
\(632\) − 0.890638i − 0.0354277i
\(633\) 0 0
\(634\) −50.9164 −2.02215
\(635\) 0 0
\(636\) 0 0
\(637\) − 78.7825i − 3.12148i
\(638\) 19.2232i 0.761055i
\(639\) 0 0
\(640\) 0 0
\(641\) −11.9423 −0.471691 −0.235845 0.971791i \(-0.575786\pi\)
−0.235845 + 0.971791i \(0.575786\pi\)
\(642\) 0 0
\(643\) − 10.3380i − 0.407692i −0.979003 0.203846i \(-0.934656\pi\)
0.979003 0.203846i \(-0.0653442\pi\)
\(644\) −6.03763 −0.237916
\(645\) 0 0
\(646\) 33.8010 1.32988
\(647\) − 11.0125i − 0.432945i −0.976289 0.216472i \(-0.930545\pi\)
0.976289 0.216472i \(-0.0694552\pi\)
\(648\) 0 0
\(649\) −12.5480 −0.492551
\(650\) 0 0
\(651\) 0 0
\(652\) 14.4207i 0.564759i
\(653\) 13.2810i 0.519725i 0.965646 + 0.259862i \(0.0836772\pi\)
−0.965646 + 0.259862i \(0.916323\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 14.3059 0.558553
\(657\) 0 0
\(658\) 120.186i 4.68533i
\(659\) −10.2247 −0.398299 −0.199150 0.979969i \(-0.563818\pi\)
−0.199150 + 0.979969i \(0.563818\pi\)
\(660\) 0 0
\(661\) 17.0710 0.663986 0.331993 0.943282i \(-0.392279\pi\)
0.331993 + 0.943282i \(0.392279\pi\)
\(662\) − 30.6956i − 1.19302i
\(663\) 0 0
\(664\) −6.07017 −0.235568
\(665\) 0 0
\(666\) 0 0
\(667\) 8.92898i 0.345731i
\(668\) 25.3868i 0.982243i
\(669\) 0 0
\(670\) 0 0
\(671\) −11.2232 −0.433268
\(672\) 0 0
\(673\) − 27.8926i − 1.07518i −0.843206 0.537590i \(-0.819335\pi\)
0.843206 0.537590i \(-0.180665\pi\)
\(674\) 8.60175 0.331327
\(675\) 0 0
\(676\) 11.8229 0.454727
\(677\) 19.4922i 0.749146i 0.927197 + 0.374573i \(0.122211\pi\)
−0.927197 + 0.374573i \(0.877789\pi\)
\(678\) 0 0
\(679\) −41.9492 −1.60986
\(680\) 0 0
\(681\) 0 0
\(682\) − 14.4738i − 0.554232i
\(683\) − 26.9438i − 1.03097i −0.856897 0.515487i \(-0.827611\pi\)
0.856897 0.515487i \(-0.172389\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −91.6487 −3.49916
\(687\) 0 0
\(688\) − 4.36957i − 0.166588i
\(689\) −23.7025 −0.902993
\(690\) 0 0
\(691\) 41.2849 1.57055 0.785276 0.619146i \(-0.212521\pi\)
0.785276 + 0.619146i \(0.212521\pi\)
\(692\) − 22.5500i − 0.857221i
\(693\) 0 0
\(694\) −43.8820 −1.66574
\(695\) 0 0
\(696\) 0 0
\(697\) 11.1945i 0.424021i
\(698\) − 40.2957i − 1.52522i
\(699\) 0 0
\(700\) 0 0
\(701\) −41.1631 −1.55471 −0.777354 0.629064i \(-0.783438\pi\)
−0.777354 + 0.629064i \(0.783438\pi\)
\(702\) 0 0
\(703\) 22.6463i 0.854120i
\(704\) 2.97661 0.112185
\(705\) 0 0
\(706\) 12.0203 0.452391
\(707\) 22.3997i 0.842427i
\(708\) 0 0
\(709\) 19.8040 0.743756 0.371878 0.928282i \(-0.378714\pi\)
