Properties

Label 495.2.a.f.1.2
Level $495$
Weight $2$
Character 495.1
Self dual yes
Analytic conductor $3.953$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [495,2,Mod(1,495)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(495, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("495.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.48704.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 6x^{2} + 4x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.852061\) of defining polynomial
Character \(\chi\) \(=\) 495.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.85206 q^{2} +1.43013 q^{4} -1.00000 q^{5} +4.90749 q^{7} +1.05543 q^{8} +1.85206 q^{10} +1.00000 q^{11} -4.61162 q^{13} -9.08898 q^{14} -4.81499 q^{16} -3.76776 q^{17} +4.84386 q^{19} -1.43013 q^{20} -1.85206 q^{22} +0.860262 q^{23} +1.00000 q^{25} +8.54100 q^{26} +7.01836 q^{28} +10.3794 q^{29} +7.81499 q^{31} +6.80679 q^{32} +6.97811 q^{34} -4.90749 q^{35} -4.67525 q^{37} -8.97113 q^{38} -1.05543 q^{40} -2.97113 q^{41} -0.907494 q^{43} +1.43013 q^{44} -1.59326 q^{46} +13.2232 q^{47} +17.0835 q^{49} -1.85206 q^{50} -6.59522 q^{52} -5.13974 q^{53} -1.00000 q^{55} +5.17953 q^{56} -19.2232 q^{58} +12.5480 q^{59} -11.2232 q^{61} -14.4738 q^{62} -2.97661 q^{64} +4.61162 q^{65} +4.26851 q^{67} -5.38838 q^{68} +9.08898 q^{70} +5.13974 q^{71} -4.61162 q^{73} +8.65885 q^{74} +6.92735 q^{76} +4.90749 q^{77} -0.843861 q^{79} +4.81499 q^{80} +5.50271 q^{82} +5.75135 q^{83} +3.76776 q^{85} +1.68073 q^{86} +1.05543 q^{88} -1.40825 q^{89} -22.6315 q^{91} +1.23029 q^{92} -24.4902 q^{94} -4.84386 q^{95} +8.54798 q^{97} -31.6397 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 8 q^{4} - 4 q^{5} + 4 q^{7} - 6 q^{8} + 2 q^{10} + 4 q^{11} + 8 q^{13} + 8 q^{14} + 12 q^{16} - 4 q^{17} + 4 q^{19} - 8 q^{20} - 2 q^{22} + 8 q^{23} + 4 q^{25} + 16 q^{26} - 8 q^{28} + 4 q^{29}+ \cdots - 62 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85206 −1.30961 −0.654803 0.755800i \(-0.727248\pi\)
−0.654803 + 0.755800i \(0.727248\pi\)
\(3\) 0 0
\(4\) 1.43013 0.715065
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.90749 1.85486 0.927429 0.373999i \(-0.122014\pi\)
0.927429 + 0.373999i \(0.122014\pi\)
\(8\) 1.05543 0.373152
\(9\) 0 0
\(10\) 1.85206 0.585673
\(11\) 1.00000 0.301511
\(12\) 0 0
\(13\) −4.61162 −1.27903 −0.639516 0.768778i \(-0.720865\pi\)
−0.639516 + 0.768778i \(0.720865\pi\)
\(14\) −9.08898 −2.42913
\(15\) 0 0
\(16\) −4.81499 −1.20375
\(17\) −3.76776 −0.913815 −0.456907 0.889514i \(-0.651043\pi\)
−0.456907 + 0.889514i \(0.651043\pi\)
\(18\) 0 0
\(19\) 4.84386 1.11126 0.555629 0.831430i \(-0.312478\pi\)
0.555629 + 0.831430i \(0.312478\pi\)
\(20\) −1.43013 −0.319787
\(21\) 0 0
\(22\) −1.85206 −0.394861
\(23\) 0.860262 0.179377 0.0896885 0.995970i \(-0.471413\pi\)
0.0896885 + 0.995970i \(0.471413\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 8.54100 1.67503
\(27\) 0 0
\(28\) 7.01836 1.32635
\(29\) 10.3794 1.92740 0.963700 0.266986i \(-0.0860277\pi\)
0.963700 + 0.266986i \(0.0860277\pi\)
\(30\) 0 0
\(31\) 7.81499 1.40361 0.701807 0.712368i \(-0.252377\pi\)
0.701807 + 0.712368i \(0.252377\pi\)
\(32\) 6.80679 1.20328
\(33\) 0 0
\(34\) 6.97811 1.19674
\(35\) −4.90749 −0.829518
\(36\) 0 0
\(37\) −4.67525 −0.768606 −0.384303 0.923207i \(-0.625558\pi\)
−0.384303 + 0.923207i \(0.625558\pi\)
\(38\) −8.97113 −1.45531
\(39\) 0 0
\(40\) −1.05543 −0.166879
\(41\) −2.97113 −0.464012 −0.232006 0.972714i \(-0.574529\pi\)
−0.232006 + 0.972714i \(0.574529\pi\)
\(42\) 0 0
\(43\) −0.907494 −0.138391 −0.0691957 0.997603i \(-0.522043\pi\)
−0.0691957 + 0.997603i \(0.522043\pi\)
\(44\) 1.43013 0.215600
\(45\) 0 0
\(46\) −1.59326 −0.234913
\(47\) 13.2232 1.92881 0.964403 0.264436i \(-0.0851857\pi\)
0.964403 + 0.264436i \(0.0851857\pi\)
\(48\) 0 0
\(49\) 17.0835 2.44050
\(50\) −1.85206 −0.261921
\(51\) 0 0
\(52\) −6.59522 −0.914592
\(53\) −5.13974 −0.705997 −0.352999 0.935624i \(-0.614838\pi\)
−0.352999 + 0.935624i \(0.614838\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 5.17953 0.692144
\(57\) 0 0
\(58\) −19.2232 −2.52413
\(59\) 12.5480 1.63361 0.816804 0.576915i \(-0.195744\pi\)
0.816804 + 0.576915i \(0.195744\pi\)
\(60\) 0 0
\(61\) −11.2232 −1.43699 −0.718494 0.695533i \(-0.755168\pi\)
−0.718494 + 0.695533i \(0.755168\pi\)
\(62\) −14.4738 −1.83818
\(63\) 0 0
\(64\) −2.97661 −0.372076
\(65\) 4.61162 0.572001
\(66\) 0 0
\(67\) 4.26851 0.521481 0.260741 0.965409i \(-0.416033\pi\)
0.260741 + 0.965409i \(0.416033\pi\)
\(68\) −5.38838 −0.653438
\(69\) 0 0
