Properties

Label 350.4.j.h.149.1
Level $350$
Weight $4$
Character 350.149
Analytic conductor $20.651$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,4,Mod(149,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.149"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 350.j (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,24,0,24,0,0,112,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6506685020\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 134x^{10} + 13467x^{8} - 530084x^{6} + 15364507x^{4} - 160351569x^{2} + 1275989841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 149.1
Root \(-5.13062 - 2.96216i\) of defining polynomial
Character \(\chi\) \(=\) 350.149
Dual form 350.4.j.h.249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 - 1.00000i) q^{2} +(-5.99664 + 3.46216i) q^{3} +(2.00000 + 3.46410i) q^{4} +13.8487 q^{6} +(-12.7473 + 13.4353i) q^{7} -8.00000i q^{8} +(10.4731 - 18.1400i) q^{9} +(-18.6814 - 32.3572i) q^{11} +(-23.9866 - 13.8487i) q^{12} +89.1041i q^{13} +(35.5142 - 10.5234i) q^{14} +(-8.00000 + 13.8564i) q^{16} +(-60.7584 + 35.0789i) q^{17} +(-36.2800 + 20.9463i) q^{18} +(-62.7005 + 108.600i) q^{19} +(29.9255 - 124.700i) q^{21} +74.7257i q^{22} +(-5.42874 - 3.13428i) q^{23} +(27.6973 + 47.9731i) q^{24} +(89.1041 - 154.333i) q^{26} -41.9179i q^{27} +(-72.0358 - 17.2872i) q^{28} +95.4760 q^{29} +(108.882 + 188.588i) q^{31} +(27.7128 - 16.0000i) q^{32} +(224.052 + 129.356i) q^{33} +140.316 q^{34} +83.7851 q^{36} +(-182.580 - 105.413i) q^{37} +(217.201 - 125.401i) q^{38} +(-308.493 - 534.325i) q^{39} -12.2490 q^{41} +(-176.532 + 186.061i) q^{42} +131.746i q^{43} +(74.7257 - 129.429i) q^{44} +(6.26857 + 10.8575i) q^{46} +(-315.338 - 182.060i) q^{47} -110.789i q^{48} +(-18.0149 - 342.527i) q^{49} +(242.898 - 420.711i) q^{51} +(-308.666 + 178.208i) q^{52} +(431.676 - 249.228i) q^{53} +(-41.9179 + 72.6039i) q^{54} +(107.482 + 101.978i) q^{56} -868.318i q^{57} +(-165.369 - 95.4760i) q^{58} +(-179.014 - 310.061i) q^{59} +(77.3039 - 133.894i) q^{61} -435.526i q^{62} +(110.213 + 371.945i) q^{63} -64.0000 q^{64} +(-258.713 - 448.103i) q^{66} +(-58.4849 + 33.7663i) q^{67} +(-243.034 - 140.316i) q^{68} +43.4056 q^{69} -517.772 q^{71} +(-145.120 - 83.7851i) q^{72} +(584.365 - 337.383i) q^{73} +(210.826 + 365.161i) q^{74} -501.604 q^{76} +(672.866 + 161.475i) q^{77} +1233.97i q^{78} +(465.841 - 806.860i) q^{79} +(427.901 + 741.147i) q^{81} +(21.2159 + 12.2490i) q^{82} -1435.72i q^{83} +(491.824 - 145.735i) q^{84} +(131.746 - 228.191i) q^{86} +(-572.535 + 330.553i) q^{87} +(-258.857 + 149.451i) q^{88} +(-168.341 + 291.575i) q^{89} +(-1197.14 - 1135.83i) q^{91} -25.0743i q^{92} +(-1305.85 - 753.932i) q^{93} +(364.121 + 630.676i) q^{94} +(-110.789 + 191.893i) q^{96} +179.620i q^{97} +(-311.324 + 611.288i) q^{98} -782.613 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 24 q^{4} + 24 q^{6} + 112 q^{9} + 52 q^{11} + 16 q^{14} - 96 q^{16} - 36 q^{19} + 370 q^{21} + 48 q^{24} + 320 q^{26} + 1616 q^{29} + 1230 q^{31} + 240 q^{34} + 896 q^{36} - 180 q^{39} - 404 q^{41}+ \cdots + 228 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 1.00000i −0.612372 0.353553i
\(3\) −5.99664 + 3.46216i −1.15405 + 0.666294i −0.949872 0.312639i \(-0.898787\pi\)
−0.204182 + 0.978933i \(0.565454\pi\)
\(4\) 2.00000 + 3.46410i 0.250000 + 0.433013i
\(5\) 0 0
\(6\) 13.8487 0.942281
\(7\) −12.7473 + 13.4353i −0.688287 + 0.725438i
\(8\) 8.00000i 0.353553i
\(9\) 10.4731 18.1400i 0.387894 0.671852i
\(10\) 0 0
\(11\) −18.6814 32.3572i −0.512060 0.886914i −0.999902 0.0139823i \(-0.995549\pi\)
0.487842 0.872932i \(-0.337784\pi\)
\(12\) −23.9866 13.8487i −0.577027 0.333147i
\(13\) 89.1041i 1.90100i 0.310722 + 0.950501i \(0.399429\pi\)
−0.310722 + 0.950501i \(0.600571\pi\)
\(14\) 35.5142 10.5234i 0.677969 0.200892i
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.125000 + 0.216506i
\(17\) −60.7584 + 35.0789i −0.866828 + 0.500464i −0.866293 0.499536i \(-0.833504\pi\)
−0.000535451 1.00000i \(0.500170\pi\)
\(18\) −36.2800 + 20.9463i −0.475071 + 0.274283i
\(19\) −62.7005 + 108.600i −0.757078 + 1.31130i 0.187256 + 0.982311i \(0.440041\pi\)
−0.944334 + 0.328987i \(0.893293\pi\)
\(20\) 0 0
\(21\) 29.9255 124.700i 0.310966 1.29580i
\(22\) 74.7257i 0.724162i
\(23\) −5.42874 3.13428i −0.0492161 0.0284149i 0.475190 0.879883i \(-0.342379\pi\)
−0.524406 + 0.851468i \(0.675713\pi\)
\(24\) 27.6973 + 47.9731i 0.235570 + 0.408020i
\(25\) 0 0
\(26\) 89.1041 154.333i 0.672106 1.16412i
\(27\) 41.9179i 0.298781i
\(28\) −72.0358 17.2872i −0.486196 0.116677i
\(29\) 95.4760 0.611360 0.305680 0.952134i \(-0.401116\pi\)
0.305680 + 0.952134i \(0.401116\pi\)
\(30\) 0 0
\(31\) 108.882 + 188.588i 0.630829 + 1.09263i 0.987382 + 0.158354i \(0.0506186\pi\)
−0.356553 + 0.934275i \(0.616048\pi\)
\(32\) 27.7128 16.0000i 0.153093 0.0883883i
\(33\) 224.052 + 129.356i 1.18189 + 0.682365i
\(34\) 140.316 0.707762
\(35\) 0 0
\(36\) 83.7851 0.387894
\(37\) −182.580 105.413i −0.811244 0.468372i 0.0361435 0.999347i \(-0.488493\pi\)
−0.847388 + 0.530975i \(0.821826\pi\)
\(38\) 217.201 125.401i 0.927228 0.535335i
\(39\) −308.493 534.325i −1.26663 2.19386i
\(40\) 0 0
\(41\) −12.2490 −0.0466578 −0.0233289 0.999728i \(-0.507426\pi\)
−0.0233289 + 0.999728i \(0.507426\pi\)
\(42\) −176.532 + 186.061i −0.648560 + 0.683567i
\(43\) 131.746i 0.467235i 0.972329 + 0.233618i \(0.0750564\pi\)
−0.972329 + 0.233618i \(0.924944\pi\)
\(44\) 74.7257 129.429i 0.256030 0.443457i
\(45\) 0 0
\(46\) 6.26857 + 10.8575i 0.0200924 + 0.0348010i
\(47\) −315.338 182.060i −0.978654 0.565026i −0.0767907 0.997047i \(-0.524467\pi\)
−0.901864 + 0.432021i \(0.857801\pi\)
\(48\) 110.789i 0.333147i
\(49\) −18.0149 342.527i −0.0525216 0.998620i
\(50\) 0 0
\(51\) 242.898 420.711i 0.666911 1.15512i
\(52\) −308.666 + 178.208i −0.823158 + 0.475250i
\(53\) 431.676 249.228i 1.11878 0.645926i 0.177689 0.984087i \(-0.443138\pi\)
0.941088 + 0.338160i \(0.109805\pi\)
\(54\) −41.9179 + 72.6039i −0.105635 + 0.182966i
\(55\) 0 0
\(56\) 107.482 + 101.978i 0.256481 + 0.243346i
\(57\) 868.318i 2.01775i
\(58\) −165.369 95.4760i −0.374380 0.216149i
\(59\) −179.014 310.061i −0.395010 0.684177i 0.598093 0.801427i \(-0.295926\pi\)
−0.993102 + 0.117250i \(0.962592\pi\)
\(60\) 0 0
\(61\) 77.3039 133.894i 0.162258 0.281039i −0.773420 0.633894i \(-0.781456\pi\)
0.935678 + 0.352854i \(0.114789\pi\)
\(62\) 435.526i 0.892127i
\(63\) 110.213 + 371.945i 0.220405 + 0.743821i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −258.713 448.103i −0.482505 0.835723i
