Properties

Label 2450.2.c.c.99.2
Level 24502450
Weight 22
Character 2450.99
Analytic conductor 19.56319.563
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2450,2,Mod(99,2450)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2450, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2450.99"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 2450=25272 2450 = 2 \cdot 5^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2450.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,-4,0,0,-2,0,0,0,0,0,0,2,0,0,4,0,0,0,0,4,0,-8,0,0, 12,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(31)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 19.563348495219.5633484952
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 99.2
Root 1.00000i1.00000i of defining polynomial
Character χ\chi == 2450.99
Dual form 2450.2.c.c.99.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq2+2.00000iq31.00000q42.00000q61.00000iq81.00000q92.00000iq12+4.00000iq13+1.00000q16+6.00000iq171.00000iq18+2.00000q19+2.00000q244.00000q26+4.00000iq27+6.00000q29+4.00000q31+1.00000iq326.00000q34+1.00000q362.00000iq37+2.00000iq388.00000q396.00000q41+8.00000iq4312.0000iq47+2.00000iq4812.0000q514.00000iq52+6.00000iq534.00000q54+4.00000iq57+6.00000iq586.00000q598.00000q61+4.00000iq621.00000q64+4.00000iq676.00000iq68+1.00000iq722.00000iq73+2.00000q742.00000q768.00000iq788.00000q7911.0000q816.00000iq82+6.00000iq838.00000q86+12.0000iq876.00000q89+8.00000iq93+12.0000q942.00000q9610.0000iq97+O(q100)q+1.00000i q^{2} +2.00000i q^{3} -1.00000 q^{4} -2.00000 q^{6} -1.00000i q^{8} -1.00000 q^{9} -2.00000i q^{12} +4.00000i q^{13} +1.00000 q^{16} +6.00000i q^{17} -1.00000i q^{18} +2.00000 q^{19} +2.00000 q^{24} -4.00000 q^{26} +4.00000i q^{27} +6.00000 q^{29} +4.00000 q^{31} +1.00000i q^{32} -6.00000 q^{34} +1.00000 q^{36} -2.00000i q^{37} +2.00000i q^{38} -8.00000 q^{39} -6.00000 q^{41} +8.00000i q^{43} -12.0000i q^{47} +2.00000i q^{48} -12.0000 q^{51} -4.00000i q^{52} +6.00000i q^{53} -4.00000 q^{54} +4.00000i q^{57} +6.00000i q^{58} -6.00000 q^{59} -8.00000 q^{61} +4.00000i q^{62} -1.00000 q^{64} +4.00000i q^{67} -6.00000i q^{68} +1.00000i q^{72} -2.00000i q^{73} +2.00000 q^{74} -2.00000 q^{76} -8.00000i q^{78} -8.00000 q^{79} -11.0000 q^{81} -6.00000i q^{82} +6.00000i q^{83} -8.00000 q^{86} +12.0000i q^{87} -6.00000 q^{89} +8.00000i q^{93} +12.0000 q^{94} -2.00000 q^{96} -10.0000i q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q44q62q9+2q16+4q19+4q248q26+12q29+8q3112q34+2q3616q3912q4124q518q5412q5916q612q64+4q96+O(q100) 2 q - 2 q^{4} - 4 q^{6} - 2 q^{9} + 2 q^{16} + 4 q^{19} + 4 q^{24} - 8 q^{26} + 12 q^{29} + 8 q^{31} - 12 q^{34} + 2 q^{36} - 16 q^{39} - 12 q^{41} - 24 q^{51} - 8 q^{54} - 12 q^{59} - 16 q^{61} - 2 q^{64}+ \cdots - 4 q^{96}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2450Z)×\left(\mathbb{Z}/2450\mathbb{Z}\right)^\times.