\(70\) 9.08898 1.08634
\(71\) 5.13974 0.609975 0.304987 0.952356i \(-0.401348\pi\)
0.304987 + 0.952356i \(0.401348\pi\)
\(72\) 0 0
\(73\) −4.61162 −0.539749 −0.269874 0.962896i \(-0.586982\pi\)
−0.269874 + 0.962896i \(0.586982\pi\)
\(74\) 8.65885 1.00657
\(75\) 0 0
\(76\) 6.92735 0.794622
\(77\) 4.90749 0.559261
\(78\) 0 0
\(79\) −0.843861 −0.0949417 −0.0474709 0.998873i \(-0.515116\pi\)
−0.0474709 + 0.998873i \(0.515116\pi\)
\(80\) 4.81499 0.538332
\(81\) 0 0
\(82\) 5.50271 0.607673
\(83\) 5.75135 0.631293 0.315647 0.948877i \(-0.397779\pi\)
0.315647 + 0.948877i \(0.397779\pi\)
\(84\) 0 0
\(85\) 3.76776 0.408670
\(86\) 1.68073 0.181238
\(87\) 0 0
\(88\) 1.05543 0.112509
\(89\) −1.40825 −0.149274 −0.0746368 0.997211i \(-0.523780\pi\)
−0.0746368 + 0.997211i \(0.523780\pi\)
\(90\) 0 0
\(91\) −22.6315 −2.37242
\(92\) 1.23029 0.128266
\(93\) 0 0
\(94\) −24.4902 −2.52598
\(95\) −4.84386 −0.496970
\(96\) 0 0
\(97\) 8.54798 0.867916 0.433958 0.900933i \(-0.357117\pi\)
0.433958 + 0.900933i \(0.357117\pi\)
\(98\) −31.6397 −3.19609
\(99\) 0 0
\(100\) 1.43013 0.143013
\(101\) 4.56438 0.454173 0.227087 0.973875i \(-0.427080\pi\)
0.227087 + 0.973875i \(0.427080\pi\)
\(102\) 0 0
\(103\) −4.73300 −0.466356 −0.233178 0.972434i \(-0.574912\pi\)
−0.233178 + 0.972434i \(0.574912\pi\)
\(104\) −4.86725 −0.477273
\(105\) 0 0
\(106\) 9.51911 0.924578
\(107\) −7.34461 −0.710030 −0.355015 0.934861i \(-0.615524\pi\)
−0.355015 + 0.934861i \(0.615524\pi\)
\(108\) 0 0
\(109\) 9.40825 0.901146 0.450573 0.892739i \(-0.351220\pi\)
0.450573 + 0.892739i \(0.351220\pi\)
\(110\) 1.85206 0.176587
\(111\) 0 0
\(112\) −23.6295 −2.23278
\(113\) −10.9547 −1.03053 −0.515267 0.857030i \(-0.672307\pi\)
−0.515267 + 0.857030i \(0.672307\pi\)
\(114\) 0 0
\(115\) −0.860262 −0.0802198
\(116\) 14.8439 1.37822
\(117\) 0 0
\(118\) −23.2396 −2.13938
\(119\) −18.4902 −1.69500
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 20.7861 1.88189
\(123\) 0 0
\(124\) 11.1765 1.00368
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 6.62802 0.588141 0.294071 0.955784i \(-0.404990\pi\)
0.294071 + 0.955784i \(0.404990\pi\)
\(128\) −8.10071 −0.716008
\(129\) 0 0
\(130\) −8.54100 −0.749095
\(131\) −13.2232 −1.15532 −0.577660 0.816278i \(-0.696034\pi\)
−0.577660 + 0.816278i \(0.696034\pi\)
\(132\) 0 0
\(133\) 23.7712 2.06123
\(134\) −7.90554 −0.682934
\(135\) 0 0
\(136\) −3.97661 −0.340992
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −12.9711 −1.10020 −0.550098 0.835100i \(-0.685410\pi\)
−0.550098 + 0.835100i \(0.685410\pi\)
\(140\) −7.01836 −0.593160
\(141\) 0 0
\(142\) −9.51911 −0.798826
\(143\) −4.61162 −0.385643
\(144\) 0 0
\(145\) −10.3794 −0.861960
\(146\) 8.54100 0.706858
\(147\) 0 0
\(148\) −6.68622 −0.549604
\(149\) 0.0273705 0.00224228 0.00112114 0.999999i \(-0.499643\pi\)
0.00112114 + 0.999999i \(0.499643\pi\)
\(150\) 0 0
\(151\) 4.84386 0.394188 0.197094 0.980385i \(-0.436850\pi\)
0.197094 + 0.980385i \(0.436850\pi\)
\(152\) 5.11237 0.414668
\(153\) 0 0
\(154\) −9.08898 −0.732411
\(155\) −7.81499 −0.627715
\(156\) 0 0
\(157\) 2.12727 0.169774 0.0848872 0.996391i \(-0.472947\pi\)
0.0848872 + 0.996391i \(0.472947\pi\)
\(158\) 1.56288 0.124336
\(159\) 0 0
\(160\) −6.80679 −0.538124
\(161\) 4.22173 0.332719
\(162\) 0 0
\(163\) 10.0835 0.789800 0.394900 0.918724i \(-0.370779\pi\)
0.394900 + 0.918724i \(0.370779\pi\)
\(164\) −4.24910 −0.331799
\(165\) 0 0
\(166\) −10.6519 −0.826745
\(167\) −17.7514 −1.37364 −0.686821 0.726827i \(-0.740994\pi\)
−0.686821 + 0.726827i \(0.740994\pi\)
\(168\) 0 0
\(169\) 8.26700 0.635923
\(170\) −6.97811 −0.535197
\(171\) 0 0
\(172\) −1.29783 −0.0989590
\(173\) −15.7678 −1.19880 −0.599400 0.800450i \(-0.704594\pi\)
−0.599400 + 0.800450i \(0.704594\pi\)
\(174\) 0 0
\(175\) 4.90749 0.370972
\(176\) −4.81499 −0.362943
\(177\) 0 0
\(178\) 2.60816 0.195490
\(179\) −7.40825 −0.553718 −0.276859 0.960911i \(-0.589294\pi\)
−0.276859 + 0.960911i \(0.589294\pi\)
\(180\) 0 0
\(181\) 7.26700 0.540152 0.270076 0.962839i \(-0.412951\pi\)
0.270076 + 0.962839i \(0.412951\pi\)
\(182\) 41.9149 3.10694
\(183\) 0 0
\(184\) 0.907948 0.0669348
\(185\) 4.67525 0.343731
\(186\) 0 0
\(187\) −3.76776 −0.275526
\(188\) 18.9110 1.37922
\(189\) 0 0
\(190\) 8.97113 0.650834
\(191\) 2.87123 0.207755 0.103877 0.994590i \(-0.466875\pi\)
0.103877 + 0.994590i \(0.466875\pi\)
\(192\) 0 0
\(193\) 18.8911 1.35981 0.679905 0.733300i \(-0.262021\pi\)
0.679905 + 0.733300i \(0.262021\pi\)
\(194\) −15.8314 −1.13663
\(195\) 0 0
\(196\) 24.4316 1.74512