\(67\) −58.4849 + 33.7663i −0.106643 + 0.0615703i −0.552373 0.833597i \(-0.686277\pi\)
0.445730 + 0.895167i \(0.352944\pi\)
\(68\) −243.034 140.316i −0.433414 0.250232i
\(69\) 43.4056 0.0757307
\(70\) 0 0
\(71\) −517.772 −0.865469 −0.432734 0.901521i \(-0.642451\pi\)
−0.432734 + 0.901521i \(0.642451\pi\)
\(72\) −145.120 83.7851i −0.237536 0.137141i
\(73\) 584.365 337.383i 0.936914 0.540928i 0.0479224 0.998851i \(-0.484740\pi\)
0.888992 + 0.457924i \(0.151407\pi\)
\(74\) 210.826 + 365.161i 0.331189 + 0.573636i
\(75\) 0 0
\(76\) −501.604 −0.757078
\(77\) 672.866 + 161.475i 0.995846 + 0.238984i
\(78\) 1233.97i 1.79128i
\(79\) 465.841 806.860i 0.663433 1.14910i −0.316274 0.948668i \(-0.602432\pi\)
0.979708 0.200432i \(-0.0642346\pi\)
\(80\) 0 0
\(81\) 427.901 + 741.147i 0.586970 + 1.01666i
\(82\) 21.2159 + 12.2490i 0.0285720 + 0.0164960i
\(83\) 1435.72i 1.89868i −0.314247 0.949341i \(-0.601752\pi\)
0.314247 0.949341i \(-0.398248\pi\)
\(84\) 491.824 145.735i 0.638838 0.189297i
\(85\) 0 0
\(86\) 131.746 228.191i 0.165193 0.286122i
\(87\) −572.535 + 330.553i −0.705543 + 0.407345i
\(88\) −258.857 + 149.451i −0.313572 + 0.181041i
\(89\) −168.341 + 291.575i −0.200495 + 0.347268i −0.948688 0.316213i \(-0.897588\pi\)
0.748193 + 0.663481i \(0.230922\pi\)
\(90\) 0 0
\(91\) −1197.14 1135.83i −1.37906 1.30844i
\(92\) 25.0743i 0.0284149i
\(93\) −1305.85 753.932i −1.45602 0.840635i
\(94\) 364.121 + 630.676i 0.399534 + 0.692013i
\(95\) 0 0
\(96\) −110.789 + 191.893i −0.117785 + 0.204010i
\(97\) 179.620i 0.188016i 0.995571 + 0.0940082i \(0.0299680\pi\)
−0.995571 + 0.0940082i \(0.970032\pi\)
\(98\) −311.324 + 611.288i −0.320903 + 0.630096i
\(99\) −782.613 −0.794501
\(100\) 0 0
\(101\) 447.196 + 774.567i 0.440571 + 0.763092i 0.997732 0.0673130i \(-0.0214426\pi\)
−0.557161 + 0.830405i \(0.688109\pi\)
\(102\) −841.422 + 485.795i −0.816796 + 0.471578i
\(103\) 21.5459 + 12.4395i 0.0206114 + 0.0119000i 0.510270 0.860014i \(-0.329545\pi\)
−0.489659 + 0.871914i \(0.662879\pi\)
\(104\) 712.833 0.672106
\(105\) 0 0
\(106\) −996.912 −0.913478
\(107\) −999.214 576.897i −0.902782 0.521221i −0.0246802 0.999695i \(-0.507857\pi\)
−0.878102 + 0.478474i \(0.841190\pi\)
\(108\) 145.208 83.8358i 0.129376 0.0746954i
\(109\) 940.483 + 1628.96i 0.826440 + 1.43144i 0.900814 + 0.434205i \(0.142971\pi\)
−0.0743741 + 0.997230i \(0.523696\pi\)
\(110\) 0 0
\(111\) 1459.83 1.24829
\(112\) −84.1870 284.114i −0.0710261 0.239698i
\(113\) 2073.98i 1.72658i 0.504709 + 0.863289i \(0.331600\pi\)
−0.504709 + 0.863289i \(0.668400\pi\)
\(114\) −868.318 + 1503.97i −0.713381 + 1.23561i
\(115\) 0 0
\(116\) 190.952 + 330.739i 0.152840 + 0.264727i
\(117\) 1616.35 + 933.200i 1.27719 + 0.737388i
\(118\) 716.054i 0.558628i
\(119\) 303.208 1263.47i 0.233571 0.973293i
\(120\) 0 0
\(121\) −32.4914 + 56.2768i −0.0244113 + 0.0422816i
\(122\) −267.789 + 154.608i −0.198725 + 0.114734i
\(123\) 73.4528 42.4080i 0.0538456 0.0310878i
\(124\) −435.526 + 754.354i −0.315415 + 0.546314i
\(125\) 0 0
\(126\) 181.051 754.441i 0.128010 0.533420i
\(127\) 75.3532i 0.0526497i 0.999653 + 0.0263249i \(0.00838043\pi\)
−0.999653 + 0.0263249i \(0.991620\pi\)
\(128\) 110.851 + 64.0000i 0.0765466 + 0.0441942i
\(129\) −456.127 790.035i −0.311316 0.539215i
\(130\) 0 0
\(131\) −1100.09 + 1905.41i −0.733705 + 1.27082i 0.221584 + 0.975141i \(0.428877\pi\)
−0.955289 + 0.295674i \(0.904456\pi\)
\(132\) 1034.85i 0.682365i
\(133\) −659.821 2226.76i −0.430179 1.45176i
\(134\) 135.065 0.0870735
\(135\) 0 0
\(136\) 280.631 + 486.067i 0.176941 + 0.306470i
\(137\) 1780.12 1027.75i 1.11011 0.640925i 0.171256 0.985227i \(-0.445218\pi\)
0.938859 + 0.344302i \(0.111884\pi\)
\(138\) −75.1807 43.4056i −0.0463754 0.0267749i
\(139\) 453.942 0.276999 0.138499 0.990363i \(-0.455772\pi\)
0.138499 + 0.990363i \(0.455772\pi\)
\(140\) 0 0
\(141\) 2521.29 1.50589
\(142\) 896.808 + 517.772i 0.529989 + 0.305989i
\(143\) 2883.16 1664.59i 1.68603 0.973427i
\(144\) 167.570 + 290.240i 0.0969735 + 0.167963i
\(145\) 0 0
\(146\) −1349.53 −0.764987
\(147\) 1293.91 + 1991.64i 0.725987 + 1.11747i
\(148\) 843.303i 0.468372i
\(149\) 117.348 203.253i 0.0645204 0.111753i −0.831961 0.554834i \(-0.812782\pi\)
0.896481 + 0.443082i \(0.146115\pi\)
\(150\) 0 0
\(151\) −173.010 299.662i −0.0932407 0.161498i 0.815632 0.578571i \(-0.196389\pi\)
−0.908873 + 0.417073i \(0.863056\pi\)
\(152\) 868.804 + 501.604i 0.463614 + 0.267668i
\(153\) 1469.55i 0.776508i
\(154\) −1003.96 952.548i −0.525335 0.498432i
\(155\) 0 0
\(156\) 1233.97 2137.30i 0.633313 1.09693i
\(157\) 2891.76 1669.56i 1.46999 0.848697i 0.470554 0.882371i \(-0.344054\pi\)
0.999433 + 0.0336738i \(0.0107207\pi\)
\(158\) −1613.72 + 931.682i −0.812536 + 0.469118i
\(159\) −1725.74 + 2989.06i −0.860753 + 1.49087i
\(160\) 0 0
\(161\) 111.312 32.9832i 0.0544881 0.0161456i
\(162\) 1711.61i 0.830101i
\(163\) −2088.54 1205.82i −1.00360 0.579430i −0.0942896 0.995545i \(-0.530058\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(164\) −24.4980 42.4317i −0.0116645 0.0202034i
\(165\) 0 0
\(166\) −1435.72 + 2486.74i −0.671286 + 1.16270i
\(167\) 1296.58i 0.600791i 0.953815 + 0.300395i \(0.0971186\pi\)
−0.953815 + 0.300395i \(0.902881\pi\)
\(168\) −997.598 239.404i −0.458133 0.109943i
\(169\) −5742.54 −2.61381
\(170\) 0 0
\(171\) 1313.34 + 2274.78i 0.587333 + 1.01729i
\(172\) −456.382 + 263.493i −0.202319 + 0.116809i
\(173\) 2376.82 + 1372.25i 1.04454 + 0.603067i 0.921117 0.389287i \(-0.127278\pi\)
0.123426 + 0.992354i \(0.460612\pi\)
\(174\) 1322.21 0.576073
\(175\) 0 0
\(176\) 597.806 0.256030
\(177\) 2146.96 + 1239.55i 0.911726 + 0.526385i
\(178\) 583.149 336.681i 0.245556 0.141772i
\(179\) −702.721 1217.15i −0.293429 0.508234i 0.681189 0.732108i \(-0.261463\pi\)
−0.974618 + 0.223873i \(0.928130\pi\)
\(180\) 0 0
\(181\) −637.919 −0.261967 −0.130984 0.991385i \(-0.541814\pi\)
−0.130984 + 0.991385i \(0.541814\pi\)
\(182\) 937.676 + 3164.46i 0.381896 + 1.28882i
\(183\) 1070.55i 0.432446i
\(184\) −25.0743 + 43.4299i −0.0100462 + 0.0174005i
\(185\) 0 0
\(186\) 1507.86 + 2611.70i 0.594419 + 1.02956i
\(187\) 2270.11 + 1310.65i 0.887737 + 0.512535i
\(188\) 1456.48i 0.565026i
\(189\) 563.180 + 534.338i 0.216748 + 0.205647i
\(190\) 0 0
\(191\) −1827.88 + 3165.98i −0.692465 + 1.19938i 0.278563 + 0.960418i \(0.410142\pi\)
−0.971028 + 0.238966i \(0.923191\pi\)
\(192\) 383.785 221.578i 0.144257 0.0832867i
\(193\) −3839.66 + 2216.83i −1.43204 + 0.826792i −0.997277 0.0737508i \(-0.976503\pi\)