0.371878 + 0.928282i \(0.378714\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 1.48631i − 0.0557017i
\(713\) − 6.72294i − 0.251776i
\(714\) 0 0
\(715\) 0 0
\(716\) −10.5948 −0.395945
\(717\) 0 0
\(718\) − 35.4957i − 1.32469i
\(719\) −42.6682 −1.59126 −0.795628 0.605786i \(-0.792859\pi\)
−0.795628 + 0.605786i \(0.792859\pi\)
\(720\) 0 0
\(721\) −23.2271 −0.865024
\(722\) − 8.26572i − 0.307618i
\(723\) 0 0
\(724\) −10.3928 −0.386244
\(725\) 0 0
\(726\) 0 0
\(727\) − 39.0054i − 1.44663i −0.690518 0.723315i \(-0.742617\pi\)
0.690518 0.723315i \(-0.257383\pi\)
\(728\) 23.8860i 0.885274i
\(729\) 0 0
\(730\) 0 0
\(731\) 3.41921 0.126464
\(732\) 0 0
\(733\) 12.2744i 0.453365i 0.973969 + 0.226683i \(0.0727880\pi\)
−0.973969 + 0.226683i \(0.927212\pi\)
\(734\) −18.8633 −0.696256
\(735\) 0 0
\(736\) 5.85562 0.215841
\(737\) 4.26851i 0.157232i
\(738\) 0 0
\(739\) −34.0343 −1.25197 −0.625986 0.779834i \(-0.715303\pi\)
−0.625986 + 0.779834i \(0.715303\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 46.7150i 1.71496i
\(743\) 16.2854i 0.597452i 0.954339 + 0.298726i \(0.0965617\pi\)
−0.954339 + 0.298726i \(0.903438\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −35.2232 −1.28961
\(747\) 0 0
\(748\) 5.38838i 0.197019i
\(749\) 36.0436 1.31701
\(750\) 0 0
\(751\) 14.0577 0.512974 0.256487 0.966548i \(-0.417435\pi\)
0.256487 + 0.966548i \(0.417435\pi\)
\(752\) − 63.6697i − 2.32179i
\(753\) 0 0
\(754\) −88.6502 −3.22845
\(755\) 0 0
\(756\) 0 0
\(757\) 38.2286i 1.38944i 0.719278 + 0.694722i \(0.244473\pi\)
−0.719278 + 0.694722i \(0.755527\pi\)
\(758\) 20.5042i 0.744746i
\(759\) 0 0
\(760\) 0 0
\(761\) 9.52616 0.345323 0.172662 0.984981i \(-0.444763\pi\)
0.172662 + 0.984981i \(0.444763\pi\)
\(762\) 0 0
\(763\) − 46.1709i − 1.67150i
\(764\) −4.10624 −0.148558
\(765\) 0 0
\(766\) −23.5823 −0.852063
\(767\) − 57.8665i − 2.08944i
\(768\) 0 0
\(769\) −2.24276 −0.0808760 −0.0404380 0.999182i \(-0.512875\pi\)
−0.0404380 + 0.999182i \(0.512875\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 27.0167i 0.972354i
\(773\) − 17.7025i − 0.636715i −0.947971 0.318357i \(-0.896869\pi\)
0.947971 0.318357i \(-0.103131\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 9.02182 0.323864
\(777\) 0 0
\(778\) 60.6712i 2.17517i
\(779\) 14.3917 0.515637
\(780\) 0 0
\(781\) 5.13974 0.183914
\(782\) 6.00301i 0.214667i
\(783\) 0 0
\(784\) 82.2568 2.93774
\(785\) 0 0
\(786\) 0 0
\(787\) − 17.4445i − 0.621830i −0.950438 0.310915i \(-0.899365\pi\)