\(197\) −14.0472 −1.00082 −0.500412 0.865787i \(-0.666818\pi\)
−0.500412 + 0.865787i \(0.666818\pi\)
\(198\) 0 0
\(199\) 3.40825 0.241604 0.120802 0.992677i \(-0.461453\pi\)
0.120802 + 0.992677i \(0.461453\pi\)
\(200\) 1.05543 0.0746303
\(201\) 0 0
\(202\) −8.45352 −0.594788
\(203\) 50.9367 3.57506
\(204\) 0 0
\(205\) 2.97113 0.207512
\(206\) 8.76580 0.610742
\(207\) 0 0
\(208\) 22.2049 1.53963
\(209\) 4.84386 0.335057
\(210\) 0 0
\(211\) −24.4738 −1.68485 −0.842424 0.538815i \(-0.818872\pi\)
−0.842424 + 0.538815i \(0.818872\pi\)
\(212\) −7.35050 −0.504834
\(213\) 0 0
\(214\) 13.6027 0.929859
\(215\) 0.907494 0.0618906
\(216\) 0 0
\(217\) 38.3520 2.60350
\(218\) −17.4246 −1.18015
\(219\) 0 0
\(220\) −1.43013 −0.0964194
\(221\) 17.3754 1.16880
\(222\) 0 0
\(223\) −11.5355 −0.772475 −0.386237 0.922399i \(-0.626225\pi\)
−0.386237 + 0.922399i \(0.626225\pi\)
\(224\) 33.4043 2.23192
\(225\) 0 0
\(226\) 20.2888 1.34959
\(227\) 1.15960 0.0769653 0.0384827 0.999259i \(-0.487748\pi\)
0.0384827 + 0.999259i \(0.487748\pi\)
\(228\) 0 0
\(229\) −24.4465 −1.61547 −0.807734 0.589547i \(-0.799306\pi\)
−0.807734 + 0.589547i \(0.799306\pi\)
\(230\) 1.59326 0.105056
\(231\) 0 0
\(232\) 10.9547 0.719213
\(233\) −9.45548 −0.619449 −0.309724 0.950826i \(-0.600237\pi\)
−0.309724 + 0.950826i \(0.600237\pi\)
\(234\) 0 0
\(235\) −13.2232 −0.862589
\(236\) 17.9453 1.16814
\(237\) 0 0
\(238\) 34.2451 2.21978
\(239\) 14.9438 0.966631 0.483316 0.875446i \(-0.339432\pi\)
0.483316 + 0.875446i \(0.339432\pi\)
\(240\) 0 0
\(241\) 7.81499 0.503408 0.251704 0.967804i \(-0.419009\pi\)
0.251704 + 0.967804i \(0.419009\pi\)
\(242\) −1.85206 −0.119055
\(243\) 0 0
\(244\) −16.0507 −1.02754
\(245\) −17.0835 −1.09142
\(246\) 0 0
\(247\) −22.3380 −1.42133
\(248\) 8.24819 0.523761
\(249\) 0 0
\(250\) 1.85206 0.117135
\(251\) −3.41921 −0.215819 −0.107909 0.994161i \(-0.534416\pi\)
−0.107909 + 0.994161i \(0.534416\pi\)
\(252\) 0 0
\(253\) 0.860262 0.0540842
\(254\) −12.2755 −0.770233
\(255\) 0 0
\(256\) 20.9562 1.30976
\(257\) −1.53551 −0.0957826 −0.0478913 0.998853i \(-0.515250\pi\)
−0.0478913 + 0.998853i \(0.515250\pi\)
\(258\) 0 0
\(259\) −22.9438 −1.42566
\(260\) 6.59522 0.409018
\(261\) 0 0
\(262\) 24.4902 1.51301
\(263\) 0.190899 0.0117713 0.00588567 0.999983i \(-0.498127\pi\)
0.00588567 + 0.999983i \(0.498127\pi\)
\(264\) 0 0
\(265\) 5.13974 0.315732
\(266\) −44.0257 −2.69939
\(267\) 0 0
\(268\) 6.10452 0.372893
\(269\) −14.4465 −0.880817 −0.440408 0.897798i \(-0.645166\pi\)
−0.440408 + 0.897798i \(0.645166\pi\)
\(270\) 0 0
\(271\) −9.97263 −0.605794 −0.302897 0.953023i \(-0.597954\pi\)
−0.302897 + 0.953023i \(0.597954\pi\)
\(272\) 18.1417 1.10000
\(273\) 0 0
\(274\) −11.1124 −0.671323
\(275\) 1.00000 0.0603023
\(276\) 0 0
\(277\) 12.5788 0.755788 0.377894 0.925849i \(-0.376648\pi\)
0.377894 + 0.925849i \(0.376648\pi\)
\(278\) 24.0233 1.44082
\(279\) 0 0
\(280\) −5.17953 −0.309536
\(281\) 16.6917 0.995740 0.497870 0.867252i \(-0.334116\pi\)
0.497870 + 0.867252i \(0.334116\pi\)
\(282\) 0 0
\(283\) −21.5937 −1.28361 −0.641806 0.766867i \(-0.721815\pi\)
−0.641806 + 0.766867i \(0.721815\pi\)
\(284\) 7.35050 0.436172
\(285\) 0 0
\(286\) 8.54100 0.505040
\(287\) −14.5808 −0.860677
\(288\) 0 0
\(289\) −2.80402 −0.164942
\(290\) 19.2232 1.12883
\(291\) 0 0
\(292\) −6.59522 −0.385956
\(293\) −33.0855 −1.93287 −0.966436 0.256906i \(-0.917297\pi\)
−0.966436 + 0.256906i \(0.917297\pi\)
\(294\) 0 0
\(295\) −12.5480 −0.730572
\(296\) −4.93441 −0.286807
\(297\) 0 0
\(298\) −0.0506919 −0.00293650
\(299\) −3.96720 −0.229429
\(300\) 0 0
\(301\) −4.45352 −0.256697
\(302\) −8.97113 −0.516230
\(303\) 0 0
\(304\) −23.3231 −1.33767
\(305\) 11.2232 0.642640
\(306\) 0 0
\(307\) 7.72398 0.440831 0.220416 0.975406i \(-0.429259\pi\)
0.220416 + 0.975406i \(0.429259\pi\)
\(308\) 7.01836 0.399908
\(309\) 0 0
\(310\) 14.4738 0.822059
\(311\) 12.1780 0.690549 0.345274 0.938502i \(-0.387786\pi\)
0.345274 + 0.938502i \(0.387786\pi\)
\(312\) 0 0
\(313\) −2.95473 −0.167011 −0.0835055 0.996507i \(-0.526612\pi\)
−0.0835055 + 0.996507i \(0.526612\pi\)
\(314\) −3.93983 −0.222337
\(315\) 0 0
\(316\) −1.20683 −0.0678896
\(317\) −27.4917 −1.54409 −0.772045 0.635568i \(-0.780766\pi\)
−0.772045 + 0.635568i \(0.780766\pi\)
\(318\) 0 0
\(319\) 10.3794 0.581133
\(320\) 2.97661 0.166398
\(321\) 0 0
\(322\) −7.81890 −0.435730
\(323\) −18.2505 −1.01548
\(324\) 0 0
\(325\) −4.61162 −0.255806
\(326\) −18.6752 −1.03433
\(327\) 0 0
\(328\) −3.13582 −0.173147
\(329\) 64.8929 3.57766
\(330\) 0 0
\(331\) 16.5737 0.910975 0.455487 0.890242i \(-0.349465\pi\)
