Properties

Label 2450.4.a.cd.1.3
Level $2450$
Weight $4$
Character 2450.1
Self dual yes
Analytic conductor $144.555$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,4,Mod(1,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 2450.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-6,3,12,0,-6,0,-24,56,0,-26] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(144.554679514\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.238585.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 67x - 189 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 350)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-5.92433\) of defining polynomial
Character \(\chi\) \(=\) 2450.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +6.92433 q^{3} +4.00000 q^{4} -13.8487 q^{6} -8.00000 q^{8} +20.9463 q^{9} +37.3629 q^{11} +27.6973 q^{12} -89.1041 q^{13} +16.0000 q^{16} -70.1578 q^{17} -41.8926 q^{18} +125.401 q^{19} -74.7257 q^{22} +6.26857 q^{23} -55.3946 q^{24} +178.208 q^{26} -41.9179 q^{27} -95.4760 q^{29} +217.763 q^{31} -32.0000 q^{32} +258.713 q^{33} +140.316 q^{34} +83.7851 q^{36} -210.826 q^{37} -250.802 q^{38} -616.986 q^{39} +12.2490 q^{41} +131.746 q^{43} +149.451 q^{44} -12.5371 q^{46} +364.121 q^{47} +110.789 q^{48} -485.795 q^{51} -356.416 q^{52} +498.456 q^{53} +83.8358 q^{54} +868.318 q^{57} +190.952 q^{58} +358.027 q^{59} +154.608 q^{61} -435.526 q^{62} +64.0000 q^{64} -517.425 q^{66} +67.5326 q^{67} -280.631 q^{68} +43.4056 q^{69} -517.772 q^{71} -167.570 q^{72} -674.766 q^{73} +421.651 q^{74} +501.604 q^{76} +1233.97 q^{78} +931.682 q^{79} -855.803 q^{81} -24.4980 q^{82} +1435.72 q^{83} -263.493 q^{86} -661.107 q^{87} -298.903 q^{88} +336.681 q^{89} +25.0743 q^{92} +1507.86 q^{93} -728.242 q^{94} -221.578 q^{96} +179.620 q^{97} +782.613 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 6 q^{2} + 3 q^{3} + 12 q^{4} - 6 q^{6} - 24 q^{8} + 56 q^{9} - 26 q^{11} + 12 q^{12} - 80 q^{13} + 48 q^{16} - 30 q^{17} - 112 q^{18} + 18 q^{19} + 52 q^{22} + 53 q^{23} - 24 q^{24} + 160 q^{26} - 324 q^{27}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 6.92433 1.33259 0.666294 0.745690i \(-0.267880\pi\)
0.666294 + 0.745690i \(0.267880\pi\)
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −13.8487 −0.942281
\(7\) 0 0
\(8\) −8.00000 −0.353553
\(9\) 20.9463 0.775788
\(10\) 0 0
\(11\) 37.3629 1.02412 0.512060 0.858950i \(-0.328882\pi\)
0.512060 + 0.858950i \(0.328882\pi\)
\(12\) 27.6973 0.666294
\(13\) −89.1041 −1.90100 −0.950501 0.310722i \(-0.899429\pi\)
−0.950501 + 0.310722i \(0.899429\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −70.1578 −1.00093 −0.500464 0.865758i \(-0.666837\pi\)
−0.500464 + 0.865758i \(0.666837\pi\)
\(18\) −41.8926 −0.548565
\(19\) 125.401 1.51416 0.757078 0.653324i \(-0.226626\pi\)
0.757078 + 0.653324i \(0.226626\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −74.7257 −0.724162
\(23\) 6.26857 0.0568298 0.0284149 0.999596i \(-0.490954\pi\)
0.0284149 + 0.999596i \(0.490954\pi\)
\(24\) −55.3946 −0.471141
\(25\) 0 0
\(26\) 178.208 1.34421
\(27\) −41.9179 −0.298781
\(28\) 0 0
\(29\) −95.4760 −0.611360 −0.305680 0.952134i \(-0.598884\pi\)
−0.305680 + 0.952134i \(0.598884\pi\)
\(30\) 0 0
\(31\) 217.763 1.26166 0.630829 0.775922i \(-0.282715\pi\)
0.630829 + 0.775922i \(0.282715\pi\)
\(32\) −32.0000 −0.176777
\(33\) 258.713 1.36473
\(34\) 140.316 0.707762
\(35\) 0 0
\(36\) 83.7851 0.387894
\(37\) −210.826 −0.936744 −0.468372 0.883531i \(-0.655159\pi\)
−0.468372 + 0.883531i \(0.655159\pi\)
\(38\) −250.802 −1.07067
\(39\) −616.986 −2.53325
\(40\) 0 0
\(41\) 12.2490 0.0466578 0.0233289 0.999728i \(-0.492574\pi\)
0.0233289 + 0.999728i \(0.492574\pi\)
\(42\) 0 0
\(43\) 131.746 0.467235 0.233618 0.972329i \(-0.424944\pi\)
0.233618 + 0.972329i \(0.424944\pi\)
\(44\) 149.451 0.512060
\(45\) 0 0
\(46\) −12.5371 −0.0401848
\(47\) 364.121 1.13005 0.565026 0.825073i \(-0.308866\pi\)
0.565026 + 0.825073i \(0.308866\pi\)
\(48\) 110.789 0.333147
\(49\) 0 0
\(50\) 0 0
\(51\) −485.795 −1.33382
\(52\) −356.416 −0.950501
\(53\) 498.456 1.29185 0.645926 0.763400i \(-0.276471\pi\)
0.645926 + 0.763400i \(0.276471\pi\)
\(54\) 83.8358 0.211270
\(55\) 0 0
\(56\) 0 0
\(57\) 868.318 2.01775
\(58\) 190.952 0.432297
\(59\) 358.027 0.790020 0.395010 0.918677i \(-0.370741\pi\)
0.395010 + 0.918677i \(0.370741\pi\)
\(60\) 0 0
\(61\) 154.608 0.324516 0.162258 0.986748i \(-0.448122\pi\)
0.162258 + 0.986748i \(0.448122\pi\)
\(62\) −435.526 −0.892127
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) −517.425 −0.965010
\(67\) 67.5326 0.123141 0.0615703 0.998103i \(-0.480389\pi\)
0.0615703 + 0.998103i \(0.480389\pi\)