−0.434768 + 0.900542i \(0.643170\pi\)
\(194\) 179.620 311.110i 0.0664739 0.115136i
\(195\) 0 0
\(196\) 1150.52 747.459i 0.419285 0.272397i
\(197\) 5283.75i 1.91092i −0.295115 0.955462i \(-0.595358\pi\)
0.295115 0.955462i \(-0.404642\pi\)
\(198\) 1355.53 + 782.613i 0.486530 + 0.280898i
\(199\) −2202.45 3814.76i −0.784562 1.35890i −0.929261 0.369425i \(-0.879555\pi\)
0.144699 0.989476i \(-0.453779\pi\)
\(200\) 0 0
\(201\) 233.809 404.969i 0.0820477 0.142111i
\(202\) 1788.78i 0.623062i
\(203\) −1217.06 + 1282.75i −0.420791 + 0.443504i
\(204\) 1943.18 0.666911
\(205\) 0 0
\(206\) −24.8790 43.0917i −0.00841458 0.0145745i
\(207\) −113.712 + 65.6516i −0.0381813 + 0.0220440i
\(208\) −1234.66 712.833i −0.411579 0.237625i
\(209\) 4685.34 1.55068
\(210\) 0 0
\(211\) −1667.99 −0.544213 −0.272107 0.962267i \(-0.587720\pi\)
−0.272107 + 0.962267i \(0.587720\pi\)
\(212\) 1726.70 + 996.912i 0.559389 + 0.322963i
\(213\) 3104.90 1792.61i 0.998798 0.576656i
\(214\) 1153.79 + 1998.43i 0.368559 + 0.638363i
\(215\) 0 0
\(216\) −335.343 −0.105635
\(217\) −3921.69 941.128i −1.22683 0.294414i
\(218\) 3761.93i 1.16876i
\(219\) −2336.15 + 4046.33i −0.720833 + 1.24852i
\(220\) 0 0
\(221\) −3125.67 5413.82i −0.951382 1.64784i
\(222\) −2528.49 1459.83i −0.764420 0.441338i
\(223\) 3706.93i 1.11316i 0.830795 + 0.556579i \(0.187886\pi\)
−0.830795 + 0.556579i \(0.812114\pi\)
\(224\) −138.297 + 576.286i −0.0412517 + 0.171896i
\(225\) 0 0
\(226\) 2073.98 3592.23i 0.610438 1.05731i
\(227\) −4121.78 + 2379.71i −1.20517 + 0.695802i −0.961699 0.274107i \(-0.911618\pi\)
−0.243466 + 0.969909i \(0.578284\pi\)
\(228\) 3007.94 1736.64i 0.873709 0.504436i
\(229\) −304.691 + 527.740i −0.0879238 + 0.152288i −0.906633 0.421919i \(-0.861357\pi\)
0.818710 + 0.574208i \(0.194690\pi\)
\(230\) 0 0
\(231\) −4593.99 + 1361.26i −1.30849 + 0.387726i
\(232\) 763.808i 0.216149i
\(233\) −2740.07 1581.98i −0.770419 0.444802i 0.0626048 0.998038i \(-0.480059\pi\)
−0.833024 + 0.553237i \(0.813393\pi\)
\(234\) −1866.40 3232.70i −0.521412 0.903112i
\(235\) 0 0
\(236\) 716.054 1240.24i 0.197505 0.342089i
\(237\) 6451.27i 1.76817i
\(238\) −1788.64 + 1885.18i −0.487144 + 0.513438i
\(239\) 5180.13 1.40199 0.700993 0.713168i \(-0.252741\pi\)
0.700993 + 0.713168i \(0.252741\pi\)
\(240\) 0 0
\(241\) −1027.16 1779.09i −0.274544 0.475523i 0.695476 0.718549i \(-0.255193\pi\)
−0.970020 + 0.243026i \(0.921860\pi\)
\(242\) 112.554 64.9828i 0.0298976 0.0172614i
\(243\) −4151.79 2397.04i −1.09604 0.632798i
\(244\) 618.431 0.162258
\(245\) 0 0
\(246\) −169.632 −0.0439648
\(247\) −9676.75 5586.87i −2.49278 1.43921i
\(248\) 1508.71 871.053i 0.386303 0.223032i
\(249\) 4970.69 + 8609.49i 1.26508 + 2.19118i
\(250\) 0 0
\(251\) 2455.16 0.617403 0.308701 0.951159i \(-0.400106\pi\)
0.308701 + 0.951159i \(0.400106\pi\)
\(252\) −1068.03 + 1125.68i −0.266983 + 0.281393i
\(253\) 234.212i 0.0582006i
\(254\) 75.3532 130.516i 0.0186145 0.0322413i
\(255\) 0 0
\(256\) −128.000 221.703i −0.0312500 0.0541266i
\(257\) 3195.72 + 1845.05i 0.775655 + 0.447825i 0.834888 0.550419i \(-0.185532\pi\)
−0.0592330 + 0.998244i \(0.518865\pi\)
\(258\) 1824.51i 0.440267i
\(259\) 3743.65 1109.30i 0.898144 0.266133i
\(260\) 0 0
\(261\) 999.934 1731.94i 0.237143 0.410744i
\(262\) 3810.83 2200.18i 0.898602 0.518808i
\(263\) 4516.44 2607.57i 1.05892 0.611367i 0.133786 0.991010i \(-0.457287\pi\)
0.925133 + 0.379643i \(0.123953\pi\)
\(264\) 1034.85 1792.41i 0.241252 0.417861i
\(265\) 0 0
\(266\) −1083.92 + 4516.68i −0.249846 + 1.04111i
\(267\) 2331.29i 0.534355i
\(268\) −233.940 135.065i −0.0533214 0.0307851i
\(269\) −1817.19 3147.47i −0.411882 0.713400i 0.583214 0.812319i \(-0.301795\pi\)
−0.995096 + 0.0989184i \(0.968462\pi\)
\(270\) 0 0
\(271\) 101.418 175.660i 0.0227331 0.0393749i −0.854435 0.519558i \(-0.826097\pi\)
0.877168 + 0.480183i \(0.159430\pi\)
\(272\) 1122.52i 0.250232i
\(273\) 11111.3 + 2666.49i 2.46331 + 0.591147i
\(274\) −4111.01 −0.906405
\(275\) 0 0
\(276\) 86.8112 + 150.361i 0.0189327 + 0.0327924i
\(277\) 661.640 381.998i 0.143517 0.0828593i −0.426522 0.904477i \(-0.640261\pi\)
0.570039 + 0.821618i \(0.306928\pi\)
\(278\) −786.250 453.942i −0.169626 0.0979338i
\(279\) 4561.33 0.978780
\(280\) 0 0
\(281\) 1451.40 0.308125 0.154063 0.988061i \(-0.450764\pi\)
0.154063 + 0.988061i \(0.450764\pi\)
\(282\) −4367.00 2521.29i −0.922168 0.532414i
\(283\) −6633.56 + 3829.89i −1.39337 + 0.804464i −0.993687 0.112189i \(-0.964214\pi\)
−0.399685 + 0.916652i \(0.630881\pi\)
\(284\) −1035.54 1793.62i −0.216367 0.374759i
\(285\) 0 0
\(286\) −6658.37 −1.37663
\(287\) 156.141 164.569i 0.0321140 0.0338474i
\(288\) 670.281i 0.137141i
\(289\) 4.55786 7.89445i 0.000927715 0.00160685i
\(290\) 0 0
\(291\) −621.872 1077.11i −0.125274 0.216981i
\(292\) 2337.46 + 1349.53i 0.468457 + 0.270464i
\(293\) 4222.68i 0.841952i 0.907072 + 0.420976i \(0.138312\pi\)
−0.907072 + 0.420976i \(0.861688\pi\)
\(294\) −249.482 4743.53i −0.0494901 0.940981i
\(295\) 0 0
\(296\) −843.303 + 1460.64i −0.165595 + 0.286818i
\(297\) −1356.34 + 783.086i −0.264994 + 0.152994i
\(298\) −406.506 + 234.696i −0.0790210 + 0.0456228i
\(299\) 279.277 483.723i 0.0540168 0.0935599i
\(300\) 0 0
\(301\) −1770.05 1679.40i −0.338950 0.321592i
\(302\) 692.040i 0.131862i
\(303\) −5363.35 3096.53i −1.01689 0.587099i
\(304\) −1003.21 1737.61i −0.189270 0.327825i
\(305\) 0 0
\(306\) 1469.55 2545.33i 0.274537 0.475512i
\(307\) 1243.11i 0.231101i −0.993302 0.115551i \(-0.963137\pi\)
0.993302 0.115551i \(-0.0368633\pi\)
\(308\) 786.367 + 2653.82i 0.145479 + 0.490960i
\(309\) −172.270 −0.0317156
\(310\) 0 0
\(311\) 684.344 + 1185.32i 0.124777 + 0.216120i 0.921646 0.388033i \(-0.126845\pi\)
−0.796869 + 0.604152i \(0.793512\pi\)
\(312\) −4274.60 + 2467.94i −0.775646 + 0.447820i
\(313\) −2780.51 1605.33i −0.502121 0.289900i 0.227468 0.973786i \(-0.426955\pi\)
−0.729589 + 0.683886i \(0.760289\pi\)
\(314\) −6678.24 −1.20024
\(315\) 0 0
\(316\) 3726.73 0.663433
\(317\) −6624.32 3824.55i −1.17369 0.677628i −0.219141 0.975693i \(-0.570326\pi\)
−0.954546 + 0.298065i \(0.903659\pi\)
\(318\) 5978.12 3451.47i 1.05420 0.608644i
\(319\) −1783.63 3089.33i −0.313053 0.542224i
\(320\) 0 0
\(321\) 7989.24 1.38915
\(322\) −225.781 54.1829i −0.0390753 0.00937732i
\(323\) 8797.86i 1.51556i
\(324\) −1711.61 + 2964.59i −0.293485 + 0.508331i
\(325\) 0 0
\(326\) 2411.64 + 4177.08i 0.409719 + 0.709653i
\(327\) −11279.5 6512.21i −1.90751 1.10130i
\(328\) 97.9919i 0.0164960i
\(329\) 6465.73 1915.89i 1.08349 0.321053i
\(330\) 0 0