0.455487 + 0.890242i \(0.349465\pi\)
\(332\) 8.22519 0.451416
\(333\) 0 0
\(334\) 32.8766 1.79893
\(335\) −4.26851 −0.233213
\(336\) 0 0
\(337\) 4.64442 0.252998 0.126499 0.991967i \(-0.459626\pi\)
0.126499 + 0.991967i \(0.459626\pi\)
\(338\) −15.3110 −0.832809
\(339\) 0 0
\(340\) 5.38838 0.292226
\(341\) 7.81499 0.423205
\(342\) 0 0
\(343\) 49.4847 2.67192
\(344\) −0.957798 −0.0516410
\(345\) 0 0
\(346\) 29.2028 1.56995
\(347\) −23.6936 −1.27194 −0.635970 0.771714i \(-0.719400\pi\)
−0.635970 + 0.771714i \(0.719400\pi\)
\(348\) 0 0
\(349\) −21.7572 −1.16464 −0.582319 0.812960i \(-0.697855\pi\)
−0.582319 + 0.812960i \(0.697855\pi\)
\(350\) −9.08898 −0.485826
\(351\) 0 0
\(352\) 6.80679 0.362803
\(353\) −6.49024 −0.345440 −0.172720 0.984971i \(-0.555256\pi\)
−0.172720 + 0.984971i \(0.555256\pi\)
\(354\) 0 0
\(355\) −5.13974 −0.272789
\(356\) −2.01397 −0.106740
\(357\) 0 0
\(358\) 13.7205 0.725152
\(359\) −19.1655 −1.01152 −0.505758 0.862676i \(-0.668787\pi\)
−0.505758 + 0.862676i \(0.668787\pi\)
\(360\) 0 0
\(361\) 4.46299 0.234894
\(362\) −13.4589 −0.707386
\(363\) 0 0
\(364\) −32.3660 −1.69644
\(365\) 4.61162 0.241383
\(366\) 0 0
\(367\) −10.1850 −0.531653 −0.265827 0.964021i \(-0.585645\pi\)
−0.265827 + 0.964021i \(0.585645\pi\)
\(368\) −4.14215 −0.215924
\(369\) 0 0
\(370\) −8.65885 −0.450152
\(371\) −25.2232 −1.30952
\(372\) 0 0
\(373\) 19.0184 0.984733 0.492367 0.870388i \(-0.336132\pi\)
0.492367 + 0.870388i \(0.336132\pi\)
\(374\) 6.97811 0.360830
\(375\) 0 0
\(376\) 13.9562 0.719738
\(377\) −47.8657 −2.46521
\(378\) 0 0
\(379\) 11.0710 0.568680 0.284340 0.958723i \(-0.408226\pi\)
0.284340 + 0.958723i \(0.408226\pi\)
\(380\) −6.92735 −0.355366
\(381\) 0 0
\(382\) −5.31770 −0.272077
\(383\) 12.7330 0.650626 0.325313 0.945606i \(-0.394530\pi\)
0.325313 + 0.945606i \(0.394530\pi\)
\(384\) 0 0
\(385\) −4.90749 −0.250109
\(386\) −34.9875 −1.78081
\(387\) 0 0
\(388\) 12.2247 0.620617
\(389\) 32.7587 1.66093 0.830467 0.557068i \(-0.188074\pi\)
0.830467 + 0.557068i \(0.188074\pi\)
\(390\) 0 0
\(391\) −3.24126 −0.163917
\(392\) 18.0305 0.910676
\(393\) 0 0
\(394\) 26.0163 1.31068
\(395\) 0.843861 0.0424592
\(396\) 0 0
\(397\) −15.0820 −0.756943 −0.378472 0.925613i \(-0.623550\pi\)
−0.378472 + 0.925613i \(0.623550\pi\)
\(398\) −6.31228 −0.316406
\(399\) 0 0
\(400\) −4.81499 −0.240749
\(401\) −18.7259 −0.935129 −0.467564 0.883959i \(-0.654868\pi\)
−0.467564 + 0.883959i \(0.654868\pi\)
\(402\) 0 0
\(403\) −36.0397 −1.79527
\(404\) 6.52767 0.324764
\(405\) 0 0
\(406\) −94.3379 −4.68191
\(407\) −4.67525 −0.231744
\(408\) 0 0
\(409\) 24.4793 1.21042 0.605211 0.796065i \(-0.293089\pi\)
0.605211 + 0.796065i \(0.293089\pi\)
\(410\) −5.50271 −0.271759
\(411\) 0 0
\(412\) −6.76880 −0.333475
\(413\) 61.5791 3.03011
\(414\) 0 0
\(415\) −5.75135 −0.282323
\(416\) −31.3903 −1.53904
\(417\) 0 0
\(418\) −8.97113 −0.438792
\(419\) −9.12877 −0.445970 −0.222985 0.974822i \(-0.571580\pi\)
−0.222985 + 0.974822i \(0.571580\pi\)
\(420\) 0 0
\(421\) −13.5465 −0.660215 −0.330108 0.943943i \(-0.607085\pi\)
−0.330108 + 0.943943i \(0.607085\pi\)
\(422\) 45.3270 2.20649
\(423\) 0 0
\(424\) −5.42465 −0.263444
\(425\) −3.76776 −0.182763
\(426\) 0 0
\(427\) −55.0779 −2.66541
\(428\) −10.5038 −0.507718
\(429\) 0 0
\(430\) −1.68073 −0.0810522
\(431\) 26.4465 1.27388 0.636941 0.770913i \(-0.280200\pi\)
0.636941 + 0.770913i \(0.280200\pi\)
\(432\) 0 0
\(433\) −16.1780 −0.777463 −0.388732 0.921351i \(-0.627087\pi\)
−0.388732 + 0.921351i \(0.627087\pi\)
\(434\) −71.0303 −3.40956
\(435\) 0 0
\(436\) 13.4550 0.644379
\(437\) 4.16699 0.199334
\(438\) 0 0
\(439\) −7.02887 −0.335470 −0.167735 0.985832i \(-0.553645\pi\)
−0.167735 + 0.985832i \(0.553645\pi\)
\(440\) −1.05543 −0.0503158
\(441\) 0 0
\(442\) −32.1804 −1.53066
\(443\) 24.3630 1.15752 0.578760 0.815498i \(-0.303537\pi\)
0.578760 + 0.815498i \(0.303537\pi\)
\(444\) 0 0
\(445\) 1.40825 0.0667572
\(446\) 21.3645 1.01164
\(447\) 0 0
\(448\) −14.6077 −0.690149
\(449\) 38.3887 1.81168 0.905838 0.423625i \(-0.139242\pi\)
0.905838 + 0.423625i \(0.139242\pi\)
\(450\) 0 0
\(451\) −2.97113 −0.139905
\(452\) −15.6667 −0.736899
\(453\) 0 0
\(454\) −2.14765 −0.100794
\(455\) 22.6315 1.06098
\(456\) 0 0
\(457\) 21.9621 1.02734 0.513672 0.857987i \(-0.328285\pi\)
0.513672 + 0.857987i \(0.328285\pi\)
\(458\) 45.2764 2.11562
\(459\) 0 0
\(460\) −1.23029 −0.0573624
\(461\) −27.5698 −1.28405 −0.642027 0.766682i \(-0.721906\pi\)
−0.642027 + 0.766682i \(0.721906\pi\)
\(462\) 0 0