\(68\) −280.631 −0.500464
\(69\) 43.4056 0.0757307
\(70\) 0 0
\(71\) −517.772 −0.865469 −0.432734 0.901521i \(-0.642451\pi\)
−0.432734 + 0.901521i \(0.642451\pi\)
\(72\) −167.570 −0.274283
\(73\) −674.766 −1.08186 −0.540928 0.841069i \(-0.681927\pi\)
−0.540928 + 0.841069i \(0.681927\pi\)
\(74\) 421.651 0.662378
\(75\) 0 0
\(76\) 501.604 0.757078
\(77\) 0 0
\(78\) 1233.97 1.79128
\(79\) 931.682 1.32687 0.663433 0.748236i \(-0.269099\pi\)
0.663433 + 0.748236i \(0.269099\pi\)
\(80\) 0 0
\(81\) −855.803 −1.17394
\(82\) −24.4980 −0.0329920
\(83\) 1435.72 1.89868 0.949341 0.314247i \(-0.101752\pi\)
0.949341 + 0.314247i \(0.101752\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −263.493 −0.330385
\(87\) −661.107 −0.814691
\(88\) −298.903 −0.362081
\(89\) 336.681 0.400990 0.200495 0.979695i \(-0.435745\pi\)
0.200495 + 0.979695i \(0.435745\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 25.0743 0.0284149
\(93\) 1507.86 1.68127
\(94\) −728.242 −0.799068
\(95\) 0 0
\(96\) −221.578 −0.235570
\(97\) 179.620 0.188016 0.0940082 0.995571i \(-0.470032\pi\)
0.0940082 + 0.995571i \(0.470032\pi\)
\(98\) 0 0
\(99\) 782.613 0.794501
\(100\) 0 0
\(101\) 894.392 0.881142 0.440571 0.897718i \(-0.354776\pi\)
0.440571 + 0.897718i \(0.354776\pi\)
\(102\) 971.591 0.943155
\(103\) 24.8790 0.0238000 0.0119000 0.999929i \(-0.496212\pi\)
0.0119000 + 0.999929i \(0.496212\pi\)
\(104\) 712.833 0.672106
\(105\) 0 0
\(106\) −996.912 −0.913478
\(107\) −1153.79 −1.04244 −0.521221 0.853421i \(-0.674523\pi\)
−0.521221 + 0.853421i \(0.674523\pi\)
\(108\) −167.672 −0.149391
\(109\) 1880.97 1.65288 0.826440 0.563025i \(-0.190363\pi\)
0.826440 + 0.563025i \(0.190363\pi\)
\(110\) 0 0
\(111\) −1459.83 −1.24829
\(112\) 0 0
\(113\) 2073.98 1.72658 0.863289 0.504709i \(-0.168400\pi\)
0.863289 + 0.504709i \(0.168400\pi\)
\(114\) −1736.64 −1.42676
\(115\) 0 0
\(116\) −381.904 −0.305680
\(117\) −1866.40 −1.47478
\(118\) −716.054 −0.558628
\(119\) 0 0
\(120\) 0 0
\(121\) 64.9828 0.0488226
\(122\) −309.216 −0.229468
\(123\) 84.8160 0.0621756
\(124\) 871.053 0.630829
\(125\) 0 0
\(126\) 0 0
\(127\) −75.3532 −0.0526497 −0.0263249 0.999653i \(-0.508380\pi\)
−0.0263249 + 0.999653i \(0.508380\pi\)
\(128\) −128.000 −0.0883883
\(129\) 912.254 0.622632
\(130\) 0 0
\(131\) −2200.18 −1.46741 −0.733705 0.679468i \(-0.762211\pi\)
−0.733705 + 0.679468i \(0.762211\pi\)
\(132\) 1034.85 0.682365
\(133\) 0 0
\(134\) −135.065 −0.0870735
\(135\) 0 0
\(136\) 561.262 0.353881
\(137\) −2055.50 −1.28185 −0.640925 0.767604i \(-0.721449\pi\)
−0.640925 + 0.767604i \(0.721449\pi\)
\(138\) −86.8112 −0.0535497
\(139\) 453.942 0.276999 0.138499 0.990363i \(-0.455772\pi\)
0.138499 + 0.990363i \(0.455772\pi\)
\(140\) 0 0
\(141\) 2521.29 1.50589
\(142\) 1035.54 0.611979
\(143\) −3329.18 −1.94685
\(144\) 335.141 0.193947
\(145\) 0 0
\(146\) 1349.53 0.764987
\(147\) 0 0
\(148\) −843.303 −0.468372
\(149\) 234.696 0.129041 0.0645204 0.997916i \(-0.479448\pi\)
0.0645204 + 0.997916i \(0.479448\pi\)
\(150\) 0 0
\(151\) 346.020 0.186481 0.0932407 0.995644i \(-0.470277\pi\)
0.0932407 + 0.995644i \(0.470277\pi\)
\(152\) −1003.21 −0.535335
\(153\) −1469.55 −0.776508
\(154\) 0 0
\(155\) 0 0
\(156\) −2467.94 −1.26663
\(157\) 3339.12 1.69739 0.848697 0.528879i \(-0.177387\pi\)
0.848697 + 0.528879i \(0.177387\pi\)
\(158\) −1863.36 −0.938236
\(159\) 3451.47 1.72151
\(160\) 0 0
\(161\) 0 0
\(162\) 1711.61 0.830101
\(163\) 2411.64 1.15886 0.579430 0.815022i \(-0.303275\pi\)
0.579430 + 0.815022i \(0.303275\pi\)
\(164\) 48.9959 0.0233289
\(165\) 0 0
\(166\) −2871.44 −1.34257
\(167\) 1296.58 0.600791 0.300395 0.953815i \(-0.402881\pi\)
0.300395 + 0.953815i \(0.402881\pi\)
\(168\) 0 0
\(169\) 5742.54 2.61381
\(170\) 0 0
\(171\) 2626.69 1.17467
\(172\) 526.985 0.233618
\(173\) 2744.51 1.20613 0.603067 0.797690i \(-0.293945\pi\)
0.603067 + 0.797690i \(0.293945\pi\)
\(174\) 1322.21 0.576073
\(175\) 0 0
\(176\) 597.806 0.256030
\(177\) 2479.10 1.05277
\(178\) −673.363 −0.283543
\(179\) −1405.44 −0.586859 −0.293429 0.955981i \(-0.594797\pi\)
−0.293429 + 0.955981i \(0.594797\pi\)
\(180\) 0 0
\(181\) 637.919 0.261967 0.130984 0.991385i \(-0.458186\pi\)
0.130984 + 0.991385i \(0.458186\pi\)
\(182\) 0 0
\(183\) 1070.55 0.432446
\(184\) −50.1485 −0.0200924
\(185\) 0 0
\(186\) −3015.73 −1.18884
\(187\) −2621.30 −1.02507
\(188\) 1456.48 0.565026
\(189\) 0 0
\(190\) 0 0
\(191\) 3655.76 1.38493 0.692465 0.721452i \(-0.256525\pi\)
0.692465 + 0.721452i \(0.256525\pi\)
\(192\) 443.157 0.166573
\(193\) −4433.66 −1.65358 −0.826792 0.562508i \(-0.809836\pi\)
−0.826792 + 0.562508i \(0.809836\pi\)
\(194\) −359.239 −0.132948