\(331\) 3958.64 6856.57i 0.657362 1.13858i −0.323934 0.946080i \(-0.605006\pi\)
0.981296 0.192504i \(-0.0616609\pi\)
\(332\) 4973.48 2871.44i 0.822154 0.474671i
\(333\) −3824.38 + 2208.01i −0.629354 + 0.363358i
\(334\) 1296.58 2245.73i 0.212412 0.367908i
\(335\) 0 0
\(336\) 1488.49 + 1412.26i 0.241677 + 0.229301i
\(337\) 6878.10i 1.11179i 0.831252 + 0.555896i \(0.187625\pi\)
−0.831252 + 0.555896i \(0.812375\pi\)
\(338\) 9946.37 + 5742.54i 1.60062 + 0.924121i
\(339\) −7180.45 12436.9i −1.15041 1.99257i
\(340\) 0 0
\(341\) 4068.13 7046.20i 0.646045 1.11898i
\(342\) 5253.37i 0.830614i
\(343\) 4831.59 + 4124.24i 0.760587 + 0.649236i
\(344\) 1053.97 0.165193
\(345\) 0 0
\(346\) −2744.51 4753.63i −0.426433 0.738603i
\(347\) −1231.19 + 710.830i −0.190472 + 0.109969i −0.592204 0.805788i \(-0.701742\pi\)
0.401731 + 0.915758i \(0.368409\pi\)
\(348\) −2290.14 1322.21i −0.352772 0.203673i
\(349\) −2837.74 −0.435246 −0.217623 0.976033i \(-0.569830\pi\)
−0.217623 + 0.976033i \(0.569830\pi\)
\(350\) 0 0
\(351\) 3735.05 0.567984
\(352\) −1035.43 597.806i −0.156786 0.0905203i
\(353\) 3099.34 1789.41i 0.467313 0.269803i −0.247801 0.968811i \(-0.579708\pi\)
0.715114 + 0.699008i \(0.246375\pi\)
\(354\) −2479.10 4293.92i −0.372210 0.644687i
\(355\) 0 0
\(356\) −1346.73 −0.200495
\(357\) 2556.10 + 8626.32i 0.378945 + 1.27886i
\(358\) 2810.88i 0.414972i
\(359\) −3060.74 + 5301.35i −0.449971 + 0.779373i −0.998384 0.0568352i \(-0.981899\pi\)
0.548413 + 0.836208i \(0.315232\pi\)
\(360\) 0 0
\(361\) −4433.21 7678.55i −0.646335 1.11948i
\(362\) 1104.91 + 637.919i 0.160422 + 0.0926195i
\(363\) 449.962i 0.0650603i
\(364\) 1540.36 6418.68i 0.221804 0.924259i
\(365\) 0 0
\(366\) 1070.55 1854.25i 0.152893 0.264818i
\(367\) 10554.1 6093.41i 1.50114 0.866686i 0.501145 0.865364i \(-0.332912\pi\)
0.999999 0.00132220i \(-0.000420871\pi\)
\(368\) 86.8598 50.1485i 0.0123040 0.00710373i
\(369\) −128.285 + 222.197i −0.0180983 + 0.0313472i
\(370\) 0 0
\(371\) −2154.22 + 8976.67i −0.301460 + 1.25619i
\(372\) 6031.45i 0.840635i
\(373\) 9047.28 + 5223.45i 1.25590 + 0.725094i 0.972275 0.233841i \(-0.0751296\pi\)
0.283625 + 0.958935i \(0.408463\pi\)
\(374\) −2621.30 4540.22i −0.362417 0.627725i
\(375\) 0 0
\(376\) −1456.48 + 2522.70i −0.199767 + 0.346007i
\(377\) 8507.30i 1.16220i
\(378\) −441.118 1488.68i −0.0600229 0.202565i
\(379\) 10274.0 1.39246 0.696229 0.717820i \(-0.254860\pi\)
0.696229 + 0.717820i \(0.254860\pi\)
\(380\) 0 0
\(381\) −260.885 451.866i −0.0350802 0.0607607i
\(382\) 6331.96 3655.76i 0.848093 0.489647i
\(383\) 5618.50 + 3243.84i 0.749587 + 0.432774i 0.825545 0.564337i \(-0.190868\pi\)
−0.0759577 + 0.997111i \(0.524201\pi\)
\(384\) −886.314 −0.117785
\(385\) 0 0
\(386\) 8867.31 1.16926
\(387\) 2389.88 + 1379.80i 0.313913 + 0.181238i
\(388\) −622.220 + 359.239i −0.0814135 + 0.0470041i
\(389\) −1853.16 3209.77i −0.241540 0.418360i 0.719613 0.694375i \(-0.244319\pi\)
−0.961153 + 0.276016i \(0.910986\pi\)
\(390\) 0 0
\(391\) 439.789 0.0568825
\(392\) −2740.21 + 144.119i −0.353065 + 0.0185692i
\(393\) 15234.8i 1.95545i
\(394\) −5283.75 + 9151.73i −0.675613 + 1.17020i
\(395\) 0 0
\(396\) −1565.23 2711.05i −0.198625 0.344029i
\(397\) −8036.94 4640.13i −1.01603 0.586603i −0.103076 0.994673i \(-0.532868\pi\)
−0.912951 + 0.408070i \(0.866202\pi\)
\(398\) 8809.81i 1.10954i
\(399\) 11666.1 + 11068.7i 1.46375 + 1.38879i
\(400\) 0 0
\(401\) 1209.54 2094.98i 0.150627 0.260894i −0.780831 0.624742i \(-0.785204\pi\)
0.931458 + 0.363848i \(0.118537\pi\)
\(402\) −809.937 + 467.617i −0.100488 + 0.0580165i
\(403\) −16804.0 + 9701.79i −2.07709 + 1.19921i
\(404\) −1788.78 + 3098.27i −0.220286 + 0.381546i
\(405\) 0 0
\(406\) 3390.75 1004.73i 0.414484 0.122818i
\(407\) 7877.05i 0.959339i
\(408\) −3365.69 1943.18i −0.408398 0.235789i
\(409\) −2497.99 4326.65i −0.302000 0.523079i 0.674589 0.738193i \(-0.264321\pi\)
−0.976589 + 0.215115i \(0.930988\pi\)
\(410\) 0 0
\(411\) −7116.48 + 12326.1i −0.854088 + 1.47932i
\(412\) 99.5161i 0.0119000i
\(413\) 6447.69 + 1547.32i 0.768209 + 0.184355i
\(414\) 262.606 0.0311749
\(415\) 0 0
\(416\) 1425.67 + 2469.32i 0.168026 + 0.291030i
\(417\) −2722.13 + 1571.62i −0.319672 + 0.184562i
\(418\) −8115.25 4685.34i −0.949593 0.548248i
\(419\) 10746.6 1.25300 0.626500 0.779421i \(-0.284487\pi\)
0.626500 + 0.779421i \(0.284487\pi\)
\(420\) 0 0
\(421\) 8561.10 0.991075 0.495538 0.868587i \(-0.334971\pi\)
0.495538 + 0.868587i \(0.334971\pi\)
\(422\) 2889.04 + 1667.99i 0.333261 + 0.192408i
\(423\) −6605.16 + 3813.49i −0.759229 + 0.438341i
\(424\) −1993.82 3453.40i −0.228369 0.395547i
\(425\) 0 0
\(426\) −7170.45 −0.815515
\(427\) 813.498 + 2745.39i 0.0921965 + 0.311144i
\(428\) 4615.17i 0.521221i
\(429\) −11526.2 + 19963.9i −1.29718 + 2.24678i
\(430\) 0 0
\(431\) 2617.95 + 4534.43i 0.292581 + 0.506765i 0.974419 0.224738i \(-0.0721526\pi\)
−0.681838 + 0.731503i \(0.738819\pi\)
\(432\) 580.831 + 335.343i 0.0646881 + 0.0373477i
\(433\) 3809.88i 0.422844i 0.977395 + 0.211422i \(0.0678094\pi\)
−0.977395 + 0.211422i \(0.932191\pi\)
\(434\) 5851.43 + 5551.77i 0.647183 + 0.614040i
\(435\) 0 0
\(436\) −3761.93 + 6515.86i −0.413220 + 0.715718i
\(437\) 680.769 393.042i 0.0745209 0.0430246i
\(438\) 8092.66 4672.30i 0.882837 0.509706i
\(439\) −6266.39 + 10853.7i −0.681272 + 1.18000i 0.293320 + 0.956014i \(0.405240\pi\)
−0.974593 + 0.223984i \(0.928094\pi\)
\(440\) 0 0
\(441\) −6402.11 3260.54i −0.691298 0.352072i
\(442\) 12502.7i 1.34546i
\(443\) −15410.4 8897.20i −1.65275 0.954218i −0.975933 0.218071i \(-0.930024\pi\)
−0.676821 0.736147i \(-0.736643\pi\)
\(444\) 2919.65 + 5056.99i 0.312073 + 0.540527i
\(445\) 0 0
\(446\) 3706.93 6420.59i 0.393561 0.681667i
\(447\) 1625.11i 0.171958i
\(448\) 815.824 859.860i 0.0860359 0.0906798i
\(449\) −12203.4 −1.28266 −0.641331 0.767265i \(-0.721617\pi\)
−0.641331 + 0.767265i \(0.721617\pi\)
\(450\) 0 0
\(451\) 228.828 + 396.343i 0.0238916 + 0.0413815i
\(452\) −7184.47 + 4147.96i −0.747631 + 0.431645i
\(453\) 2074.96 + 1197.98i 0.215210 + 0.124251i
\(454\) 9518.85 0.984013
\(455\) 0 0
\(456\) −6946.54 −0.713381
\(457\) 4113.22 + 2374.77i 0.421024 + 0.243079i 0.695516 0.718511i \(-0.255176\pi\)
−0.274491 + 0.961590i \(0.588509\pi\)
\(458\) 1055.48 609.382i 0.107684 0.0621715i
\(459\) 1470.43 + 2546.86i 0.149529 + 0.258992i
\(460\) 0 0
\(461\) −13208.0 −1.33440 −0.667199 0.744880i \(-0.732507\pi\)
−0.667199 + 0.744880i \(0.732507\pi\)
\(462\) 9318.28 + 2236.21i 0.938367 + 0.225190i
\(463\) 11987.9i 1.20329i 0.798763 + 0.601645i \(0.205488\pi\)