\(463\) −24.8860 −1.15655 −0.578275 0.815842i \(-0.696274\pi\)
−0.578275 + 0.815842i \(0.696274\pi\)
\(464\) −49.9765 −2.32010
\(465\) 0 0
\(466\) 17.5121 0.811233
\(467\) 29.0273 1.34322 0.671610 0.740904i \(-0.265603\pi\)
0.671610 + 0.740904i \(0.265603\pi\)
\(468\) 0 0
\(469\) 20.9477 0.967274
\(470\) 24.4902 1.12965
\(471\) 0 0
\(472\) 13.2435 0.609584
\(473\) −0.907494 −0.0417266
\(474\) 0 0
\(475\) 4.84386 0.222252
\(476\) −26.4435 −1.21203
\(477\) 0 0
\(478\) −27.6768 −1.26591
\(479\) −29.4450 −1.34537 −0.672687 0.739927i \(-0.734860\pi\)
−0.672687 + 0.739927i \(0.734860\pi\)
\(480\) 0 0
\(481\) 21.5605 0.983072
\(482\) −14.4738 −0.659265
\(483\) 0 0
\(484\) 1.43013 0.0650060
\(485\) −8.54798 −0.388144
\(486\) 0 0
\(487\) 27.5285 1.24743 0.623717 0.781650i \(-0.285622\pi\)
0.623717 + 0.781650i \(0.285622\pi\)
\(488\) −11.8454 −0.536214
\(489\) 0 0
\(490\) 31.6397 1.42933
\(491\) −22.2795 −1.00546 −0.502729 0.864444i \(-0.667671\pi\)
−0.502729 + 0.864444i \(0.667671\pi\)
\(492\) 0 0
\(493\) −39.1069 −1.76129
\(494\) 41.3714 1.86139
\(495\) 0 0
\(496\) −37.6291 −1.68959
\(497\) 25.2232 1.13142
\(498\) 0 0
\(499\) −35.0382 −1.56853 −0.784263 0.620428i \(-0.786959\pi\)
−0.784263 + 0.620428i \(0.786959\pi\)
\(500\) −1.43013 −0.0639574
\(501\) 0 0
\(502\) 6.33259 0.282638
\(503\) 33.9731 1.51478 0.757392 0.652960i \(-0.226473\pi\)
0.757392 + 0.652960i \(0.226473\pi\)
\(504\) 0 0
\(505\) −4.56438 −0.203112
\(506\) −1.59326 −0.0708289
\(507\) 0 0
\(508\) 9.47893 0.420560
\(509\) −13.3505 −0.591750 −0.295875 0.955227i \(-0.595611\pi\)
−0.295875 + 0.955227i \(0.595611\pi\)
\(510\) 0 0
\(511\) −22.6315 −1.00116
\(512\) −22.6108 −0.999266
\(513\) 0 0
\(514\) 2.84386 0.125437
\(515\) 4.73300 0.208561
\(516\) 0 0
\(517\) 13.2232 0.581557
\(518\) 42.4932 1.86705
\(519\) 0 0
\(520\) 4.86725 0.213443
\(521\) 7.46599 0.327091 0.163546 0.986536i \(-0.447707\pi\)
0.163546 + 0.986536i \(0.447707\pi\)
\(522\) 0 0
\(523\) −15.9785 −0.698692 −0.349346 0.936994i \(-0.613596\pi\)
−0.349346 + 0.936994i \(0.613596\pi\)
\(524\) −18.9110 −0.826129
\(525\) 0 0
\(526\) −0.353557 −0.0154158
\(527\) −29.4450 −1.28264
\(528\) 0 0
\(529\) −22.2599 −0.967824
\(530\) −9.51911 −0.413484
\(531\) 0 0
\(532\) 33.9960 1.47391
\(533\) 13.7017 0.593486
\(534\) 0 0
\(535\) 7.34461 0.317535
\(536\) 4.50512 0.194592
\(537\) 0 0
\(538\) 26.7557 1.15352
\(539\) 17.0835 0.735838
\(540\) 0 0
\(541\) −5.46299 −0.234872 −0.117436 0.993080i \(-0.537468\pi\)
−0.117436 + 0.993080i \(0.537468\pi\)
\(542\) 18.4699 0.793351
\(543\) 0 0
\(544\) −25.6463 −1.09958
\(545\) −9.40825 −0.403005
\(546\) 0 0
\(547\) 38.8895 1.66279 0.831397 0.555679i \(-0.187542\pi\)
0.831397 + 0.555679i \(0.187542\pi\)
\(548\) 8.58079 0.366553
\(549\) 0 0
\(550\) −1.85206 −0.0789722
\(551\) 50.2762 2.14184
\(552\) 0 0
\(553\) −4.14124 −0.176103
\(554\) −23.2967 −0.989783
\(555\) 0 0
\(556\) −18.5504 −0.786713
\(557\) 6.58425 0.278983 0.139492 0.990223i \(-0.455453\pi\)
0.139492 + 0.990223i \(0.455453\pi\)
\(558\) 0 0
\(559\) 4.18501 0.177007
\(560\) 23.6295 0.998529
\(561\) 0 0
\(562\) −30.9140 −1.30403
\(563\) 25.0323 1.05499 0.527494 0.849559i \(-0.323132\pi\)
0.527494 + 0.849559i \(0.323132\pi\)
\(564\) 0 0
\(565\) 10.9547 0.460869
\(566\) 39.9929 1.68103
\(567\) 0 0
\(568\) 5.42465 0.227613
\(569\) −34.5066 −1.44659 −0.723297 0.690537i \(-0.757374\pi\)
−0.723297 + 0.690537i \(0.757374\pi\)
\(570\) 0 0
\(571\) −18.6588 −0.780848 −0.390424 0.920635i \(-0.627672\pi\)
−0.390424 + 0.920635i \(0.627672\pi\)
\(572\) −6.59522 −0.275760
\(573\) 0 0
\(574\) 27.0045 1.12715
\(575\) 0.860262 0.0358754
\(576\) 0 0
\(577\) −37.6697 −1.56821 −0.784105 0.620628i \(-0.786878\pi\)
−0.784105 + 0.620628i \(0.786878\pi\)
\(578\) 5.19321 0.216009
\(579\) 0 0
\(580\) −14.8439 −0.616358
\(581\) 28.2247 1.17096
\(582\) 0 0
\(583\) −5.13974 −0.212866
\(584\) −4.86725 −0.201408
\(585\) 0 0
\(586\) 61.2763 2.53130
\(587\) 11.0242 0.455019 0.227510 0.973776i \(-0.426942\pi\)
0.227510 + 0.973776i \(0.426942\pi\)
\(588\) 0 0
\(589\) 37.8547 1.55978
\(590\) 23.2396 0.956761
\(591\) 0 0
\(592\) 22.5113 0.925207
\(593\) −39.4703 −1.62085 −0.810425 0.585843i \(-0.800764\pi\)
−0.810425 + 0.585843i \(0.800764\pi\)
\(594\) 0 0
\(595\) 18.4902 0.758026
\(596\) 0.0391434 0.00160338
\(597\) 0 0
\(598\) 7.34749 0.300461
\(599\) −2.44646 −0.0999598 −0.0499799 0.998750i \(-0.515916\pi\)
−0.0499799 + 0.998750i \(0.515916\pi\)
\(600\) 0 0
\(601\) −37.6697 −1.53658 −0.768290 0.640103i \(-0.778892\pi\)
−0.768290 + 0.640103i \(0.778892\pi\)
\(602\) 8.24819 0.336171