0.950438 0.310915i \(-0.100635\pi\)
\(788\) 20.0894i 0.715655i
\(789\) 0 0
\(790\) 0 0
\(791\) −53.7602 −1.91149
\(792\) 0 0
\(793\) − 51.7572i − 1.83795i
\(794\) −27.9328 −0.991297
\(795\) 0 0
\(796\) 4.87424 0.172763
\(797\) − 11.2093i − 0.397052i −0.980096 0.198526i \(-0.936385\pi\)
0.980096 0.198526i \(-0.0636155\pi\)
\(798\) 0 0
\(799\) 49.8219 1.76257
\(800\) 0 0
\(801\) 0 0
\(802\) 34.6816i 1.22465i
\(803\) 4.61162i 0.162740i
\(804\) 0 0
\(805\) 0 0
\(806\) 66.7478 2.35109
\(807\) 0 0
\(808\) − 4.81740i − 0.169476i
\(809\) 43.1381 1.51666 0.758328 0.651874i \(-0.226017\pi\)
0.758328 + 0.651874i \(0.226017\pi\)
\(810\) 0 0
\(811\) 11.0289 0.387276 0.193638 0.981073i \(-0.437971\pi\)
0.193638 + 0.981073i \(0.437971\pi\)
\(812\) 72.8462i 2.55640i
\(813\) 0 0
\(814\) −8.65885 −0.303492
\(815\) 0 0
\(816\) 0 0
\(817\) − 4.39577i − 0.153789i
\(818\) 45.3371i 1.58517i
\(819\) 0 0
\(820\) 0 0
\(821\) −14.9164 −0.520585 −0.260293 0.965530i \(-0.583819\pi\)
−0.260293 + 0.965530i \(0.583819\pi\)
\(822\) 0 0
\(823\) 41.4589i 1.44517i 0.691283 + 0.722584i \(0.257046\pi\)
−0.691283 + 0.722584i \(0.742954\pi\)
\(824\) 4.99536 0.174022
\(825\) 0 0
\(826\) −114.048 −3.96825
\(827\) − 19.4171i − 0.675200i −0.941290 0.337600i \(-0.890385\pi\)
0.941290 0.337600i \(-0.109615\pi\)
\(828\) 0 0
\(829\) 17.8290 0.619225 0.309613 0.950863i \(-0.399801\pi\)
0.309613 + 0.950863i \(0.399801\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 13.7270i 0.475898i
\(833\) 64.3664i 2.23016i
\(834\) 0 0
\(835\) 0 0
\(836\) 6.92735 0.239588
\(837\) 0 0
\(838\) − 16.9070i − 0.584044i
\(839\) 12.2935 0.424417 0.212209 0.977224i \(-0.431934\pi\)
0.212209 + 0.977224i \(0.431934\pi\)
\(840\) 0 0
\(841\) 78.7314 2.71487
\(842\) 25.0889i 0.864621i
\(843\) 0 0
\(844\) 35.0008 1.20478
\(845\) 0 0
\(846\) 0 0
\(847\) 4.90749i 0.168623i
\(848\) − 24.7478i − 0.849842i
\(849\) 0 0
\(850\) 0 0
\(851\) −4.02194 −0.137870
\(852\) 0 0
\(853\) 18.0776i 0.618966i 0.950905 + 0.309483i \(0.100156\pi\)
−0.950905 + 0.309483i \(0.899844\pi\)
\(854\) −102.008 −3.49063
\(855\) 0 0
\(856\) −7.75174 −0.264949
\(857\) 55.3649i 1.89123i 0.325288 + 0.945615i \(0.394539\pi\)
−0.325288 + 0.945615i \(0.605461\pi\)
\(858\) 0 0
\(859\) 0.943756 0.0322005 0.0161003 0.999870i \(-0.494875\pi\)
0.0161003 + 0.999870i \(0.494875\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 48.9805i − 1.66828i
\(863\) − 23.6370i − 0.804614i −0.915505 0.402307i \(-0.868208\pi\)