\(195\) 0 0
\(196\) 0 0
\(197\) 5283.75 1.91092 0.955462 0.295115i \(-0.0953580\pi\)
0.955462 + 0.295115i \(0.0953580\pi\)
\(198\) −1565.23 −0.561797
\(199\) 4404.91 1.56912 0.784562 0.620051i \(-0.212888\pi\)
0.784562 + 0.620051i \(0.212888\pi\)
\(200\) 0 0
\(201\) 467.617 0.164095
\(202\) −1788.78 −0.623062
\(203\) 0 0
\(204\) −1943.18 −0.666911
\(205\) 0 0
\(206\) −49.7580 −0.0168292
\(207\) 131.303 0.0440879
\(208\) −1425.67 −0.475250
\(209\) 4685.34 1.55068
\(210\) 0 0
\(211\) −1667.99 −0.544213 −0.272107 0.962267i \(-0.587720\pi\)
−0.272107 + 0.962267i \(0.587720\pi\)
\(212\) 1993.82 0.645926
\(213\) −3585.23 −1.15331
\(214\) 2307.59 0.737118
\(215\) 0 0
\(216\) 335.343 0.105635
\(217\) 0 0
\(218\) −3761.93 −1.16876
\(219\) −4672.30 −1.44167
\(220\) 0 0
\(221\) 6251.35 1.90276
\(222\) 2919.65 0.882677
\(223\) −3706.93 −1.11316 −0.556579 0.830795i \(-0.687886\pi\)
−0.556579 + 0.830795i \(0.687886\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4147.96 −1.22088
\(227\) −4759.43 −1.39160 −0.695802 0.718233i \(-0.744951\pi\)
−0.695802 + 0.718233i \(0.744951\pi\)
\(228\) 3473.27 1.00887
\(229\) 609.382 0.175848 0.0879238 0.996127i \(-0.471977\pi\)
0.0879238 + 0.996127i \(0.471977\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 763.808 0.216149
\(233\) 3163.96 0.889604 0.444802 0.895629i \(-0.353274\pi\)
0.444802 + 0.895629i \(0.353274\pi\)
\(234\) 3732.80 1.04282
\(235\) 0 0
\(236\) 1432.11 0.395010
\(237\) 6451.27 1.76817
\(238\) 0 0
\(239\) −5180.13 −1.40199 −0.700993 0.713168i \(-0.747259\pi\)
−0.700993 + 0.713168i \(0.747259\pi\)
\(240\) 0 0
\(241\) −2054.31 −0.549087 −0.274544 0.961575i \(-0.588527\pi\)
−0.274544 + 0.961575i \(0.588527\pi\)
\(242\) −129.966 −0.0345228
\(243\) −4794.07 −1.26560
\(244\) 618.431 0.162258
\(245\) 0 0
\(246\) −169.632 −0.0439648
\(247\) −11173.7 −2.87841
\(248\) −1742.11 −0.446064
\(249\) 9941.39 2.53016
\(250\) 0 0
\(251\) −2455.16 −0.617403 −0.308701 0.951159i \(-0.599894\pi\)
−0.308701 + 0.951159i \(0.599894\pi\)
\(252\) 0 0
\(253\) 234.212 0.0582006
\(254\) 150.706 0.0372290
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −3690.10 −0.895650 −0.447825 0.894121i \(-0.647801\pi\)
−0.447825 + 0.894121i \(0.647801\pi\)
\(258\) −1824.51 −0.440267
\(259\) 0 0
\(260\) 0 0
\(261\) −1999.87 −0.474286
\(262\) 4400.36 1.03762
\(263\) 5215.13 1.22273 0.611367 0.791347i \(-0.290620\pi\)
0.611367 + 0.791347i \(0.290620\pi\)
\(264\) −2069.70 −0.482505
\(265\) 0 0
\(266\) 0 0
\(267\) 2331.29 0.534355
\(268\) 270.130 0.0615703
\(269\) 3634.39 0.823764 0.411882 0.911237i \(-0.364872\pi\)
0.411882 + 0.911237i \(0.364872\pi\)
\(270\) 0 0
\(271\) 202.835 0.0454663 0.0227331 0.999742i \(-0.492763\pi\)
0.0227331 + 0.999742i \(0.492763\pi\)
\(272\) −1122.52 −0.250232
\(273\) 0 0
\(274\) 4111.01 0.906405
\(275\) 0 0
\(276\) 173.622 0.0378654
\(277\) −763.996 −0.165719 −0.0828593 0.996561i \(-0.526405\pi\)
−0.0828593 + 0.996561i \(0.526405\pi\)
\(278\) −907.883 −0.195868
\(279\) 4561.33 0.978780
\(280\) 0 0
\(281\) 1451.40 0.308125 0.154063 0.988061i \(-0.450764\pi\)
0.154063 + 0.988061i \(0.450764\pi\)
\(282\) −5042.58 −1.06483
\(283\) 7659.78 1.60893 0.804464 0.594002i \(-0.202453\pi\)
0.804464 + 0.594002i \(0.202453\pi\)
\(284\) −2071.09 −0.432734
\(285\) 0 0
\(286\) 6658.37 1.37663
\(287\) 0 0
\(288\) −670.281 −0.137141
\(289\) 9.11573 0.00185543
\(290\) 0 0
\(291\) 1243.74 0.250548
\(292\) −2699.07 −0.540928
\(293\) −4222.68 −0.841952 −0.420976 0.907072i \(-0.638312\pi\)
−0.420976 + 0.907072i \(0.638312\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1686.61 0.331189
\(297\) −1566.17 −0.305988
\(298\) −469.393 −0.0912456
\(299\) −558.555 −0.108034
\(300\) 0 0
\(301\) 0 0
\(302\) −692.040 −0.131862
\(303\) 6193.06 1.17420
\(304\) 2006.42 0.378539
\(305\) 0 0
\(306\) 2939.09 0.549074
\(307\) −1243.11 −0.231101 −0.115551 0.993302i \(-0.536863\pi\)
−0.115551 + 0.993302i \(0.536863\pi\)
\(308\) 0 0
\(309\) 172.270 0.0317156
\(310\) 0 0
\(311\) 1368.69 0.249554 0.124777 0.992185i \(-0.460179\pi\)
0.124777 + 0.992185i \(0.460179\pi\)
\(312\) 4935.89 0.895639
\(313\) −3210.66 −0.579800 −0.289900 0.957057i \(-0.593622\pi\)
−0.289900 + 0.957057i \(0.593622\pi\)
\(314\) −6678.24 −1.20024
\(315\) 0 0
\(316\) 3726.73 0.663433
\(317\) −7649.10 −1.35526 −0.677628 0.735405i \(-0.736992\pi\)
−0.677628 + 0.735405i \(0.736992\pi\)
\(318\) −6902.94 −1.21729
\(319\) −3567.26 −0.626107
\(320\) 0 0
\(321\) −7989.24 −1.38915
\(322\) 0 0
\(323\) −8797.86 −1.51556
\(324\) −3423.21 −0.586970
\(325\) 0 0
\(326\) −4823.28 −0.819437
\(327\) 13024.4 2.20261
\(328\) −97.9919 −0.0164960
\(329\) 0 0
\(330\) 0 0