\(603\) 0 0
\(604\) 6.92735 0.281870
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 6.62802 0.269023 0.134511 0.990912i \(-0.457053\pi\)
0.134511 + 0.990912i \(0.457053\pi\)
\(608\) 32.9711 1.33716
\(609\) 0 0
\(610\) −20.7861 −0.841605
\(611\) −60.9805 −2.46701
\(612\) 0 0
\(613\) 15.6498 0.632091 0.316045 0.948744i \(-0.397645\pi\)
0.316045 + 0.948744i \(0.397645\pi\)
\(614\) −14.3053 −0.577315
\(615\) 0 0
\(616\) 5.17953 0.208689
\(617\) 27.7463 1.11702 0.558511 0.829497i \(-0.311373\pi\)
0.558511 + 0.829497i \(0.311373\pi\)
\(618\) 0 0
\(619\) 16.5737 0.666154 0.333077 0.942900i \(-0.391913\pi\)
0.333077 + 0.942900i \(0.391913\pi\)
\(620\) −11.1765 −0.448857
\(621\) 0 0
\(622\) −22.5543 −0.904346
\(623\) −6.91095 −0.276882
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 5.47233 0.218718
\(627\) 0 0
\(628\) 3.04227 0.121400
\(629\) 17.6152 0.702364
\(630\) 0 0
\(631\) −37.8547 −1.50697 −0.753486 0.657464i \(-0.771629\pi\)
−0.753486 + 0.657464i \(0.771629\pi\)
\(632\) −0.890638 −0.0354277
\(633\) 0 0
\(634\) 50.9164 2.02215
\(635\) −6.62802 −0.263025
\(636\) 0 0
\(637\) −78.7825 −3.12148
\(638\) −19.2232 −0.761055
\(639\) 0 0
\(640\) 8.10071 0.320209
\(641\) −11.9423 −0.471691 −0.235845 0.971791i \(-0.575786\pi\)
−0.235845 + 0.971791i \(0.575786\pi\)
\(642\) 0 0
\(643\) 10.3380 0.407692 0.203846 0.979003i \(-0.434656\pi\)
0.203846 + 0.979003i \(0.434656\pi\)
\(644\) 6.03763 0.237916
\(645\) 0 0
\(646\) 33.8010 1.32988
\(647\) −11.0125 −0.432945 −0.216472 0.976289i \(-0.569455\pi\)
−0.216472 + 0.976289i \(0.569455\pi\)
\(648\) 0 0
\(649\) 12.5480 0.492551
\(650\) 8.54100 0.335005
\(651\) 0 0
\(652\) 14.4207 0.564759
\(653\) −13.2810 −0.519725 −0.259862 0.965646i \(-0.583677\pi\)
−0.259862 + 0.965646i \(0.583677\pi\)
\(654\) 0 0
\(655\) 13.2232 0.516674
\(656\) 14.3059 0.558553
\(657\) 0 0
\(658\) −120.186 −4.68533
\(659\) 10.2247 0.398299 0.199150 0.979969i \(-0.436182\pi\)
0.199150 + 0.979969i \(0.436182\pi\)
\(660\) 0 0
\(661\) 17.0710 0.663986 0.331993 0.943282i \(-0.392279\pi\)
0.331993 + 0.943282i \(0.392279\pi\)
\(662\) −30.6956 −1.19302
\(663\) 0 0
\(664\) 6.07017 0.235568
\(665\) −23.7712 −0.921808
\(666\) 0 0
\(667\) 8.92898 0.345731
\(668\) −25.3868 −0.982243
\(669\) 0 0
\(670\) 7.90554 0.305418
\(671\) −11.2232 −0.433268
\(672\) 0 0
\(673\) 27.8926 1.07518 0.537590 0.843206i \(-0.319335\pi\)
0.537590 + 0.843206i \(0.319335\pi\)
\(674\) −8.60175 −0.331327
\(675\) 0 0
\(676\) 11.8229 0.454727
\(677\) 19.4922 0.749146 0.374573 0.927197i \(-0.377789\pi\)
0.374573 + 0.927197i \(0.377789\pi\)
\(678\) 0 0
\(679\) 41.9492 1.60986
\(680\) 3.97661 0.152496
\(681\) 0 0
\(682\) −14.4738 −0.554232
\(683\) 26.9438 1.03097 0.515487 0.856897i \(-0.327611\pi\)
0.515487 + 0.856897i \(0.327611\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) −91.6487 −3.49916
\(687\) 0 0
\(688\) 4.36957 0.166588
\(689\) 23.7025 0.902993
\(690\) 0 0
\(691\) 41.2849 1.57055 0.785276 0.619146i \(-0.212521\pi\)
0.785276 + 0.619146i \(0.212521\pi\)
\(692\) −22.5500 −0.857221
\(693\) 0 0
\(694\) 43.8820 1.66574
\(695\) 12.9711 0.492023
\(696\) 0 0
\(697\) 11.1945 0.424021
\(698\) 40.2957 1.52522
\(699\) 0 0
\(700\) 7.01836 0.265269
\(701\) −41.1631 −1.55471 −0.777354 0.629064i \(-0.783438\pi\)
−0.777354 + 0.629064i \(0.783438\pi\)
\(702\) 0 0
\(703\) −22.6463 −0.854120
\(704\) −2.97661 −0.112185
\(705\) 0 0
\(706\) 12.0203 0.452391
\(707\) 22.3997 0.842427
\(708\) 0 0
\(709\) −19.8040 −0.743756 −0.371878 0.928282i \(-0.621286\pi\)
−0.371878 + 0.928282i \(0.621286\pi\)
\(710\) 9.51911 0.357246
\(711\) 0 0
\(712\) −1.48631 −0.0557017
\(713\) 6.72294 0.251776
\(714\) 0 0
\(715\) 4.61162 0.172465
\(716\) −10.5948 −0.395945
\(717\) 0 0
\(718\) 35.4957 1.32469
\(719\) 42.6682 1.59126 0.795628 0.605786i \(-0.207141\pi\)
0.795628 + 0.605786i \(0.207141\pi\)
\(720\) 0 0
\(721\) −23.2271 −0.865024
\(722\) −8.26572 −0.307618
\(723\) 0 0
\(724\) 10.3928 0.386244
\(725\) 10.3794 0.385480
\(726\) 0 0
\(727\) −39.0054 −1.44663 −0.723315 0.690518i \(-0.757383\pi\)
−0.723315 + 0.690518i \(0.757383\pi\)
\(728\) −23.8860 −0.885274
\(729\) 0 0
\(730\) −8.54100 −0.316116
\(731\) 3.41921 0.126464
\(732\) 0 0
\(733\) −12.2744 −0.453365 −0.226683 0.973969i \(-0.572788\pi\)
−0.226683 + 0.973969i \(0.572788\pi\)
\(734\) 18.8633 0.696256
\(735\) 0 0
\(736\) 5.85562 0.215841
\(737\) 4.26851 0.157232
\(738\) 0 0
\(739\) 34.0343 1.25197 0.625986 0.779834i \(-0.284697\pi\)
0.625986 + 0.779834i \(0.284697\pi\)
\(740\) 6.68622 0.245790
\(741\) 0 0
