Properties

Label 2475.2.c
Level $2475$
Weight $2$
Character orbit 2475.c
Rep. character $\chi_{2475}(199,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $20$
Sturm bound $720$
Trace bound $14$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2475.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(720\)
Trace bound: \(14\)
Distinguishing \(T_p\): \(2\), \(7\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2475, [\chi])\).

Total New Old
Modular forms 384 76 308
Cusp forms 336 76 260
Eisenstein series 48 0 48

Trace form

\( 76 q - 86 q^{4} - 4 q^{11} - 4 q^{14} + 98 q^{16} - 12 q^{19} - 8 q^{26} - 40 q^{29} + 22 q^{31} + 28 q^{34} + 40 q^{41} + 18 q^{44} - 72 q^{46} - 48 q^{49} + 36 q^{56} + 26 q^{59} + 12 q^{61} - 94 q^{64}+ \cdots + 112 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2475, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2475.2.c.a 2475.c 5.b $2$ $19.763$ \(\Q(\sqrt{-1}) \) None 11.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}-2 q^{4}-2 i q^{7}-q^{11}+\cdots\)
2475.2.c.b 2475.c 5.b $2$ $19.763$ \(\Q(\sqrt{-1}) \) None 99.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}+2 i q^{7}+3 i q^{8}-q^{11}+\cdots\)
2475.2.c.c 2475.c 5.b $2$ $19.763$ \(\Q(\sqrt{-1}) \) None 2475.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}-3 i q^{7}+3 i q^{8}-q^{11}+\cdots\)
2475.2.c.d 2475.c 5.b $2$ $19.763$ \(\Q(\sqrt{-1}) \) None 33.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}-4 i q^{7}+3 i q^{8}-q^{11}+\cdots\)
2475.2.c.e 2475.c 5.b $2$ $19.763$ \(\Q(\sqrt{-1}) \) None 2475.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}+3 i q^{7}+3 i q^{8}+q^{11}+\cdots\)
2475.2.c.f 2475.c 5.b $2$ $19.763$ \(\Q(\sqrt{-1}) \) None 55.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}+3 i q^{8}+q^{11}+2 i q^{13}+\cdots\)
2475.2.c.g 2475.c 5.b $2$ $19.763$ \(\Q(\sqrt{-1}) \) None 99.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{4}-2 i q^{7}+3 i q^{8}+q^{11}+\cdots\)
2475.2.c.h 2475.c 5.b $2$ $19.763$ \(\Q(\sqrt{-1}) \) None 825.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 q^{4}+i q^{7}+q^{11}-i q^{13}+4 q^{16}+\cdots\)
2475.2.c.i 2475.c 5.b $4$ $19.763$ \(\Q(i, \sqrt{17})\) None 2475.2.a.p \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-3+\beta _{3})q^{4}-\beta _{2}q^{7}+(-\beta _{1}+\cdots)q^{8}+\cdots\)
2475.2.c.j 2475.c 5.b $4$ $19.763$ \(\Q(i, \sqrt{17})\) None 2475.2.a.p \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-3+\beta _{3})q^{4}+\beta _{2}q^{7}+(-\beta _{1}+\cdots)q^{8}+\cdots\)
2475.2.c.k 2475.c 5.b $4$ $19.763$ \(\Q(i, \sqrt{13})\) None 275.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2+\beta _{3})q^{4}+(-\beta _{1}+2\beta _{2}+\cdots)q^{7}+\cdots\)
2475.2.c.l 2475.c 5.b $4$ $19.763$ \(\Q(\zeta_{8})\) None 55.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{2}+(-\beta_{3}-1)q^{4}+(\beta_{2}+\beta_1)q^{7}+\cdots\)
2475.2.c.m 2475.c 5.b $4$ $19.763$ \(\Q(\zeta_{8})\) None 165.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_1 q^{2}+(-\beta_{3}-1)q^{4}-2\beta_{2} q^{7}+\cdots\)
2475.2.c.n 2475.c 5.b $4$ $19.763$ \(\Q(\zeta_{12})\) None 165.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{2} q^{2}-q^{4}+\beta_1 q^{7}+\beta_{2} q^{8}+\cdots\)
2475.2.c.o 2475.c 5.b $4$ $19.763$ \(\Q(\zeta_{8})\) None 825.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}+\beta_1)q^{2}+(-2\beta_{3}-1)q^{4}+\cdots\)
2475.2.c.p 2475.c 5.b $4$ $19.763$ \(\Q(i, \sqrt{5})\) None 275.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(3\beta _{1}+2\beta _{3})q^{7}+\cdots\)
2475.2.c.q 2475.c 5.b $6$ $19.763$ 6.0.5161984.1 None 825.2.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{3}+\beta _{4})q^{2}+(-3-\beta _{1})q^{4}+(\beta _{3}+\cdots)q^{7}+\cdots\)
2475.2.c.r 2475.c 5.b $6$ $19.763$ 6.0.350464.1 None 165.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+(-2+\beta _{3})q^{4}+(-\beta _{2}-\beta _{5})q^{7}+\cdots\)
2475.2.c.s 2475.c 5.b $8$ $19.763$ 8.0.9488318464.1 None 495.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2+\beta _{2})q^{4}+(-\beta _{1}+\beta _{3}+\cdots)q^{7}+\cdots\)
2475.2.c.t 2475.c 5.b $8$ $19.763$ 8.0.9488318464.1 None 495.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-2+\beta _{2})q^{4}+(\beta _{1}-\beta _{3}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2475, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2475, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(825, [\chi])\)\(^{\oplus 2}\)