\(331\) −7917.29 −1.31472 −0.657362 0.753575i \(-0.728328\pi\)
−0.657362 + 0.753575i \(0.728328\pi\)
\(332\) 5742.88 0.949341
\(333\) −4416.02 −0.726715
\(334\) −2593.15 −0.424823
\(335\) 0 0
\(336\) 0 0
\(337\) −6878.10 −1.11179 −0.555896 0.831252i \(-0.687625\pi\)
−0.555896 + 0.831252i \(0.687625\pi\)
\(338\) −11485.1 −1.84824
\(339\) 14360.9 2.30082
\(340\) 0 0
\(341\) 8136.25 1.29209
\(342\) −5253.37 −0.830614
\(343\) 0 0
\(344\) −1053.97 −0.165193
\(345\) 0 0
\(346\) −5489.02 −0.852866
\(347\) 1421.66 0.219939 0.109969 0.993935i \(-0.464925\pi\)
0.109969 + 0.993935i \(0.464925\pi\)
\(348\) −2644.43 −0.407345
\(349\) −2837.74 −0.435246 −0.217623 0.976033i \(-0.569830\pi\)
−0.217623 + 0.976033i \(0.569830\pi\)
\(350\) 0 0
\(351\) 3735.05 0.567984
\(352\) −1195.61 −0.181041
\(353\) −3578.81 −0.539606 −0.269803 0.962916i \(-0.586959\pi\)
−0.269803 + 0.962916i \(0.586959\pi\)
\(354\) −4958.19 −0.744421
\(355\) 0 0
\(356\) 1346.73 0.200495
\(357\) 0 0
\(358\) 2810.88 0.414972
\(359\) −6121.48 −0.899942 −0.449971 0.893043i \(-0.648566\pi\)
−0.449971 + 0.893043i \(0.648566\pi\)
\(360\) 0 0
\(361\) 8866.42 1.29267
\(362\) −1275.84 −0.185239
\(363\) 449.962 0.0650603
\(364\) 0 0
\(365\) 0 0
\(366\) −2141.11 −0.305786
\(367\) 12186.8 1.73337 0.866686 0.498855i \(-0.166246\pi\)
0.866686 + 0.498855i \(0.166246\pi\)
\(368\) 100.297 0.0142075
\(369\) 256.571 0.0361966
\(370\) 0 0
\(371\) 0 0
\(372\) 6031.45 0.840635
\(373\) −10446.9 −1.45019 −0.725094 0.688650i \(-0.758204\pi\)
−0.725094 + 0.688650i \(0.758204\pi\)
\(374\) 5242.59 0.724834
\(375\) 0 0
\(376\) −2912.97 −0.399534
\(377\) 8507.30 1.16220
\(378\) 0 0
\(379\) −10274.0 −1.39246 −0.696229 0.717820i \(-0.745140\pi\)
−0.696229 + 0.717820i \(0.745140\pi\)
\(380\) 0 0
\(381\) −521.770 −0.0701604
\(382\) −7311.52 −0.979293
\(383\) 6487.68 0.865548 0.432774 0.901502i \(-0.357535\pi\)
0.432774 + 0.901502i \(0.357535\pi\)
\(384\) −886.314 −0.117785
\(385\) 0 0
\(386\) 8867.31 1.16926
\(387\) 2759.59 0.362476
\(388\) 718.478 0.0940082
\(389\) −3706.33 −0.483080 −0.241540 0.970391i \(-0.577653\pi\)
−0.241540 + 0.970391i \(0.577653\pi\)
\(390\) 0 0
\(391\) −439.789 −0.0568825
\(392\) 0 0
\(393\) −15234.8 −1.95545
\(394\) −10567.5 −1.35123
\(395\) 0 0
\(396\) 3130.45 0.397250
\(397\) 9280.26 1.17321 0.586603 0.809874i \(-0.300465\pi\)
0.586603 + 0.809874i \(0.300465\pi\)
\(398\) −8809.81 −1.10954
\(399\) 0 0
\(400\) 0 0
\(401\) −2419.08 −0.301255 −0.150627 0.988591i \(-0.548129\pi\)
−0.150627 + 0.988591i \(0.548129\pi\)
\(402\) −935.235 −0.116033
\(403\) −19403.6 −2.39842
\(404\) 3577.57 0.440571
\(405\) 0 0
\(406\) 0 0
\(407\) −7877.05 −0.959339
\(408\) 3886.36 0.471578
\(409\) 4995.99 0.604000 0.302000 0.953308i \(-0.402346\pi\)
0.302000 + 0.953308i \(0.402346\pi\)
\(410\) 0 0
\(411\) −14233.0 −1.70818
\(412\) 99.5161 0.0119000
\(413\) 0 0
\(414\) −262.606 −0.0311749
\(415\) 0 0
\(416\) 2851.33 0.336053
\(417\) 3143.24 0.369125
\(418\) −9370.68 −1.09650
\(419\) 10746.6 1.25300 0.626500 0.779421i \(-0.284487\pi\)
0.626500 + 0.779421i \(0.284487\pi\)
\(420\) 0 0
\(421\) 8561.10 0.991075 0.495538 0.868587i \(-0.334971\pi\)
0.495538 + 0.868587i \(0.334971\pi\)
\(422\) 3335.97 0.384817
\(423\) 7626.98 0.876682
\(424\) −3987.65 −0.456739
\(425\) 0 0
\(426\) 7170.45 0.815515
\(427\) 0 0
\(428\) −4615.17 −0.521221
\(429\) −23052.3 −2.59435
\(430\) 0 0
\(431\) −5235.91 −0.585162 −0.292581 0.956241i \(-0.594514\pi\)
−0.292581 + 0.956241i \(0.594514\pi\)
\(432\) −670.686 −0.0746954
\(433\) −3809.88 −0.422844 −0.211422 0.977395i \(-0.567809\pi\)
−0.211422 + 0.977395i \(0.567809\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7523.86 0.826440
\(437\) 786.085 0.0860493
\(438\) 9344.60 1.01941
\(439\) 12532.8 1.36254 0.681272 0.732030i \(-0.261427\pi\)
0.681272 + 0.732030i \(0.261427\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12502.7 −1.34546
\(443\) 17794.4 1.90844 0.954218 0.299111i \(-0.0966902\pi\)
0.954218 + 0.299111i \(0.0966902\pi\)
\(444\) −5839.30 −0.624147
\(445\) 0 0
\(446\) 7413.86 0.787122
\(447\) 1625.11 0.171958
\(448\) 0 0
\(449\) 12203.4 1.28266 0.641331 0.767265i \(-0.278383\pi\)
0.641331 + 0.767265i \(0.278383\pi\)
\(450\) 0 0
\(451\) 457.657 0.0477832
\(452\) 8295.91 0.863289
\(453\) 2395.95 0.248503
\(454\) 9518.85 0.984013
\(455\) 0 0
\(456\) −6946.54 −0.713381
\(457\) 4749.53 0.486157 0.243079 0.970007i \(-0.421843\pi\)
0.243079 + 0.970007i \(0.421843\pi\)
\(458\) −1218.76 −0.124343
\(459\) 2940.87 0.299059
\(460\) 0 0
\(461\) 13208.0 1.33440 0.667199 0.744880i \(-0.267493\pi\)
0.667199 + 0.744880i \(0.267493\pi\)
\(462\) 0 0