−0.798763 + 0.601645i \(0.794512\pi\)
\(464\) −763.808 + 1322.95i −0.0764200 + 0.132363i
\(465\) 0 0
\(466\) 3163.96 + 5480.13i 0.314522 + 0.544769i
\(467\) 4487.07 + 2590.61i 0.444619 + 0.256701i 0.705555 0.708655i \(-0.250698\pi\)
−0.260936 + 0.965356i \(0.584031\pi\)
\(468\) 7465.60i 0.737388i
\(469\) 291.862 1216.19i 0.0287355 0.119741i
\(470\) 0 0
\(471\) −11560.6 + 20023.5i −1.13096 + 1.95889i
\(472\) −2480.49 + 1432.11i −0.241893 + 0.139657i
\(473\) 4262.94 2461.21i 0.414398 0.239253i
\(474\) 6451.27 11173.9i 0.625141 1.08278i
\(475\) 0 0
\(476\) 4983.20 1476.59i 0.479841 0.142184i
\(477\) 10440.8i 1.00220i
\(478\) −8972.24 5180.13i −0.858537 0.495677i
\(479\) −66.9992 116.046i −0.00639096 0.0110695i 0.862812 0.505525i \(-0.168701\pi\)
−0.869203 + 0.494455i \(0.835368\pi\)
\(480\) 0 0
\(481\) 9392.72 16268.7i 0.890376 1.54218i
\(482\) 4108.63i 0.388263i
\(483\) −553.302 + 583.167i −0.0521245 + 0.0549380i
\(484\) −259.931 −0.0244113
\(485\) 0 0
\(486\) 4794.07 + 8303.58i 0.447456 + 0.775017i
\(487\) 2873.78 1659.18i 0.267399 0.154383i −0.360306 0.932834i \(-0.617328\pi\)
0.627705 + 0.778451i \(0.283994\pi\)
\(488\) −1071.15 618.431i −0.0993624 0.0573669i
\(489\) 16699.0 1.54428
\(490\) 0 0
\(491\) −2195.90 −0.201832 −0.100916 0.994895i \(-0.532177\pi\)
−0.100916 + 0.994895i \(0.532177\pi\)
\(492\) 293.811 + 169.632i 0.0269228 + 0.0155439i
\(493\) −5800.97 + 3349.19i −0.529945 + 0.305964i
\(494\) 11173.7 + 19353.5i 1.01767 + 1.76266i
\(495\) 0 0
\(496\) −3484.21 −0.315415
\(497\) 6600.18 6956.43i 0.595691 0.627844i
\(498\) 19882.8i 1.78909i
\(499\) 5844.81 10123.5i 0.524348 0.908197i −0.475250 0.879851i \(-0.657642\pi\)
0.999598 0.0283465i \(-0.00902418\pi\)
\(500\) 0 0
\(501\) −4488.96 7775.10i −0.400303 0.693345i
\(502\) −4252.46 2455.16i −0.378081 0.218285i
\(503\) 9289.98i 0.823498i −0.911297 0.411749i \(-0.864918\pi\)
0.911297 0.411749i \(-0.135082\pi\)
\(504\) 2975.56 881.703i 0.262980 0.0779249i
\(505\) 0 0
\(506\) 234.212 405.666i 0.0205770 0.0356404i
\(507\) 34435.9 19881.6i 3.01648 1.74156i
\(508\) −261.031 + 150.706i −0.0227980 + 0.0131624i
\(509\) −3345.31 + 5794.25i −0.291313 + 0.504569i −0.974120 0.226029i \(-0.927425\pi\)
0.682807 + 0.730598i \(0.260759\pi\)
\(510\) 0 0
\(511\) −2916.20 + 12151.8i −0.252456 + 1.05199i
\(512\) 512.000i 0.0441942i
\(513\) 4552.30 + 2628.27i 0.391792 + 0.226201i
\(514\) −3690.10 6391.44i −0.316660 0.548471i
\(515\) 0 0
\(516\) 1824.51 3160.14i 0.155658 0.269607i
\(517\) 13604.6i 1.15731i
\(518\) −7593.50 1822.29i −0.644091 0.154569i
\(519\) −19003.9 −1.60728
\(520\) 0 0
\(521\) 514.047 + 890.355i 0.0432261 + 0.0748698i 0.886829 0.462098i \(-0.152903\pi\)
−0.843603 + 0.536968i \(0.819570\pi\)
\(522\) −3463.87 + 1999.87i −0.290440 + 0.167686i
\(523\) 535.434 + 309.133i 0.0447665 + 0.0258460i 0.522216 0.852813i \(-0.325105\pi\)
−0.477450 + 0.878659i \(0.658439\pi\)
\(524\) −8800.73 −0.733705
\(525\) 0 0
\(526\) −10430.3 −0.864603
\(527\) −13230.9 7638.89i −1.09364 0.631414i
\(528\) −3584.83 + 2069.70i −0.295473 + 0.170591i
\(529\) −6063.85 10502.9i −0.498385 0.863228i
\(530\) 0 0
\(531\) −7499.34 −0.612888
\(532\) 6394.08 6739.21i 0.521087 0.549214i
\(533\) 1091.43i 0.0886966i
\(534\) −2331.29 + 4037.92i −0.188923 + 0.327224i
\(535\) 0 0
\(536\) 270.130 + 467.879i 0.0217684 + 0.0377039i
\(537\) 8427.93 + 4865.87i 0.677267 + 0.391020i
\(538\) 7268.77i 0.582489i
\(539\) −10746.7 + 6981.80i −0.858796 + 0.557936i
\(540\) 0 0
\(541\) 417.761 723.584i 0.0331996 0.0575033i −0.848948 0.528476i \(-0.822764\pi\)
0.882148 + 0.470973i \(0.156097\pi\)
\(542\) −351.321 + 202.835i −0.0278423 + 0.0160747i
\(543\) 3825.37 2208.58i 0.302325 0.174547i
\(544\) −1122.52 + 1944.27i −0.0884703 + 0.153235i
\(545\) 0 0
\(546\) −16578.8 15729.7i −1.29946 1.23291i
\(547\) 1100.23i 0.0860011i −0.999075 0.0430005i \(-0.986308\pi\)
0.999075 0.0430005i \(-0.0136917\pi\)
\(548\) 7120.47 + 4111.01i 0.555057 + 0.320462i
\(549\) −1619.23 2804.59i −0.125878 0.218027i
\(550\) 0 0
\(551\) −5986.40 + 10368.7i −0.462848 + 0.801676i
\(552\) 347.245i 0.0267749i
\(553\) 4902.22 + 16544.0i 0.376969 + 1.27219i
\(554\) −1527.99 −0.117181
\(555\) 0 0
\(556\) 907.883 + 1572.50i 0.0692497 + 0.119944i
\(557\) 5195.85 2999.82i 0.395251 0.228199i −0.289182 0.957274i \(-0.593383\pi\)
0.684433 + 0.729076i \(0.260050\pi\)
\(558\) −7900.46 4561.33i −0.599378 0.346051i
\(559\) −11739.1 −0.888215
\(560\) 0 0
\(561\) −18150.7 −1.36600
\(562\) −2513.90 1451.40i −0.188687 0.108939i
\(563\) 20866.2 12047.1i 1.56200 0.901819i 0.564940 0.825132i \(-0.308899\pi\)
0.997055 0.0766870i \(-0.0244342\pi\)
\(564\) 5042.58 + 8734.01i 0.376473 + 0.652071i
\(565\) 0 0
\(566\) 15319.6 1.13768
\(567\) −15412.1 3698.60i −1.14153 0.273945i
\(568\) 4142.18i 0.305989i
\(569\) 2754.95 4771.72i 0.202977 0.351566i −0.746510 0.665375i \(-0.768272\pi\)
0.949486 + 0.313809i \(0.101605\pi\)
\(570\) 0 0
\(571\) 2219.12 + 3843.63i 0.162640 + 0.281700i 0.935815 0.352493i \(-0.114666\pi\)
−0.773175 + 0.634193i \(0.781333\pi\)
\(572\) 11532.6 + 6658.37i 0.843013 + 0.486714i
\(573\) 25313.7i 1.84554i
\(574\) −435.013 + 128.901i −0.0316326 + 0.00937319i
\(575\) 0 0
\(576\) −670.281 + 1160.96i −0.0484868 + 0.0839816i
\(577\) 7968.86 4600.82i 0.574953 0.331949i −0.184172 0.982894i \(-0.558960\pi\)
0.759125 + 0.650945i \(0.225627\pi\)
\(578\) −15.7889 + 9.11573i −0.00113621 + 0.000655994i
\(579\) 15350.0 26587.0i 1.10177 1.90832i
\(580\) 0 0
\(581\) 19289.3 + 18301.5i 1.37738 + 1.30684i
\(582\) 2487.49i 0.177164i
\(583\) −16128.6 9311.87i −1.14576 0.661506i
\(584\) −2699.07 4674.92i −0.191247 0.331249i
\(585\) 0 0
\(586\) 4222.68 7313.90i 0.297675 0.515588i
\(587\) 5551.42i 0.390343i −0.980769 0.195172i \(-0.937474\pi\)
0.980769 0.195172i \(-0.0625264\pi\)
\(588\) −4311.42 + 8465.52i −0.302381 + 0.593728i
\(589\) −27307.7 −1.91035
\(590\) 0 0
\(591\) 18293.2 + 31684.8i 1.27324 + 2.20531i
\(592\) 2921.29 1686.61i 0.202811 0.117093i
\(593\) 4841.68 + 2795.34i 0.335285 + 0.193577i 0.658185 0.752856i \(-0.271325\pi\)
−0.322900 + 0.946433i \(0.604658\pi\)
\(594\) 3132.34 0.216366
\(595\) 0 0
\(596\) 938.786 0.0645204
\(597\) 26414.6 + 15250.5i 1.81085 + 1.04550i
\(598\) −967.445 + 558.555i −0.0661568 + 0.0381957i
\(599\) 6837.67 + 11843.2i 0.466410 + 0.807846i 0.999264 0.0383614i \(-0.0122138\pi\)
−0.532854 + 0.846207i \(0.678880\pi\)
\(600\) 0 0
\(601\) −4508.67 −0.306011 −0.153005 0.988225i \(-0.548895\pi\)
−0.153005 + 0.988225i \(0.548895\pi\)