\(742\) 46.7150 1.71496
\(743\) −16.2854 −0.597452 −0.298726 0.954339i \(-0.596562\pi\)
−0.298726 + 0.954339i \(0.596562\pi\)
\(744\) 0 0
\(745\) −0.0273705 −0.00100278
\(746\) −35.2232 −1.28961
\(747\) 0 0
\(748\) −5.38838 −0.197019
\(749\) −36.0436 −1.31701
\(750\) 0 0
\(751\) 14.0577 0.512974 0.256487 0.966548i \(-0.417435\pi\)
0.256487 + 0.966548i \(0.417435\pi\)
\(752\) −63.6697 −2.32179
\(753\) 0 0
\(754\) 88.6502 3.22845
\(755\) −4.84386 −0.176286
\(756\) 0 0
\(757\) 38.2286 1.38944 0.694722 0.719278i \(-0.255527\pi\)
0.694722 + 0.719278i \(0.255527\pi\)
\(758\) −20.5042 −0.744746
\(759\) 0 0
\(760\) −5.11237 −0.185445
\(761\) 9.52616 0.345323 0.172662 0.984981i \(-0.444763\pi\)
0.172662 + 0.984981i \(0.444763\pi\)
\(762\) 0 0
\(763\) 46.1709 1.67150
\(764\) 4.10624 0.148558
\(765\) 0 0
\(766\) −23.5823 −0.852063
\(767\) −57.8665 −2.08944
\(768\) 0 0
\(769\) 2.24276 0.0808760 0.0404380 0.999182i \(-0.487125\pi\)
0.0404380 + 0.999182i \(0.487125\pi\)
\(770\) 9.08898 0.327544
\(771\) 0 0
\(772\) 27.0167 0.972354
\(773\) 17.7025 0.636715 0.318357 0.947971i \(-0.396869\pi\)
0.318357 + 0.947971i \(0.396869\pi\)
\(774\) 0 0
\(775\) 7.81499 0.280723
\(776\) 9.02182 0.323864
\(777\) 0 0
\(778\) −60.6712 −2.17517
\(779\) −14.3917 −0.515637
\(780\) 0 0
\(781\) 5.13974 0.183914
\(782\) 6.00301 0.214667
\(783\) 0 0
\(784\) −82.2568 −2.93774
\(785\) −2.12727 −0.0759254
\(786\) 0 0
\(787\) −17.4445 −0.621830 −0.310915 0.950438i \(-0.600635\pi\)
−0.310915 + 0.950438i \(0.600635\pi\)
\(788\) −20.0894 −0.715655
\(789\) 0 0
\(790\) −1.56288 −0.0556048
\(791\) −53.7602 −1.91149
\(792\) 0 0
\(793\) 51.7572 1.83795
\(794\) 27.9328 0.991297
\(795\) 0 0
\(796\) 4.87424 0.172763
\(797\) −11.2093 −0.397052 −0.198526 0.980096i \(-0.563615\pi\)
−0.198526 + 0.980096i \(0.563615\pi\)
\(798\) 0 0
\(799\) −49.8219 −1.76257
\(800\) 6.80679 0.240656
\(801\) 0 0
\(802\) 34.6816 1.22465
\(803\) −4.61162 −0.162740
\(804\) 0 0
\(805\) −4.22173 −0.148796
\(806\) 66.7478 2.35109
\(807\) 0 0
\(808\) 4.81740 0.169476
\(809\) −43.1381 −1.51666 −0.758328 0.651874i \(-0.773983\pi\)
−0.758328 + 0.651874i \(0.773983\pi\)
\(810\) 0 0
\(811\) 11.0289 0.387276 0.193638 0.981073i \(-0.437971\pi\)
0.193638 + 0.981073i \(0.437971\pi\)
\(812\) 72.8462 2.55640
\(813\) 0 0
\(814\) 8.65885 0.303492
\(815\) −10.0835 −0.353209
\(816\) 0 0
\(817\) −4.39577 −0.153789
\(818\) −45.3371 −1.58517
\(819\) 0 0
\(820\) 4.24910 0.148385
\(821\) −14.9164 −0.520585 −0.260293 0.965530i \(-0.583819\pi\)
−0.260293 + 0.965530i \(0.583819\pi\)
\(822\) 0 0
\(823\) −41.4589 −1.44517 −0.722584 0.691283i \(-0.757046\pi\)
−0.722584 + 0.691283i \(0.757046\pi\)
\(824\) −4.99536 −0.174022
\(825\) 0 0
\(826\) −114.048 −3.96825
\(827\) −19.4171 −0.675200 −0.337600 0.941290i \(-0.609615\pi\)
−0.337600 + 0.941290i \(0.609615\pi\)
\(828\) 0 0
\(829\) −17.8290 −0.619225 −0.309613 0.950863i \(-0.600199\pi\)
−0.309613 + 0.950863i \(0.600199\pi\)
\(830\) 10.6519 0.369731
\(831\) 0 0
\(832\) 13.7270 0.475898
\(833\) −64.3664 −2.23016
\(834\) 0 0
\(835\) 17.7514 0.614311
\(836\) 6.92735 0.239588
\(837\) 0 0
\(838\) 16.9070 0.584044
\(839\) −12.2935 −0.424417 −0.212209 0.977224i \(-0.568066\pi\)
−0.212209 + 0.977224i \(0.568066\pi\)
\(840\) 0 0
\(841\) 78.7314 2.71487
\(842\) 25.0889 0.864621
\(843\) 0 0
\(844\) −35.0008 −1.20478
\(845\) −8.26700 −0.284394
\(846\) 0 0
\(847\) 4.90749 0.168623
\(848\) 24.7478 0.849842
\(849\) 0 0
\(850\) 6.97811 0.239347
\(851\) −4.02194 −0.137870
\(852\) 0 0
\(853\) −18.0776 −0.618966 −0.309483 0.950905i \(-0.600156\pi\)
−0.309483 + 0.950905i \(0.600156\pi\)
\(854\) 102.008 3.49063
\(855\) 0 0
\(856\) −7.75174 −0.264949
\(857\) 55.3649 1.89123 0.945615 0.325288i \(-0.105461\pi\)
0.945615 + 0.325288i \(0.105461\pi\)
\(858\) 0 0
\(859\) −0.943756 −0.0322005 −0.0161003 0.999870i \(-0.505125\pi\)
−0.0161003 + 0.999870i \(0.505125\pi\)
\(860\) 1.29783 0.0442558
\(861\) 0 0
\(862\) −48.9805 −1.66828
\(863\) 23.6370 0.804614 0.402307 0.915505i \(-0.368208\pi\)
0.402307 + 0.915505i \(0.368208\pi\)
\(864\) 0 0
\(865\) 15.7678 0.536120
\(866\) 29.9626 1.01817
\(867\) 0 0
\(868\) 54.8484 1.86168
\(869\) −0.843861 −0.0286260
\(870\) 0 0
\(871\) −19.6847 −0.666991
\(872\) 9.92977 0.336264
\(873\) 0 0
\(874\) −7.71752 −0.261049
\(875\) −4.90749 −0.165904
\(876\) 0 0
\(877\) −16.6841 −0.563383 −0.281692 0.959505i \(-0.590896\pi\)
−0.281692 + 0.959505i \(0.590896\pi\)
\(878\) 13.0179 0.439333
\(879\) 0 0
\(880\) 4.81499 0.162313
\(881\) 16.2217 0.546524 0.273262 0.961940i \(-0.411897\pi\)