\(463\) 11987.9 1.20329 0.601645 0.798763i \(-0.294512\pi\)
0.601645 + 0.798763i \(0.294512\pi\)
\(464\) −1527.62 −0.152840
\(465\) 0 0
\(466\) −6327.91 −0.629045
\(467\) −5181.23 −0.513402 −0.256701 0.966491i \(-0.582635\pi\)
−0.256701 + 0.966491i \(0.582635\pi\)
\(468\) −7465.60 −0.737388
\(469\) 0 0
\(470\) 0 0
\(471\) 23121.2 2.26193
\(472\) −2864.22 −0.279314
\(473\) 4922.42 0.478505
\(474\) −12902.5 −1.25028
\(475\) 0 0
\(476\) 0 0
\(477\) 10440.8 1.00220
\(478\) 10360.3 0.991353
\(479\) 133.998 0.0127819 0.00639096 0.999980i \(-0.497966\pi\)
0.00639096 + 0.999980i \(0.497966\pi\)
\(480\) 0 0
\(481\) 18785.4 1.78075
\(482\) 4108.63 0.388263
\(483\) 0 0
\(484\) 259.931 0.0244113
\(485\) 0 0
\(486\) 9588.15 0.894912
\(487\) −3318.36 −0.308766 −0.154383 0.988011i \(-0.549339\pi\)
−0.154383 + 0.988011i \(0.549339\pi\)
\(488\) −1236.86 −0.114734
\(489\) 16699.0 1.54428
\(490\) 0 0
\(491\) −2195.90 −0.201832 −0.100916 0.994895i \(-0.532177\pi\)
−0.100916 + 0.994895i \(0.532177\pi\)
\(492\) 339.264 0.0310878
\(493\) 6698.39 0.611927
\(494\) 22347.5 2.03535
\(495\) 0 0
\(496\) 3484.21 0.315415
\(497\) 0 0
\(498\) −19882.8 −1.78909
\(499\) 11689.6 1.04870 0.524348 0.851504i \(-0.324309\pi\)
0.524348 + 0.851504i \(0.324309\pi\)
\(500\) 0 0
\(501\) 8977.91 0.800606
\(502\) 4910.31 0.436570
\(503\) 9289.98 0.823498 0.411749 0.911297i \(-0.364918\pi\)
0.411749 + 0.911297i \(0.364918\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −468.423 −0.0411540
\(507\) 39763.2 3.48313
\(508\) −301.413 −0.0263249
\(509\) 6690.62 0.582626 0.291313 0.956628i \(-0.405908\pi\)
0.291313 + 0.956628i \(0.405908\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −512.000 −0.0441942
\(513\) −5256.55 −0.452402
\(514\) 7380.19 0.633320
\(515\) 0 0
\(516\) 3649.02 0.311316
\(517\) 13604.6 1.15731
\(518\) 0 0
\(519\) 19003.9 1.60728
\(520\) 0 0
\(521\) 1028.09 0.0864522 0.0432261 0.999065i \(-0.486236\pi\)
0.0432261 + 0.999065i \(0.486236\pi\)
\(522\) 3999.74 0.335371
\(523\) 618.266 0.0516919 0.0258460 0.999666i \(-0.491772\pi\)
0.0258460 + 0.999666i \(0.491772\pi\)
\(524\) −8800.73 −0.733705
\(525\) 0 0
\(526\) −10430.3 −0.864603
\(527\) −15277.8 −1.26283
\(528\) 4139.40 0.341182
\(529\) −12127.7 −0.996770
\(530\) 0 0
\(531\) 7499.34 0.612888
\(532\) 0 0
\(533\) −1091.43 −0.0886966
\(534\) −4662.58 −0.377846
\(535\) 0 0
\(536\) −540.260 −0.0435368
\(537\) −9731.74 −0.782040
\(538\) −7268.77 −0.582489
\(539\) 0 0
\(540\) 0 0
\(541\) −835.523 −0.0663991 −0.0331996 0.999449i \(-0.510570\pi\)
−0.0331996 + 0.999449i \(0.510570\pi\)
\(542\) −405.670 −0.0321495
\(543\) 4417.16 0.349094
\(544\) 2245.05 0.176941
\(545\) 0 0
\(546\) 0 0
\(547\) 1100.23 0.0860011 0.0430005 0.999075i \(-0.486308\pi\)
0.0430005 + 0.999075i \(0.486308\pi\)
\(548\) −8222.01 −0.640925
\(549\) 3238.46 0.251756
\(550\) 0 0
\(551\) −11972.8 −0.925695
\(552\) −347.245 −0.0267749
\(553\) 0 0
\(554\) 1527.99 0.117181
\(555\) 0 0
\(556\) 1815.77 0.138499
\(557\) −5999.65 −0.456397 −0.228199 0.973615i \(-0.573284\pi\)
−0.228199 + 0.973615i \(0.573284\pi\)
\(558\) −9122.66 −0.692102
\(559\) −11739.1 −0.888215
\(560\) 0 0
\(561\) −18150.7 −1.36600
\(562\) −2902.80 −0.217877
\(563\) −24094.2 −1.80364 −0.901819 0.432115i \(-0.857768\pi\)
−0.901819 + 0.432115i \(0.857768\pi\)
\(564\) 10085.2 0.752947
\(565\) 0 0
\(566\) −15319.6 −1.13768
\(567\) 0 0
\(568\) 4142.18 0.305989
\(569\) 5509.91 0.405953 0.202977 0.979184i \(-0.434938\pi\)
0.202977 + 0.979184i \(0.434938\pi\)
\(570\) 0 0
\(571\) −4438.24 −0.325279 −0.162640 0.986686i \(-0.552001\pi\)
−0.162640 + 0.986686i \(0.552001\pi\)
\(572\) −13316.7 −0.973427
\(573\) 25313.7 1.84554
\(574\) 0 0
\(575\) 0 0
\(576\) 1340.56 0.0969735
\(577\) 9201.64 0.663899 0.331949 0.943297i \(-0.392294\pi\)
0.331949 + 0.943297i \(0.392294\pi\)
\(578\) −18.2315 −0.00131199
\(579\) −30700.1 −2.20354
\(580\) 0 0
\(581\) 0 0
\(582\) −2487.49 −0.177164
\(583\) 18623.7 1.32301
\(584\) 5398.13 0.382494
\(585\) 0 0
\(586\) 8445.37 0.595350
\(587\) −5551.42 −0.390343 −0.195172 0.980769i \(-0.562526\pi\)
−0.195172 + 0.980769i \(0.562526\pi\)
\(588\) 0 0
\(589\) 27307.7 1.91035
\(590\) 0 0
\(591\) 36586.4 2.54647
\(592\) −3373.21 −0.234186
\(593\) 5590.69 0.387153 0.193577 0.981085i \(-0.437991\pi\)
0.193577 + 0.981085i \(0.437991\pi\)
\(594\) 3132.34 0.216366
\(595\) 0 0
\(596\) 938.786 0.0645204
\(597\) 30501.0 2.09099
\(598\) 1117.11 0.0763913
\(599\) 13675.3 0.932820 0.466410 0.884569i \(-0.345547\pi\)
0.466410 + 0.884569i \(0.345547\pi\)
\(600\) 0 0
\(601\) 4508.67 0.306011 0.153005 0.988225i \(-0.451105\pi\)
0.153005 + 0.988225i \(0.451105\pi\)
\(602\) 0 0
\(603\) 1414.56 0.0955310