0.915505 0.402307i \(-0.131792\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 29.9626 1.01817
\(867\) 0 0
\(868\) − 54.8484i − 1.86168i
\(869\) 0.843861 0.0286260
\(870\) 0 0
\(871\) −19.6847 −0.666991
\(872\) 9.92977i 0.336264i
\(873\) 0 0
\(874\) 7.71752 0.261049
\(875\) 0 0
\(876\) 0 0
\(877\) − 16.6841i − 0.563383i −0.959505 0.281692i \(-0.909104\pi\)
0.959505 0.281692i \(-0.0908955\pi\)
\(878\) − 13.0179i − 0.439333i
\(879\) 0 0
\(880\) 0 0
\(881\) 16.2217 0.546524 0.273262 0.961940i \(-0.411897\pi\)
0.273262 + 0.961940i \(0.411897\pi\)
\(882\) 0 0
\(883\) − 35.0710i − 1.18023i −0.807318 0.590117i \(-0.799082\pi\)
0.807318 0.590117i \(-0.200918\pi\)
\(884\) −24.8492 −0.835768
\(885\) 0 0
\(886\) −45.1217 −1.51589
\(887\) − 16.1581i − 0.542536i −0.962504 0.271268i \(-0.912557\pi\)
0.962504 0.271268i \(-0.0874429\pi\)
\(888\) 0 0
\(889\) −32.5270 −1.09092
\(890\) 0 0
\(891\) 0 0
\(892\) − 16.4973i − 0.552370i
\(893\) − 64.0515i − 2.14340i
\(894\) 0 0
\(895\) 0 0
\(896\) −39.7542 −1.32809
\(897\) 0 0
\(898\) 71.0983i 2.37258i
\(899\) −81.1147 −2.70533
\(900\) 0 0
\(901\) 19.3653 0.645151
\(902\) 5.50271i 0.183220i
\(903\) 0 0
\(904\) 11.5620 0.384545
\(905\) 0 0
\(906\) 0 0
\(907\) 41.9820i 1.39399i 0.717077 + 0.696994i \(0.245480\pi\)
−0.717077 + 0.696994i \(0.754520\pi\)
\(908\) − 1.65838i − 0.0550352i
\(909\) 0 0
\(910\) 0 0
\(911\) 57.2302 1.89612 0.948060 0.318092i \(-0.103042\pi\)
0.948060 + 0.318092i \(0.103042\pi\)
\(912\) 0 0
\(913\) − 5.75135i − 0.190342i
\(914\) 40.6752 1.34542
\(915\) 0 0
\(916\) −34.9616 −1.15517
\(917\) − 64.8929i − 2.14295i
\(918\) 0 0
\(919\) 0.346569 0.0114323 0.00571613 0.999984i \(-0.498180\pi\)
0.00571613 + 0.999984i \(0.498180\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 51.0610i 1.68160i
\(923\) 23.7025i 0.780177i
\(924\) 0 0
\(925\) 0 0
\(926\) 46.0904 1.51462
\(927\) 0 0
\(928\) − 70.6502i − 2.31921i
\(929\) −7.66278 −0.251408 −0.125704 0.992068i \(-0.540119\pi\)
−0.125704 + 0.992068i \(0.540119\pi\)
\(930\) 0 0
\(931\) 82.7501 2.71202
\(932\) − 13.5226i − 0.442947i
\(933\) 0 0
\(934\) 53.7602 1.75909
\(935\) 0 0
\(936\) 0 0
\(937\) 34.0894i 1.11365i 0.830629 + 0.556826i \(0.187981\pi\)
−0.830629 + 0.556826i \(0.812019\pi\)
\(938\) 38.7964i 1.26675i
\(939\) 0 0
\(940\) 0 0
\(941\) 28.1944 0.919110 0.459555 0.888149i \(-0.348009\pi\)
0.459555 + 0.888149i \(0.348009\pi\)
\(942\) 0 0
\(943\) 2.55595i 0.0832331i
\(944\) 60.4184 1.96645
\(945\) 0 0
\(946\) 1.68073 0.0546454
\(947\) − 29.7602i − 0.967078i −0.875323 0.483539i \(-0.839351\pi\)