\(602\) 1386.42 + 4678.86i 0.0938639 + 0.316771i
\(603\) 1414.56i 0.0955310i
\(604\) 692.040 1198.65i 0.0466204 0.0807488i
\(605\) 0 0
\(606\) 6193.06 + 10726.7i 0.415142 + 0.719047i
\(607\) 3146.33 + 1816.53i 0.210388 + 0.121468i 0.601492 0.798879i \(-0.294573\pi\)
−0.391104 + 0.920347i \(0.627907\pi\)
\(608\) 4012.83i 0.267668i
\(609\) 2857.17 11905.8i 0.190112 0.792199i
\(610\) 0 0
\(611\) 16222.3 28097.9i 1.07412 1.86042i
\(612\) −5090.65 + 2939.09i −0.336238 + 0.194127i
\(613\) −10313.7 + 5954.63i −0.679555 + 0.392341i −0.799687 0.600417i \(-0.795001\pi\)
0.120132 + 0.992758i \(0.461668\pi\)
\(614\) −1243.11 + 2153.13i −0.0817067 + 0.141520i
\(615\) 0 0
\(616\) 1291.80 5382.92i 0.0844935 0.352085i
\(617\) 5510.74i 0.359569i 0.983706 + 0.179784i \(0.0575400\pi\)
−0.983706 + 0.179784i \(0.942460\pi\)
\(618\) 298.381 + 172.270i 0.0194218 + 0.0112132i
\(619\) −10467.7 18130.6i −0.679699 1.17727i −0.975072 0.221891i \(-0.928777\pi\)
0.295373 0.955382i \(-0.404556\pi\)
\(620\) 0 0
\(621\) −131.383 + 227.561i −0.00848985 + 0.0147049i
\(622\) 2737.38i 0.176461i
\(623\) −1771.51 5978.49i −0.113923 0.384467i
\(624\) 9871.77 0.633313
\(625\) 0 0
\(626\) 3210.66 + 5561.03i 0.204990 + 0.355053i
\(627\) −28096.3 + 16221.4i −1.78957 + 1.03321i
\(628\) 11567.1 + 6678.24i 0.734993 + 0.424349i
\(629\) 14791.1 0.937613
\(630\) 0 0
\(631\) −1538.74 −0.0970780 −0.0485390 0.998821i \(-0.515457\pi\)
−0.0485390 + 0.998821i \(0.515457\pi\)
\(632\) −6454.88 3726.73i −0.406268 0.234559i
\(633\) 10002.3 5774.84i 0.628051 0.362606i
\(634\) 7649.10 + 13248.6i 0.479156 + 0.829922i
\(635\) 0 0
\(636\) −13805.9 −0.860753
\(637\) 30520.5 1605.20i 1.89838 0.0998436i
\(638\) 7134.51i 0.442724i
\(639\) −5422.71 + 9392.40i −0.335710 + 0.581467i
\(640\) 0 0
\(641\) 2961.16 + 5128.88i 0.182463 + 0.316035i 0.942719 0.333589i \(-0.108260\pi\)
−0.760256 + 0.649624i \(0.774926\pi\)
\(642\) −13837.8 7989.24i −0.850675 0.491137i
\(643\) 22967.5i 1.40863i −0.709887 0.704315i \(-0.751254\pi\)
0.709887 0.704315i \(-0.248746\pi\)
\(644\) 336.880 + 319.628i 0.0206133 + 0.0195576i
\(645\) 0 0
\(646\) −8797.86 + 15238.3i −0.535832 + 0.928088i
\(647\) −12397.0 + 7157.41i −0.753287 + 0.434910i −0.826880 0.562378i \(-0.809887\pi\)
0.0735935 + 0.997288i \(0.476553\pi\)
\(648\) 5929.18 3423.21i 0.359444 0.207525i
\(649\) −6688.46 + 11584.8i −0.404538 + 0.700680i
\(650\) 0 0
\(651\) 26775.3 7933.91i 1.61199 0.477656i
\(652\) 9646.55i 0.579430i
\(653\) −14019.3 8094.03i −0.840148 0.485060i 0.0171665 0.999853i \(-0.494535\pi\)
−0.857315 + 0.514793i \(0.827869\pi\)
\(654\) 13024.4 + 22559.0i 0.778739 + 1.34882i
\(655\) 0 0
\(656\) 97.9919 169.727i 0.00583223 0.0101017i
\(657\) 14133.8i 0.839291i
\(658\) −13114.9 3147.31i −0.777007 0.186466i
\(659\) −5303.87 −0.313519 −0.156760 0.987637i \(-0.550105\pi\)
−0.156760 + 0.987637i \(0.550105\pi\)
\(660\) 0 0
\(661\) −11168.3 19344.0i −0.657180 1.13827i −0.981343 0.192267i \(-0.938416\pi\)
0.324163 0.946001i \(-0.394917\pi\)
\(662\) −13713.1 + 7917.29i −0.805100 + 0.464825i
\(663\) 37487.1 + 21643.2i 2.19589 + 1.26780i
\(664\) −11485.8 −0.671286
\(665\) 0 0
\(666\) 8832.03 0.513865
\(667\) −518.314 299.249i −0.0300888 0.0173718i
\(668\) −4491.47 + 2593.15i −0.260150 + 0.150198i
\(669\) −12834.0 22229.1i −0.741690 1.28464i
\(670\) 0 0
\(671\) −5776.59 −0.332344
\(672\) −1165.88 3934.59i −0.0669266 0.225863i
\(673\) 22907.3i 1.31206i 0.754737 + 0.656028i \(0.227765\pi\)
−0.754737 + 0.656028i \(0.772235\pi\)
\(674\) 6878.10 11913.2i 0.393078 0.680831i
\(675\) 0 0
\(676\) −11485.1 19892.7i −0.653452 1.13181i
\(677\) −28005.0 16168.7i −1.58984 0.917894i −0.993332 0.115286i \(-0.963222\pi\)
−0.596507 0.802608i \(-0.703445\pi\)
\(678\) 28721.8i 1.62692i
\(679\) −2413.24 2289.66i −0.136394 0.129409i
\(680\) 0 0
\(681\) 16477.9 28540.6i 0.927217 1.60599i
\(682\) −14092.4 + 8136.25i −0.791241 + 0.456823i
\(683\) −21369.2 + 12337.5i −1.19718 + 0.691190i −0.959925 0.280258i \(-0.909580\pi\)
−0.237252 + 0.971448i \(0.576247\pi\)
\(684\) −5253.37 + 9099.11i −0.293666 + 0.508645i
\(685\) 0 0
\(686\) −4244.32 11975.0i −0.236223 0.666482i
\(687\) 4219.56i 0.234332i
\(688\) −1825.53 1053.97i −0.101159 0.0584044i
\(689\) 22207.2 + 38464.0i 1.22791 + 2.12680i
\(690\) 0 0
\(691\) 6430.41 11137.8i 0.354015 0.613172i −0.632934 0.774206i \(-0.718149\pi\)
0.986949 + 0.161034i \(0.0514828\pi\)
\(692\) 10978.0i 0.603067i
\(693\) 9976.17 10514.6i 0.546845 0.576361i
\(694\) 2843.32 0.155520
\(695\) 0 0
\(696\) 2644.43 + 4580.28i 0.144018 + 0.249447i
\(697\) 744.229 429.681i 0.0404443 0.0233505i
\(698\) 4915.11 + 2837.74i 0.266533 + 0.153883i
\(699\) 21908.3 1.18547
\(700\) 0 0
\(701\) −2157.68 −0.116254 −0.0581272 0.998309i \(-0.518513\pi\)
−0.0581272 + 0.998309i \(0.518513\pi\)
\(702\) −6469.30 3735.05i −0.347818 0.200813i
\(703\) 22895.8 13218.9i 1.22835 0.709189i
\(704\) 1195.61 + 2070.86i 0.0640075 + 0.110864i
\(705\) 0 0
\(706\) −7157.63 −0.381559
\(707\) −16107.1 3865.38i −0.856815 0.205619i
\(708\) 9916.39i 0.526385i
\(709\) 9274.61 16064.1i 0.491277 0.850916i −0.508673 0.860960i \(-0.669864\pi\)
0.999950 + 0.0100437i \(0.00319707\pi\)
\(710\) 0 0
\(711\) −9757.64 16900.7i −0.514684 0.891458i
\(712\) 2332.60 + 1346.73i 0.122778 + 0.0708858i
\(713\) 1365.06i 0.0716999i
\(714\) 4199.02 17497.3i 0.220090 0.917116i
\(715\) 0 0
\(716\) 2810.88 4868.59i 0.146715 0.254117i
\(717\) −31063.4 + 17934.4i −1.61797 + 0.934134i
\(718\) 10602.7 6121.48i 0.551100 0.318178i
\(719\) 12886.3 22319.7i 0.668398 1.15770i −0.309954 0.950751i \(-0.600314\pi\)
0.978352 0.206947i \(-0.0663528\pi\)
\(720\) 0 0
\(721\) −441.779 + 130.906i −0.0228193 + 0.00676169i
\(722\) 17732.8i 0.914056i
\(723\) 12319.0 + 7112.37i 0.633676 + 0.365853i
\(724\) −1275.84 2209.81i −0.0654919 0.113435i
\(725\) 0 0
\(726\) −449.962 + 779.357i −0.0230023 + 0.0398411i
\(727\) 24295.8i 1.23945i 0.784818 + 0.619727i \(0.212757\pi\)
−0.784818 + 0.619727i \(0.787243\pi\)
\(728\) −9086.66 + 9577.12i −0.462602 + 0.487571i
\(729\) 10089.1 0.512577
\(730\) 0 0
\(731\) −4621.51 8004.70i −0.233834 0.405013i
\(732\) −3708.51 + 2141.11i −0.187255 + 0.108112i
\(733\) 5314.61 + 3068.39i 0.267803 + 0.154616i 0.627889 0.778303i \(-0.283919\pi\)
−0.360086 + 0.932919i \(0.617253\pi\)
\(734\) −24373.7 −1.22568
\(735\) 0 0
\(736\) −200.594 −0.0100462
\(737\) 2185.16 + 1261.60i 0.109215 + 0.0630554i
\(738\) 444.394 256.571i 0.0221658 0.0127974i
\(739\) −11801.0 20439.9i −0.587424 1.01745i −0.994568 0.104085i \(-0.966809\pi\)