\(604\) 1384.08 0.0932407
\(605\) 0 0
\(606\) −12386.1 −0.830284
\(607\) −3633.07 −0.242935 −0.121468 0.992595i \(-0.538760\pi\)
−0.121468 + 0.992595i \(0.538760\pi\)
\(608\) −4012.83 −0.267668
\(609\) 0 0
\(610\) 0 0
\(611\) −32444.6 −2.14823
\(612\) −5878.18 −0.388254
\(613\) −11909.3 −0.784682 −0.392341 0.919820i \(-0.628335\pi\)
−0.392341 + 0.919820i \(0.628335\pi\)
\(614\) 2486.22 0.163413
\(615\) 0 0
\(616\) 0 0
\(617\) −5510.74 −0.359569 −0.179784 0.983706i \(-0.557540\pi\)
−0.179784 + 0.983706i \(0.557540\pi\)
\(618\) −344.541 −0.0224263
\(619\) 20935.5 1.35940 0.679699 0.733492i \(-0.262111\pi\)
0.679699 + 0.733492i \(0.262111\pi\)
\(620\) 0 0
\(621\) −262.765 −0.0169797
\(622\) −2737.38 −0.176461
\(623\) 0 0
\(624\) −9871.77 −0.633313
\(625\) 0 0
\(626\) 6421.32 0.409980
\(627\) 32442.8 2.06641
\(628\) 13356.5 0.848697
\(629\) 14791.1 0.937613
\(630\) 0 0
\(631\) −1538.74 −0.0970780 −0.0485390 0.998821i \(-0.515457\pi\)
−0.0485390 + 0.998821i \(0.515457\pi\)
\(632\) −7453.46 −0.469118
\(633\) −11549.7 −0.725211
\(634\) 15298.2 0.958311
\(635\) 0 0
\(636\) 13805.9 0.860753
\(637\) 0 0
\(638\) 7134.51 0.442724
\(639\) −10845.4 −0.671421
\(640\) 0 0
\(641\) −5922.32 −0.364926 −0.182463 0.983213i \(-0.558407\pi\)
−0.182463 + 0.983213i \(0.558407\pi\)
\(642\) 15978.5 0.982274
\(643\) 22967.5 1.40863 0.704315 0.709887i \(-0.251254\pi\)
0.704315 + 0.709887i \(0.251254\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 17595.7 1.07166
\(647\) −14314.8 −0.869821 −0.434910 0.900474i \(-0.643220\pi\)
−0.434910 + 0.900474i \(0.643220\pi\)
\(648\) 6846.42 0.415051
\(649\) 13376.9 0.809075
\(650\) 0 0
\(651\) 0 0
\(652\) 9646.55 0.579430
\(653\) 16188.1 0.970119 0.485060 0.874481i \(-0.338798\pi\)
0.485060 + 0.874481i \(0.338798\pi\)
\(654\) −26048.8 −1.55748
\(655\) 0 0
\(656\) 195.984 0.0116645
\(657\) −14133.8 −0.839291
\(658\) 0 0
\(659\) 5303.87 0.313519 0.156760 0.987637i \(-0.449895\pi\)
0.156760 + 0.987637i \(0.449895\pi\)
\(660\) 0 0
\(661\) −22336.6 −1.31436 −0.657180 0.753734i \(-0.728251\pi\)
−0.657180 + 0.753734i \(0.728251\pi\)
\(662\) 15834.6 0.929650
\(663\) 43286.4 2.53560
\(664\) −11485.8 −0.671286
\(665\) 0 0
\(666\) 8832.03 0.513865
\(667\) −598.498 −0.0347435
\(668\) 5186.30 0.300395
\(669\) −25668.0 −1.48338
\(670\) 0 0
\(671\) 5776.59 0.332344
\(672\) 0 0
\(673\) 22907.3 1.31206 0.656028 0.754737i \(-0.272235\pi\)
0.656028 + 0.754737i \(0.272235\pi\)
\(674\) 13756.2 0.786156
\(675\) 0 0
\(676\) 22970.1 1.30690
\(677\) 32337.4 1.83579 0.917894 0.396826i \(-0.129888\pi\)
0.917894 + 0.396826i \(0.129888\pi\)
\(678\) −28721.8 −1.62692
\(679\) 0 0
\(680\) 0 0
\(681\) −32955.8 −1.85443
\(682\) −16272.5 −0.913646
\(683\) −24675.1 −1.38238 −0.691190 0.722673i \(-0.742913\pi\)
−0.691190 + 0.722673i \(0.742913\pi\)
\(684\) 10506.7 0.587333
\(685\) 0 0
\(686\) 0 0
\(687\) 4219.56 0.234332
\(688\) 2107.94 0.116809
\(689\) −44414.5 −2.45581
\(690\) 0 0
\(691\) 12860.8 0.708030 0.354015 0.935240i \(-0.384816\pi\)
0.354015 + 0.935240i \(0.384816\pi\)
\(692\) 10978.0 0.603067
\(693\) 0 0
\(694\) −2843.32 −0.155520
\(695\) 0 0
\(696\) 5288.86 0.288037
\(697\) −859.362 −0.0467011
\(698\) 5675.49 0.307765
\(699\) 21908.3 1.18547
\(700\) 0 0
\(701\) −2157.68 −0.116254 −0.0581272 0.998309i \(-0.518513\pi\)
−0.0581272 + 0.998309i \(0.518513\pi\)
\(702\) −7470.11 −0.401625
\(703\) −26437.8 −1.41838
\(704\) 2391.22 0.128015
\(705\) 0 0
\(706\) 7157.63 0.381559
\(707\) 0 0
\(708\) 9916.39 0.526385
\(709\) 18549.2 0.982553 0.491277 0.871004i \(-0.336530\pi\)
0.491277 + 0.871004i \(0.336530\pi\)
\(710\) 0 0
\(711\) 19515.3 1.02937
\(712\) −2693.45 −0.141772
\(713\) 1365.06 0.0716999
\(714\) 0 0
\(715\) 0 0
\(716\) −5621.77 −0.293429
\(717\) −35868.9 −1.86827
\(718\) 12243.0 0.636355
\(719\) −25772.6 −1.33680 −0.668398 0.743804i \(-0.733020\pi\)
−0.668398 + 0.743804i \(0.733020\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −17732.8 −0.914056
\(723\) −14224.7 −0.731706
\(724\) 2551.67 0.130984
\(725\) 0 0
\(726\) −899.924 −0.0460046
\(727\) 24295.8 1.23945 0.619727 0.784818i \(-0.287243\pi\)
0.619727 + 0.784818i \(0.287243\pi\)
\(728\) 0 0
\(729\) −10089.1 −0.512577
\(730\) 0 0
\(731\) −9243.03 −0.467669
\(732\) 4282.22 0.216223
\(733\) 6136.79 0.309232 0.154616 0.987975i \(-0.450586\pi\)
0.154616 + 0.987975i \(0.450586\pi\)
\(734\) −24373.7 −1.22568
\(735\) 0 0
\(736\) −200.594 −0.0100462
\(737\) 2523.21 0.126111
\(738\) −513.141 −0.0255948
\(739\) −23602.0 −1.17485 −0.587424 0.809279i \(-0.699858\pi\)
−0.587424 + 0.809279i \(0.699858\pi\)
\(740\) 0 0
\(741\) −77370.6 −3.83574
\(742\) 0 0