0.875323 0.483539i \(-0.160649\pi\)
\(948\) 0 0
\(949\) −21.2670 −0.690356
\(950\) 0 0
\(951\) 0 0
\(952\) − 19.5152i − 0.632491i
\(953\) − 20.8309i − 0.674780i −0.941365 0.337390i \(-0.890456\pi\)
0.941365 0.337390i \(-0.109544\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 21.3715 0.691205
\(957\) 0 0
\(958\) − 54.5339i − 1.76191i
\(959\) −29.4450 −0.950827
\(960\) 0 0
\(961\) 30.0740 0.970130
\(962\) − 39.9313i − 1.28744i
\(963\) 0 0
\(964\) −11.1765 −0.359969
\(965\) 0 0
\(966\) 0 0
\(967\) − 30.7225i − 0.987968i −0.869471 0.493984i \(-0.835540\pi\)
0.869471 0.493984i \(-0.164460\pi\)
\(968\) − 1.05543i − 0.0339229i
\(969\) 0 0
\(970\) 0 0
\(971\) −21.9095 −0.703108 −0.351554 0.936168i \(-0.614347\pi\)
−0.351554 + 0.936168i \(0.614347\pi\)
\(972\) 0 0
\(973\) 63.6557i 2.04071i
\(974\) 50.9844 1.63365
\(975\) 0 0
\(976\) 54.0397 1.72977
\(977\) 14.1889i 0.453944i 0.973901 + 0.226972i \(0.0728826\pi\)
−0.973901 + 0.226972i \(0.927117\pi\)
\(978\) 0 0
\(979\) 1.40825 0.0450077
\(980\) 0 0
\(981\) 0 0
\(982\) 41.2630i 1.31675i
\(983\) − 5.52454i − 0.176206i −0.996111 0.0881028i \(-0.971920\pi\)
0.996111 0.0881028i \(-0.0280804\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 72.4284 2.30659
\(987\) 0 0
\(988\) 31.9463i 1.01635i
\(989\) 0.780682 0.0248243
\(990\) 0 0
\(991\) 7.93048 0.251920 0.125960 0.992035i \(-0.459799\pi\)
0.125960 + 0.992035i \(0.459799\pi\)
\(992\) 53.1950i 1.68894i
\(993\) 0 0
\(994\) 46.7150 1.48171
\(995\) 0 0
\(996\) 0 0
\(997\) − 52.0596i − 1.64874i −0.566049 0.824372i \(-0.691529\pi\)
0.566049 0.824372i \(-0.308471\pi\)
\(998\) − 64.8929i − 2.05415i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2475.2.c.t.199.3 8
3.2 odd 2 2475.2.c.s.199.6 8
5.2 odd 4 2475.2.a.bj.1.3 4
5.3 odd 4 495.2.a.f.1.2 4
5.4 even 2 inner 2475.2.c.t.199.6 8
15.2 even 4 2475.2.a.bf.1.2 4
15.8 even 4 495.2.a.g.1.3 yes 4
15.14 odd 2 2475.2.c.s.199.3 8
20.3 even 4 7920.2.a.cm.1.1 4
55.43 even 4 5445.2.a.bs.1.3 4
60.23 odd 4 7920.2.a.cn.1.1 4
165.98 odd 4 5445.2.a.bh.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.2.a.f.1.2 4 5.3 odd 4
495.2.a.g.1.3 yes 4 15.8 even 4
2475.2.a.bf.1.2 4 15.2 even 4
2475.2.a.bj.1.3 4 5.2 odd 4
2475.2.c.s.199.3 8 15.14 odd 2
2475.2.c.s.199.6 8 3.2 odd 2
2475.2.c.t.199.3 8 1.1 even 1 trivial
2475.2.c.t.199.6 8 5.4 even 2 inner
5445.2.a.bh.1.2 4 165.98 odd 4
5445.2.a.bs.1.3 4 55.43 even 4
7920.2.a.cm.1.1 4 20.3 even 4
7920.2.a.cn.1.1 4 60.23 odd 4