0.407144 0.913364i \(-0.366525\pi\)
\(740\) 0 0
\(741\) 77370.6 3.83574
\(742\) 12707.9 13393.8i 0.628735 0.662672i
\(743\) 6486.83i 0.320294i 0.987093 + 0.160147i \(0.0511969\pi\)
−0.987093 + 0.160147i \(0.948803\pi\)
\(744\) −6031.45 + 10446.8i −0.297209 + 0.514782i
\(745\) 0 0
\(746\) −10446.9 18094.6i −0.512719 0.888055i
\(747\) −26044.0 15036.5i −1.27563 0.736488i
\(748\) 10485.2i 0.512535i
\(749\) 20488.0 6070.90i 0.999487 0.296163i
\(750\) 0 0
\(751\) 1296.11 2244.93i 0.0629770 0.109079i −0.832818 0.553547i \(-0.813274\pi\)
0.895795 + 0.444468i \(0.146607\pi\)
\(752\) 5045.41 2912.97i 0.244664 0.141257i
\(753\) −14722.7 + 8500.15i −0.712516 + 0.411372i
\(754\) 8507.30 14735.1i 0.410899 0.711697i
\(755\) 0 0
\(756\) −724.642 + 3019.59i −0.0348611 + 0.145266i
\(757\) 24578.4i 1.18007i −0.807376 0.590037i \(-0.799113\pi\)
0.807376 0.590037i \(-0.200887\pi\)
\(758\) −17795.1 10274.0i −0.852703 0.492308i
\(759\) −810.878 1404.48i −0.0387787 0.0671667i
\(760\) 0 0
\(761\) −18977.3 + 32869.6i −0.903976 + 1.56573i −0.0816895 + 0.996658i \(0.526032\pi\)
−0.822286 + 0.569074i \(0.807302\pi\)
\(762\) 1043.54i 0.0496109i
\(763\) −33874.2 8129.15i −1.60725 0.385708i
\(764\) −14623.0 −0.692465
\(765\) 0 0
\(766\) −6487.68 11237.0i −0.306018 0.530038i
\(767\) 27627.7 15950.8i 1.30062 0.750915i
\(768\) 1535.14 + 886.314i 0.0721284 + 0.0416433i
\(769\) 3017.80 0.141514 0.0707572 0.997494i \(-0.477458\pi\)
0.0707572 + 0.997494i \(0.477458\pi\)
\(770\) 0 0
\(771\) −25551.4 −1.19353
\(772\) −15358.6 8867.31i −0.716022 0.413396i
\(773\) 88.7300 51.2283i 0.00412858 0.00238364i −0.497934 0.867215i \(-0.665908\pi\)
0.502063 + 0.864831i \(0.332575\pi\)
\(774\) −2759.59 4779.76i −0.128155 0.221970i
\(775\) 0 0
\(776\) 1436.96 0.0664739
\(777\) −18608.8 + 19613.2i −0.859184 + 0.905560i
\(778\) 7412.65i 0.341589i
\(779\) 768.018 1330.25i 0.0353236 0.0611823i
\(780\) 0 0
\(781\) 9672.73 + 16753.7i 0.443172 + 0.767597i
\(782\) −761.737 439.789i −0.0348333 0.0201110i
\(783\) 4002.15i 0.182663i
\(784\) 4890.31 + 2490.59i 0.222773 + 0.113456i
\(785\) 0 0
\(786\) −15234.8 + 26387.4i −0.691357 + 1.19747i
\(787\) −10756.0 + 6209.98i −0.487179 + 0.281273i −0.723403 0.690426i \(-0.757423\pi\)
0.236224 + 0.971699i \(0.424090\pi\)
\(788\) 18303.5 10567.5i 0.827454 0.477731i
\(789\) −18055.6 + 31273.3i −0.814700 + 1.41110i
\(790\) 0 0
\(791\) −27864.5 26437.5i −1.25253 1.18838i
\(792\) 6260.90i 0.280898i
\(793\) 11930.5 + 6888.09i 0.534256 + 0.308453i
\(794\) 9280.26 + 16073.9i 0.414791 + 0.718439i
\(795\) 0 0
\(796\) 8809.81 15259.0i 0.392281 0.679450i
\(797\) 40547.2i 1.80208i −0.433739 0.901039i \(-0.642806\pi\)
0.433739 0.901039i \(-0.357194\pi\)
\(798\) −9137.63 30837.6i −0.405349 1.36797i
\(799\) 25545.9 1.13110
\(800\) 0 0
\(801\) 3526.11 + 6107.41i 0.155542 + 0.269406i
\(802\) −4189.97 + 2419.08i −0.184480 + 0.106510i
\(803\) −21833.5 12605.6i −0.959513 0.553975i
\(804\) 1870.47 0.0820477
\(805\) 0 0
\(806\) 38807.2 1.69594
\(807\) 21794.1 + 12582.8i 0.950668 + 0.548868i
\(808\) 6196.53 3577.57i 0.269794 0.155765i
\(809\) −3553.58 6154.97i −0.154434 0.267487i 0.778419 0.627745i \(-0.216022\pi\)
−0.932853 + 0.360258i \(0.882689\pi\)
\(810\) 0 0
\(811\) −21314.5 −0.922876 −0.461438 0.887172i \(-0.652666\pi\)
−0.461438 + 0.887172i \(0.652666\pi\)
\(812\) −6877.69 1650.51i −0.297241 0.0713320i
\(813\) 1404.50i 0.0605877i
\(814\) 7877.05 13643.5i 0.339177 0.587473i
\(815\) 0 0
\(816\) 3886.36 + 6731.38i 0.166728 + 0.288781i
\(817\) −14307.7 8260.56i −0.612685 0.353734i
\(818\) 9991.98i 0.427092i
\(819\) −33141.8 + 9820.41i −1.41400 + 0.418990i
\(820\) 0 0
\(821\) −1442.44 + 2498.39i −0.0613175 + 0.106205i −0.895055 0.445957i \(-0.852864\pi\)
0.833737 + 0.552162i \(0.186197\pi\)
\(822\) 24652.2 14233.0i 1.04604 0.603932i
\(823\) 15960.2 9214.61i 0.675986 0.390281i −0.122355 0.992486i \(-0.539045\pi\)
0.798341 + 0.602205i \(0.205711\pi\)
\(824\) 99.5161 172.367i 0.00420729 0.00728724i
\(825\) 0 0
\(826\) −9620.41 9127.73i −0.405250 0.384497i
\(827\) 2056.14i 0.0864559i 0.999065 + 0.0432280i \(0.0137642\pi\)
−0.999065 + 0.0432280i \(0.986236\pi\)
\(828\) −454.848 262.606i −0.0190906 0.0110220i
\(829\) −3935.80 6817.00i −0.164893 0.285602i 0.771725 0.635957i \(-0.219394\pi\)
−0.936617 + 0.350355i \(0.886061\pi\)
\(830\) 0 0
\(831\) −2645.08 + 4581.41i −0.110417 + 0.191248i
\(832\) 5702.66i 0.237625i
\(833\) 13110.0 + 20179.4i 0.545300 + 0.839347i
\(834\) 6286.48 0.261011
\(835\) 0 0
\(836\) 9370.68 + 16230.5i 0.387670 + 0.671464i
\(837\) 7905.23 4564.09i 0.326457 0.188480i
\(838\) −18613.7 10746.6i −0.767303 0.443003i
\(839\) −34220.8 −1.40815 −0.704073 0.710128i \(-0.748637\pi\)
−0.704073 + 0.710128i \(0.748637\pi\)
\(840\) 0 0
\(841\) −15273.3 −0.626239
\(842\) −14828.3 8561.10i −0.606907 0.350398i
\(843\) −8703.52 + 5024.98i −0.355593 + 0.205302i
\(844\) −3335.97 5778.08i −0.136053 0.235651i
\(845\) 0 0
\(846\) 15254.0 0.619908
\(847\) −341.919 1153.91i −0.0138707 0.0468107i
\(848\) 7975.30i 0.322963i
\(849\) 26519.4 45932.9i 1.07202 1.85679i
\(850\) 0 0
\(851\) 660.788 + 1144.52i 0.0266175 + 0.0461029i
\(852\) 12419.6 + 7170.45i 0.499399 + 0.288328i
\(853\) 33509.6i 1.34507i −0.740065 0.672536i \(-0.765205\pi\)
0.740065 0.672536i \(-0.234795\pi\)
\(854\) 1336.37 5568.65i 0.0535474 0.223132i
\(855\) 0 0
\(856\) −4615.17 + 7993.71i −0.184280 + 0.319182i
\(857\) 7460.58 4307.37i 0.297373 0.171688i −0.343889 0.939010i \(-0.611744\pi\)
0.641262 + 0.767322i \(0.278411\pi\)
\(858\) 39927.8 23052.3i 1.58871 0.917243i
\(859\) 2181.74 3778.89i 0.0866589 0.150098i −0.819438 0.573168i \(-0.805714\pi\)
0.906097 + 0.423070i \(0.139048\pi\)
\(860\) 0 0
\(861\) −366.557 + 1527.45i −0.0145090 + 0.0604590i
\(862\) 10471.8i 0.413772i
\(863\) 14780.2 + 8533.33i 0.582992 + 0.336591i 0.762322 0.647198i \(-0.224059\pi\)
−0.179329 + 0.983789i \(0.557393\pi\)
\(864\) −670.686 1161.66i −0.0264088 0.0457414i
\(865\) 0 0
\(866\) 3809.88 6598.91i 0.149498 0.258938i
\(867\) 63.1203i 0.00247252i
\(868\) −4583.21 15467.4i −0.179221 0.604835i
\(869\) −34810.3 −1.35887
\(870\) 0 0
\(871\) −3008.71 5211.24i −0.117045 0.202728i
\(872\) 13031.7 7523.86i 0.506089 0.292191i
\(873\) 3258.30 + 1881.18i 0.126319 + 0.0729305i
\(874\) −1572.17 −0.0608460
\(875\) 0 0
\(876\) −18689.2 −0.720833
\(877\) 23258.4 + 13428.2i 0.895530 + 0.517034i 0.875747 0.482770i \(-0.160369\pi\)
0.0197825 + 0.999804i \(0.493703\pi\)
\(878\) 21707.4 12532.8i 0.834385 0.481732i
\(879\) −14619.6 25321.9i −0.560987 0.971658i