\(743\) 6486.83 0.320294 0.160147 0.987093i \(-0.448803\pi\)
0.160147 + 0.987093i \(0.448803\pi\)
\(744\) −12062.9 −0.594419
\(745\) 0 0
\(746\) 20893.8 1.02544
\(747\) 30073.0 1.47298
\(748\) −10485.2 −0.512535
\(749\) 0 0
\(750\) 0 0
\(751\) −2592.22 −0.125954 −0.0629770 0.998015i \(-0.520059\pi\)
−0.0629770 + 0.998015i \(0.520059\pi\)
\(752\) 5825.93 0.282513
\(753\) −17000.3 −0.822743
\(754\) −17014.6 −0.821797
\(755\) 0 0
\(756\) 0 0
\(757\) 24578.4 1.18007 0.590037 0.807376i \(-0.299113\pi\)
0.590037 + 0.807376i \(0.299113\pi\)
\(758\) 20548.1 0.984617
\(759\) 1621.76 0.0775574
\(760\) 0 0
\(761\) −37954.5 −1.80795 −0.903976 0.427584i \(-0.859365\pi\)
−0.903976 + 0.427584i \(0.859365\pi\)
\(762\) 1043.54 0.0496109
\(763\) 0 0
\(764\) 14623.0 0.692465
\(765\) 0 0
\(766\) −12975.4 −0.612035
\(767\) −31901.7 −1.50183
\(768\) 1772.63 0.0832867
\(769\) 3017.80 0.141514 0.0707572 0.997494i \(-0.477458\pi\)
0.0707572 + 0.997494i \(0.477458\pi\)
\(770\) 0 0
\(771\) −25551.4 −1.19353
\(772\) −17734.6 −0.826792
\(773\) −102.457 −0.00476728 −0.00238364 0.999997i \(-0.500759\pi\)
−0.00238364 + 0.999997i \(0.500759\pi\)
\(774\) −5519.19 −0.256309
\(775\) 0 0
\(776\) −1436.96 −0.0664739
\(777\) 0 0
\(778\) 7412.65 0.341589
\(779\) 1536.04 0.0706472
\(780\) 0 0
\(781\) −19345.5 −0.886344
\(782\) 879.578 0.0402220
\(783\) 4002.15 0.182663
\(784\) 0 0
\(785\) 0 0
\(786\) 30469.6 1.38271
\(787\) −12420.0 −0.562546 −0.281273 0.959628i \(-0.590757\pi\)
−0.281273 + 0.959628i \(0.590757\pi\)
\(788\) 21135.0 0.955462
\(789\) 36111.3 1.62940
\(790\) 0 0
\(791\) 0 0
\(792\) −6260.90 −0.280898
\(793\) −13776.2 −0.616906
\(794\) −18560.5 −0.829582
\(795\) 0 0
\(796\) 17619.6 0.784562
\(797\) −40547.2 −1.80208 −0.901039 0.433739i \(-0.857194\pi\)
−0.901039 + 0.433739i \(0.857194\pi\)
\(798\) 0 0
\(799\) −25545.9 −1.13110
\(800\) 0 0
\(801\) 7052.22 0.311084
\(802\) 4838.16 0.213019
\(803\) −25211.2 −1.10795
\(804\) 1870.47 0.0820477
\(805\) 0 0
\(806\) 38807.2 1.69594
\(807\) 25165.7 1.09774
\(808\) −7155.14 −0.311531
\(809\) −7107.15 −0.308868 −0.154434 0.988003i \(-0.549355\pi\)
−0.154434 + 0.988003i \(0.549355\pi\)
\(810\) 0 0
\(811\) 21314.5 0.922876 0.461438 0.887172i \(-0.347334\pi\)
0.461438 + 0.887172i \(0.347334\pi\)
\(812\) 0 0
\(813\) 1404.50 0.0605877
\(814\) 15754.1 0.678355
\(815\) 0 0
\(816\) −7772.73 −0.333456
\(817\) 16521.1 0.707467
\(818\) −9991.98 −0.427092
\(819\) 0 0
\(820\) 0 0
\(821\) 2884.89 0.122635 0.0613175 0.998118i \(-0.480470\pi\)
0.0613175 + 0.998118i \(0.480470\pi\)
\(822\) 28465.9 1.20786
\(823\) 18429.2 0.780562 0.390281 0.920696i \(-0.372378\pi\)
0.390281 + 0.920696i \(0.372378\pi\)
\(824\) −199.032 −0.00841458
\(825\) 0 0
\(826\) 0 0
\(827\) −2056.14 −0.0864559 −0.0432280 0.999065i \(-0.513764\pi\)
−0.0432280 + 0.999065i \(0.513764\pi\)
\(828\) 525.213 0.0220440
\(829\) 7871.60 0.329785 0.164893 0.986312i \(-0.447272\pi\)
0.164893 + 0.986312i \(0.447272\pi\)
\(830\) 0 0
\(831\) −5290.16 −0.220835
\(832\) −5702.66 −0.237625
\(833\) 0 0
\(834\) −6286.48 −0.261011
\(835\) 0 0
\(836\) 18741.4 0.775339
\(837\) −9128.17 −0.376960
\(838\) −21493.3 −0.886005
\(839\) −34220.8 −1.40815 −0.704073 0.710128i \(-0.748637\pi\)
−0.704073 + 0.710128i \(0.748637\pi\)
\(840\) 0 0
\(841\) −15273.3 −0.626239
\(842\) −17122.2 −0.700796
\(843\) 10050.0 0.410604
\(844\) −6671.95 −0.272107
\(845\) 0 0
\(846\) −15254.0 −0.619908
\(847\) 0 0
\(848\) 7975.30 0.322963
\(849\) 53038.8 2.14404
\(850\) 0 0
\(851\) −1321.58 −0.0532350
\(852\) −14340.9 −0.576656
\(853\) 33509.6 1.34507 0.672536 0.740065i \(-0.265205\pi\)
0.672536 + 0.740065i \(0.265205\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 9230.34 0.368559
\(857\) 8614.74 0.343377 0.171688 0.985151i \(-0.445078\pi\)
0.171688 + 0.985151i \(0.445078\pi\)
\(858\) 46104.7 1.83449
\(859\) −4363.48 −0.173318 −0.0866589 0.996238i \(-0.527619\pi\)
−0.0866589 + 0.996238i \(0.527619\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10471.8 0.413772
\(863\) −17066.7 −0.673182 −0.336591 0.941651i \(-0.609274\pi\)
−0.336591 + 0.941651i \(0.609274\pi\)
\(864\) 1341.37 0.0528176
\(865\) 0 0
\(866\) 7619.76 0.298996
\(867\) 63.1203 0.00247252
\(868\) 0 0
\(869\) 34810.3 1.35887
\(870\) 0 0
\(871\) −6017.43 −0.234090
\(872\) −15047.7 −0.584381
\(873\) 3762.36 0.145861
\(874\) −1572.17 −0.0608460
\(875\) 0 0
\(876\) −18689.2 −0.720833
\(877\) 26856.5 1.03407 0.517034 0.855965i \(-0.327036\pi\)
0.517034 + 0.855965i \(0.327036\pi\)
\(878\) −25065.6 −0.963465
\(879\) −29239.2 −1.12197
\(880\) 0 0
\(881\) 27044.5 1.03423 0.517113 0.855917i \(-0.327007\pi\)
0.517113 + 0.855917i \(0.327007\pi\)