0.273262 + 0.961940i \(0.411897\pi\)
\(882\) 0 0
\(883\) 35.0710 1.18023 0.590117 0.807318i \(-0.299082\pi\)
0.590117 + 0.807318i \(0.299082\pi\)
\(884\) 24.8492 0.835768
\(885\) 0 0
\(886\) −45.1217 −1.51589
\(887\) −16.1581 −0.542536 −0.271268 0.962504i \(-0.587443\pi\)
−0.271268 + 0.962504i \(0.587443\pi\)
\(888\) 0 0
\(889\) 32.5270 1.09092
\(890\) −2.60816 −0.0874256
\(891\) 0 0
\(892\) −16.4973 −0.552370
\(893\) 64.0515 2.14340
\(894\) 0 0
\(895\) 7.40825 0.247630
\(896\) −39.7542 −1.32809
\(897\) 0 0
\(898\) −71.0983 −2.37258
\(899\) 81.1147 2.70533
\(900\) 0 0
\(901\) 19.3653 0.645151
\(902\) 5.50271 0.183220
\(903\) 0 0
\(904\) −11.5620 −0.384545
\(905\) −7.26700 −0.241563
\(906\) 0 0
\(907\) 41.9820 1.39399 0.696994 0.717077i \(-0.254520\pi\)
0.696994 + 0.717077i \(0.254520\pi\)
\(908\) 1.65838 0.0550352
\(909\) 0 0
\(910\) −41.9149 −1.38946
\(911\) 57.2302 1.89612 0.948060 0.318092i \(-0.103042\pi\)
0.948060 + 0.318092i \(0.103042\pi\)
\(912\) 0 0
\(913\) 5.75135 0.190342
\(914\) −40.6752 −1.34542
\(915\) 0 0
\(916\) −34.9616 −1.15517
\(917\) −64.8929 −2.14295
\(918\) 0 0
\(919\) −0.346569 −0.0114323 −0.00571613 0.999984i \(-0.501820\pi\)
−0.00571613 + 0.999984i \(0.501820\pi\)
\(920\) −0.907948 −0.0299342
\(921\) 0 0
\(922\) 51.0610 1.68160
\(923\) −23.7025 −0.780177
\(924\) 0 0
\(925\) −4.67525 −0.153721
\(926\) 46.0904 1.51462
\(927\) 0 0
\(928\) 70.6502 2.31921
\(929\) 7.66278 0.251408 0.125704 0.992068i \(-0.459881\pi\)
0.125704 + 0.992068i \(0.459881\pi\)
\(930\) 0 0
\(931\) 82.7501 2.71202
\(932\) −13.5226 −0.442947
\(933\) 0 0
\(934\) −53.7602 −1.75909
\(935\) 3.76776 0.123219
\(936\) 0 0
\(937\) 34.0894 1.11365 0.556826 0.830629i \(-0.312019\pi\)
0.556826 + 0.830629i \(0.312019\pi\)
\(938\) −38.7964 −1.26675
\(939\) 0 0
\(940\) −18.9110 −0.616807
\(941\) 28.1944 0.919110 0.459555 0.888149i \(-0.348009\pi\)
0.459555 + 0.888149i \(0.348009\pi\)
\(942\) 0 0
\(943\) −2.55595 −0.0832331
\(944\) −60.4184 −1.96645
\(945\) 0 0
\(946\) 1.68073 0.0546454
\(947\) −29.7602 −0.967078 −0.483539 0.875323i \(-0.660649\pi\)
−0.483539 + 0.875323i \(0.660649\pi\)
\(948\) 0 0
\(949\) 21.2670 0.690356
\(950\) −8.97113 −0.291062
\(951\) 0 0
\(952\) −19.5152 −0.632491
\(953\) 20.8309 0.674780 0.337390 0.941365i \(-0.390456\pi\)
0.337390 + 0.941365i \(0.390456\pi\)
\(954\) 0 0
\(955\) −2.87123 −0.0929109
\(956\) 21.3715 0.691205
\(957\) 0 0
\(958\) 54.5339 1.76191
\(959\) 29.4450 0.950827
\(960\) 0 0
\(961\) 30.0740 0.970130
\(962\) −39.9313 −1.28744
\(963\) 0 0
\(964\) 11.1765 0.359969
\(965\) −18.8911 −0.608126
\(966\) 0 0
\(967\) −30.7225 −0.987968 −0.493984 0.869471i \(-0.664460\pi\)
−0.493984 + 0.869471i \(0.664460\pi\)
\(968\) 1.05543 0.0339229
\(969\) 0 0
\(970\) 15.8314 0.508315
\(971\) −21.9095 −0.703108 −0.351554 0.936168i \(-0.614347\pi\)
−0.351554 + 0.936168i \(0.614347\pi\)
\(972\) 0 0
\(973\) −63.6557 −2.04071
\(974\) −50.9844 −1.63365
\(975\) 0 0
\(976\) 54.0397 1.72977
\(977\) 14.1889 0.453944 0.226972 0.973901i \(-0.427117\pi\)
0.226972 + 0.973901i \(0.427117\pi\)
\(978\) 0 0
\(979\) −1.40825 −0.0450077
\(980\) −24.4316 −0.780440
\(981\) 0 0
\(982\) 41.2630 1.31675
\(983\) 5.52454 0.176206 0.0881028 0.996111i \(-0.471920\pi\)
0.0881028 + 0.996111i \(0.471920\pi\)
\(984\) 0 0
\(985\) 14.0472 0.447582
\(986\) 72.4284 2.30659
\(987\) 0 0
\(988\) −31.9463 −1.01635
\(989\) −0.780682 −0.0248243
\(990\) 0 0
\(991\) 7.93048 0.251920 0.125960 0.992035i \(-0.459799\pi\)
0.125960 + 0.992035i \(0.459799\pi\)
\(992\) 53.1950 1.68894
\(993\) 0 0
\(994\) −46.7150 −1.48171
\(995\) −3.40825 −0.108049
\(996\) 0 0
\(997\) −52.0596 −1.64874 −0.824372 0.566049i \(-0.808471\pi\)
−0.824372 + 0.566049i \(0.808471\pi\)
\(998\) 64.8929 2.05415
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.a.f.1.2 4
3.2 odd 2 495.2.a.g.1.3 yes 4
4.3 odd 2 7920.2.a.cm.1.1 4
5.2 odd 4 2475.2.c.t.199.3 8
5.3 odd 4 2475.2.c.t.199.6 8
5.4 even 2 2475.2.a.bj.1.3 4
11.10 odd 2 5445.2.a.bs.1.3 4
12.11 even 2 7920.2.a.cn.1.1 4
15.2 even 4 2475.2.c.s.199.6 8
15.8 even 4 2475.2.c.s.199.3 8
15.14 odd 2 2475.2.a.bf.1.2 4
33.32 even 2 5445.2.a.bh.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
495.2.a.f.1.2 4 1.1 even 1 trivial
495.2.a.g.1.3 yes 4 3.2 odd 2
2475.2.a.bf.1.2 4 15.14 odd 2
2475.2.a.bj.1.3 4 5.4 even 2
2475.2.c.s.199.3 8 15.8 even 4
2475.2.c.s.199.6 8 15.2 even 4
2475.2.c.t.199.3 8 5.2 odd 4
2475.2.c.t.199.6 8 5.3 odd 4
5445.2.a.bh.1.2 4 33.32 even 2
5445.2.a.bs.1.3 4 11.10 odd 2
7920.2.a.cm.1.1 4 4.3 odd 2
7920.2.a.cn.1.1 4 12.11 even 2