\(880\) 0 0
\(881\) −27044.5 −1.03423 −0.517113 0.855917i \(-0.672993\pi\)
−0.517113 + 0.855917i \(0.672993\pi\)
\(882\) 7828.24 + 12049.5i 0.298856 + 0.460010i
\(883\) 48010.9i 1.82978i 0.403702 + 0.914890i \(0.367723\pi\)
−0.403702 + 0.914890i \(0.632277\pi\)
\(884\) 12502.7 21655.3i 0.475691 0.823921i
\(885\) 0 0
\(886\) 17794.4 + 30820.8i 0.674734 + 1.16867i
\(887\) −3367.12 1944.01i −0.127460 0.0735889i 0.434914 0.900472i \(-0.356779\pi\)
−0.562374 + 0.826883i \(0.690112\pi\)
\(888\) 11678.6i 0.441338i
\(889\) −1012.39 960.547i −0.0381941 0.0362381i
\(890\) 0 0
\(891\) 15987.6 27691.4i 0.601128 1.04118i
\(892\) −12841.2 + 7413.86i −0.482012 + 0.278290i
\(893\) 39543.7 22830.6i 1.48184 0.855538i
\(894\) 1625.11 2814.78i 0.0607964 0.105302i
\(895\) 0 0
\(896\) −2272.91 + 673.496i −0.0847462 + 0.0251115i
\(897\) 3867.62i 0.143964i
\(898\) 21136.9 + 12203.4i 0.785466 + 0.453489i
\(899\) 10395.6 + 18005.7i 0.385664 + 0.667990i
\(900\) 0 0
\(901\) −17485.3 + 30285.4i −0.646525 + 1.11981i
\(902\) 915.314i 0.0337878i
\(903\) 16428.7 + 3942.57i 0.605442 + 0.145294i
\(904\) 16591.8 0.610438
\(905\) 0 0
\(906\) −2395.95 4149.91i −0.0878590 0.152176i
\(907\) −8001.08 + 4619.43i −0.292912 + 0.169113i −0.639255 0.768995i \(-0.720757\pi\)
0.346342 + 0.938108i \(0.387424\pi\)
\(908\) −16487.1 9518.85i −0.602583 0.347901i
\(909\) 18734.2 0.683580
\(910\) 0 0
\(911\) −54171.6 −1.97013 −0.985064 0.172190i \(-0.944916\pi\)
−0.985064 + 0.172190i \(0.944916\pi\)
\(912\) 12031.8 + 6946.54i 0.436855 + 0.252218i
\(913\) −46455.8 + 26821.3i −1.68397 + 0.972240i
\(914\) −4749.53 8226.43i −0.171883 0.297709i
\(915\) 0 0
\(916\) −2437.53 −0.0879238
\(917\) −11576.7 39068.9i −0.416898 1.40694i
\(918\) 5881.73i 0.211466i
\(919\) −9701.77 + 16804.0i −0.348239 + 0.603168i −0.985937 0.167119i \(-0.946554\pi\)
0.637698 + 0.770287i \(0.279887\pi\)
\(920\) 0 0
\(921\) 4303.85 + 7454.49i 0.153981 + 0.266704i
\(922\) 22876.9 + 13208.0i 0.817148 + 0.471781i
\(923\) 46135.6i 1.64526i
\(924\) −13903.5 13191.5i −0.495014 0.469663i
\(925\) 0 0
\(926\) 11987.9 20763.6i 0.425427 0.736862i
\(927\) 451.306 260.562i 0.0159901 0.00923189i
\(928\) 2645.91 1527.62i 0.0935951 0.0540371i
\(929\) −19554.1 + 33868.7i −0.690581 + 1.19612i 0.281067 + 0.959688i \(0.409312\pi\)
−0.971648 + 0.236433i \(0.924022\pi\)
\(930\) 0 0
\(931\) 38328.1 + 19520.2i 1.34925 + 0.687162i
\(932\) 12655.8i 0.444802i
\(933\) −8207.53 4738.62i −0.287998 0.166276i
\(934\) −5181.23 8974.15i −0.181515 0.314393i
\(935\) 0 0
\(936\) 7465.60 12930.8i 0.260706 0.451556i
\(937\) 624.451i 0.0217715i 0.999941 + 0.0108858i \(0.00346512\pi\)
−0.999941 + 0.0108858i \(0.996535\pi\)
\(938\) −1721.71 + 1814.64i −0.0599316 + 0.0631665i
\(939\) 22231.7 0.772634
\(940\) 0 0
\(941\) −26762.7 46354.4i −0.927141 1.60586i −0.788081 0.615571i \(-0.788925\pi\)
−0.139060 0.990284i \(-0.544408\pi\)
\(942\) 40047.0 23121.2i 1.38514 0.799712i
\(943\) 66.4965 + 38.3918i 0.00229631 + 0.00132578i
\(944\) 5728.43 0.197505
\(945\) 0 0
\(946\) −9844.83 −0.338354
\(947\) 2464.76 + 1423.03i 0.0845766 + 0.0488303i 0.541692 0.840577i \(-0.317784\pi\)
−0.457115 + 0.889407i \(0.651117\pi\)
\(948\) −22347.9 + 12902.5i −0.765638 + 0.442041i
\(949\) 30062.2 + 52069.3i 1.02830 + 1.78108i
\(950\) 0 0
\(951\) 52964.9 1.80600
\(952\) −10107.7 2425.66i −0.344111 0.0825800i
\(953\) 29720.3i 1.01021i −0.863057 0.505107i \(-0.831453\pi\)
0.863057 0.505107i \(-0.168547\pi\)
\(954\) −10440.8 + 18084.0i −0.354333 + 0.613722i
\(955\) 0 0
\(956\) 10360.3 + 17944.5i 0.350496 + 0.607077i
\(957\) 21391.6 + 12350.4i 0.722561 + 0.417171i
\(958\) 267.997i 0.00903819i
\(959\) −8883.46 + 37017.4i −0.299126 + 1.24646i
\(960\) 0 0
\(961\) −8814.90 + 15267.9i −0.295891 + 0.512499i
\(962\) −32537.3 + 18785.4i −1.09048 + 0.629591i
\(963\) −20929.8 + 12083.8i −0.700368 + 0.404358i
\(964\) 4108.63 7116.35i 0.137272 0.237762i
\(965\) 0 0
\(966\) 1541.52 456.773i 0.0513431 0.0152137i
\(967\) 7604.19i 0.252879i 0.991974 + 0.126440i \(0.0403550\pi\)
−0.991974 + 0.126440i \(0.959645\pi\)
\(968\) 450.214 + 259.931i 0.0149488 + 0.00863069i
\(969\) 30459.6 + 52757.6i 1.00981 + 1.74904i
\(970\) 0 0
\(971\) −13172.5 + 22815.5i −0.435352 + 0.754052i −0.997324 0.0731043i \(-0.976709\pi\)
0.561972 + 0.827156i \(0.310043\pi\)
\(972\) 19176.3i 0.632798i
\(973\) −5786.51 + 6098.84i −0.190655 + 0.200946i
\(974\) −6636.72 −0.218331
\(975\) 0 0
\(976\) 1236.86 + 2142.31i 0.0405645 + 0.0702598i
\(977\) 11683.5 6745.48i 0.382588 0.220888i −0.296355 0.955078i \(-0.595771\pi\)
0.678944 + 0.734190i \(0.262438\pi\)
\(978\) −28923.5 16699.0i −0.945675 0.545986i
\(979\) 12579.4 0.410663
\(980\) 0 0
\(981\) 39399.3 1.28228
\(982\) 3803.41 + 2195.90i 0.123597 + 0.0713585i
\(983\) −25032.3 + 14452.4i −0.812214 + 0.468932i −0.847724 0.530437i \(-0.822028\pi\)
0.0355102 + 0.999369i \(0.488694\pi\)
\(984\) −339.264 587.622i −0.0109912 0.0190373i
\(985\) 0 0
\(986\) 13396.8 0.432698
\(987\) −32139.5 + 33874.3i −1.03649 + 1.09243i
\(988\) 44695.0i 1.43921i
\(989\) 412.930 715.216i 0.0132765 0.0229955i
\(990\) 0 0
\(991\) 4600.88 + 7968.95i 0.147479 + 0.255441i 0.930295 0.366812i \(-0.119551\pi\)
−0.782816 + 0.622253i \(0.786217\pi\)
\(992\) 6034.83 + 3484.21i 0.193151 + 0.111516i
\(993\) 54821.9i 1.75198i
\(994\) −18388.3 + 5448.71i −0.586761 + 0.173866i
\(995\) 0 0
\(996\) −19882.8 + 34438.0i −0.632540 + 1.09559i
\(997\) −31788.7 + 18353.2i −1.00979 + 0.583000i −0.911129 0.412121i \(-0.864788\pi\)
−0.0986572 + 0.995121i \(0.531455\pi\)
\(998\) −20247.0 + 11689.6i −0.642192 + 0.370770i
\(999\) −4418.68 + 7653.39i −0.139941 + 0.242385i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.4.j.h.149.1 12
5.2 odd 4 350.4.e.j.51.3 yes 6
5.3 odd 4 350.4.e.i.51.1 6
5.4 even 2 inner 350.4.j.h.149.6 12
7.4 even 3 inner 350.4.j.h.249.6 12
35.2 odd 12 2450.4.a.cc.1.1 3
35.4 even 6 inner 350.4.j.h.249.1 12
35.12 even 12 2450.4.a.cd.1.3 3
35.18 odd 12 350.4.e.i.151.1 yes 6
35.23 odd 12 2450.4.a.ci.1.3 3
35.32 odd 12 350.4.e.j.151.3 yes 6
35.33 even 12 2450.4.a.ch.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
350.4.e.i.51.1 6 5.3 odd 4
350.4.e.i.151.1 yes 6 35.18 odd 12
350.4.e.j.51.3 yes 6 5.2 odd 4
350.4.e.j.151.3 yes 6 35.32 odd 12
350.4.j.h.149.1 12 1.1 even 1 trivial
350.4.j.h.149.6 12 5.4 even 2 inner
350.4.j.h.249.1 12 35.4 even 6 inner
350.4.j.h.249.6 12 7.4 even 3 inner
2450.4.a.cc.1.1 3 35.2 odd 12
2450.4.a.cd.1.3 3 35.12 even 12
2450.4.a.ch.1.1 3 35.33 even 12
2450.4.a.ci.1.3 3 35.23 odd 12