\(882\) 0 0
\(883\) 48010.9 1.82978 0.914890 0.403702i \(-0.132277\pi\)
0.914890 + 0.403702i \(0.132277\pi\)
\(884\) 25005.4 0.951382
\(885\) 0 0
\(886\) −35588.8 −1.34947
\(887\) 3888.02 0.147178 0.0735889 0.997289i \(-0.476555\pi\)
0.0735889 + 0.997289i \(0.476555\pi\)
\(888\) 11678.6 0.441338
\(889\) 0 0
\(890\) 0 0
\(891\) −31975.2 −1.20226
\(892\) −14827.7 −0.556579
\(893\) 45661.1 1.71108
\(894\) −3250.23 −0.121593
\(895\) 0 0
\(896\) 0 0
\(897\) −3867.62 −0.143964
\(898\) −24406.8 −0.906978
\(899\) −20791.2 −0.771328
\(900\) 0 0
\(901\) −34970.6 −1.29305
\(902\) −915.314 −0.0337878
\(903\) 0 0
\(904\) −16591.8 −0.610438
\(905\) 0 0
\(906\) −4791.91 −0.175718
\(907\) 9238.85 0.338226 0.169113 0.985597i \(-0.445910\pi\)
0.169113 + 0.985597i \(0.445910\pi\)
\(908\) −19037.7 −0.695802
\(909\) 18734.2 0.683580
\(910\) 0 0
\(911\) −54171.6 −1.97013 −0.985064 0.172190i \(-0.944916\pi\)
−0.985064 + 0.172190i \(0.944916\pi\)
\(912\) 13893.1 0.504436
\(913\) 53642.6 1.94448
\(914\) −9499.07 −0.343765
\(915\) 0 0
\(916\) 2437.53 0.0879238
\(917\) 0 0
\(918\) −5881.73 −0.211466
\(919\) −19403.5 −0.696478 −0.348239 0.937406i \(-0.613220\pi\)
−0.348239 + 0.937406i \(0.613220\pi\)
\(920\) 0 0
\(921\) −8607.71 −0.307963
\(922\) −26416.0 −0.943561
\(923\) 46135.6 1.64526
\(924\) 0 0
\(925\) 0 0
\(926\) −23975.7 −0.850855
\(927\) 521.123 0.0184638
\(928\) 3055.23 0.108074
\(929\) 39108.2 1.38116 0.690581 0.723255i \(-0.257355\pi\)
0.690581 + 0.723255i \(0.257355\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 12655.8 0.444802
\(933\) 9477.24 0.332552
\(934\) 10362.5 0.363030
\(935\) 0 0
\(936\) 14931.2 0.521412
\(937\) 624.451 0.0217715 0.0108858 0.999941i \(-0.496535\pi\)
0.0108858 + 0.999941i \(0.496535\pi\)
\(938\) 0 0
\(939\) −22231.7 −0.772634
\(940\) 0 0
\(941\) −53525.4 −1.85428 −0.927141 0.374713i \(-0.877741\pi\)
−0.927141 + 0.374713i \(0.877741\pi\)
\(942\) −46242.3 −1.59942
\(943\) 76.7836 0.00265156
\(944\) 5728.43 0.197505
\(945\) 0 0
\(946\) −9844.83 −0.338354
\(947\) 2846.06 0.0976606 0.0488303 0.998807i \(-0.484451\pi\)
0.0488303 + 0.998807i \(0.484451\pi\)
\(948\) 25805.1 0.884083
\(949\) 60124.4 2.05661
\(950\) 0 0
\(951\) −52964.9 −1.80600
\(952\) 0 0
\(953\) −29720.3 −1.01021 −0.505107 0.863057i \(-0.668547\pi\)
−0.505107 + 0.863057i \(0.668547\pi\)
\(954\) −20881.6 −0.708665
\(955\) 0 0
\(956\) −20720.5 −0.700993
\(957\) −24700.8 −0.834342
\(958\) −267.997 −0.00903819
\(959\) 0 0
\(960\) 0 0
\(961\) 17629.8 0.591783
\(962\) −37570.9 −1.25918
\(963\) −24167.7 −0.808715
\(964\) −8217.26 −0.274544
\(965\) 0 0
\(966\) 0 0
\(967\) −7604.19 −0.252879 −0.126440 0.991974i \(-0.540355\pi\)
−0.126440 + 0.991974i \(0.540355\pi\)
\(968\) −519.863 −0.0172614
\(969\) −60919.3 −2.01962
\(970\) 0 0
\(971\) −26345.1 −0.870704 −0.435352 0.900260i \(-0.643376\pi\)
−0.435352 + 0.900260i \(0.643376\pi\)
\(972\) −19176.3 −0.632798
\(973\) 0 0
\(974\) 6636.72 0.218331
\(975\) 0 0
\(976\) 2473.72 0.0811291
\(977\) −13491.0 −0.441775 −0.220888 0.975299i \(-0.570895\pi\)
−0.220888 + 0.975299i \(0.570895\pi\)
\(978\) −33397.9 −1.09197
\(979\) 12579.4 0.410663
\(980\) 0 0
\(981\) 39399.3 1.28228
\(982\) 4391.80 0.142717
\(983\) 28904.8 0.937864 0.468932 0.883234i \(-0.344639\pi\)
0.468932 + 0.883234i \(0.344639\pi\)
\(984\) −678.528 −0.0219824
\(985\) 0 0
\(986\) −13396.8 −0.432698
\(987\) 0 0
\(988\) −44695.0 −1.43921
\(989\) 825.860 0.0265529
\(990\) 0 0
\(991\) −9201.76 −0.294958 −0.147479 0.989065i \(-0.547116\pi\)
−0.147479 + 0.989065i \(0.547116\pi\)
\(992\) −6968.42 −0.223032
\(993\) −54821.9 −1.75198
\(994\) 0 0
\(995\) 0 0
\(996\) 39765.5 1.26508
\(997\) −36706.4 −1.16600 −0.583000 0.812472i \(-0.698121\pi\)
−0.583000 + 0.812472i \(0.698121\pi\)
\(998\) −23379.2 −0.741540
\(999\) 8837.37 0.279882
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2450.4.a.cd.1.3 3
5.4 even 2 2450.4.a.ch.1.1 3
7.3 odd 6 350.4.e.j.51.3 yes 6
7.5 odd 6 350.4.e.j.151.3 yes 6
7.6 odd 2 2450.4.a.cc.1.1 3
35.3 even 12 350.4.j.h.149.1 12
35.12 even 12 350.4.j.h.249.1 12
35.17 even 12 350.4.j.h.149.6 12
35.19 odd 6 350.4.e.i.151.1 yes 6
35.24 odd 6 350.4.e.i.51.1 6
35.33 even 12 350.4.j.h.249.6 12
35.34 odd 2 2450.4.a.ci.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.4.e.i.51.1 6 35.24 odd 6
350.4.e.i.151.1 yes 6 35.19 odd 6
350.4.e.j.51.3 yes 6 7.3 odd 6
350.4.e.j.151.3 yes 6 7.5 odd 6
350.4.j.h.149.1 12 35.3 even 12
350.4.j.h.149.6 12 35.17 even 12
350.4.j.h.249.1 12 35.12 even 12
350.4.j.h.249.6 12 35.33 even 12
2450.4.a.cc.1.1 3 7.6 odd 2
2450.4.a.cd.1.3 3 1.1 even 1 trivial
2450.4.a.ch.1.1 3 5.4 even 2
2450.4.a.ci.1.3 3 35.34 odd 2