nn 101101 11771177
χ(n)\chi(n) 11 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 0.707107i
33 2.00000i 1.15470i 0.816497 + 0.577350i 0.195913π0.195913\pi
−0.816497 + 0.577350i 0.804087π0.804087\pi
44 −1.00000 −0.500000
55 0 0
66 −2.00000 −0.816497
77 0 0
88 − 1.00000i − 0.353553i
99 −1.00000 −0.333333
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 − 2.00000i − 0.577350i
1313 4.00000i 1.10940i 0.832050 + 0.554700i 0.187167π0.187167\pi
−0.832050 + 0.554700i 0.812833π0.812833\pi
1414 0 0
1515 0 0
1616 1.00000 0.250000
1717 6.00000i 1.45521i 0.685994 + 0.727607i 0.259367π0.259367\pi
−0.685994 + 0.727607i 0.740633π0.740633\pi
1818 − 1.00000i − 0.235702i
1919 2.00000 0.458831 0.229416 0.973329i 0.426318π-0.426318\pi
0.229416 + 0.973329i 0.426318π0.426318\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 2.00000 0.408248
2525 0 0
2626 −4.00000 −0.784465
2727 4.00000i 0.769800i
2828 0 0
2929 6.00000 1.11417 0.557086 0.830455i 0.311919π-0.311919\pi
0.557086 + 0.830455i 0.311919π0.311919\pi
3030 0 0
3131 4.00000 0.718421 0.359211 0.933257i 0.383046π-0.383046\pi
0.359211 + 0.933257i 0.383046π0.383046\pi
3232 1.00000i 0.176777i
3333 0 0
3434 −6.00000 −1.02899
3535 0 0
3636 1.00000 0.166667
3737 − 2.00000i − 0.328798i −0.986394 0.164399i 0.947432π-0.947432\pi
0.986394 0.164399i 0.0525685π-0.0525685\pi
3838 2.00000i 0.324443i
3939 −8.00000 −1.28103
4040 0 0
4141 −6.00000 −0.937043 −0.468521 0.883452i 0.655213π-0.655213\pi
−0.468521 + 0.883452i 0.655213π0.655213\pi
4242 0 0
4343 8.00000i 1.21999i 0.792406 + 0.609994i 0.208828π0.208828\pi
−0.792406 + 0.609994i 0.791172π0.791172\pi
4444 0 0
4545 0 0
4646 0 0
4747 − 12.0000i − 1.75038i −0.483779 0.875190i 0.660736π-0.660736\pi
0.483779 0.875190i 0.339264π-0.339264\pi
4848 2.00000i 0.288675i
4949 0 0
5050 0 0
5151 −12.0000 −1.68034
5252 − 4.00000i − 0.554700i
5353 6.00000i 0.824163i 0.911147 + 0.412082i 0.135198π0.135198\pi
−0.911147 + 0.412082i 0.864802π0.864802\pi
5454 −4.00000 −0.544331
5555 0 0
5656 0 0
5757 4.00000i 0.529813i
5858 6.00000i 0.787839i
5959 −6.00000 −0.781133 −0.390567 0.920575i 0.627721π-0.627721\pi
−0.390567 + 0.920575i 0.627721π0.627721\pi
6060 0 0
6161 −8.00000 −1.02430 −0.512148 0.858898i 0.671150π-0.671150\pi
−0.512148 + 0.858898i 0.671150π0.671150\pi
6262 4.00000i 0.508001i
6363 0 0
6464 −1.00000 −0.125000
6565 0 0
6666 0 0
6767 4.00000i 0.488678i 0.969690 + 0.244339i 0.0785709π0.0785709\pi
−0.969690 + 0.244339i 0.921429π0.921429\pi
6868 − 6.00000i − 0.727607i
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 1.00000i 0.117851i
7373 − 2.00000i − 0.234082i −0.993127 0.117041i 0.962659π-0.962659\pi
0.993127 0.117041i 0.0373409π-0.0373409\pi
7474 2.00000 0.232495
7575 0 0
7676 −2.00000 −0.229416
7777 0 0
7878 − 8.00000i − 0.905822i
7979 −8.00000 −0.900070 −0.450035 0.893011i 0.648589π-0.648589\pi
−0.450035 + 0.893011i 0.648589π0.648589\pi
8080 0 0
8181 −11.0000 −1.22222
8282 − 6.00000i − 0.662589i
8383 6.00000i 0.658586i 0.944228 + 0.329293i 0.106810π0.106810\pi
−0.944228 + 0.329293i 0.893190π0.893190\pi
8484 0 0
8585 0 0
8686 −8.00000 −0.862662
8787 12.0000i 1.28654i
8888 0 0
8989 −6.00000 −0.635999 −0.317999 0.948091i 0.603011π-0.603011\pi
−0.317999 + 0.948091i 0.603011π0.603011\pi
9090 0 0
9191 0 0
9292 0 0
9393 8.00000i 0.829561i
9494 12.0000 1.23771
9595 0 0
9696 −2.00000 −0.204124
9797 − 10.0000i − 1.01535i −0.861550 0.507673i 0.830506π-0.830506\pi
0.861550 0.507673i 0.169494π-0.169494\pi
9898 0 0
9999 0 0
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 − 12.0000i − 1.18818i
103103 4.00000i 0.394132i 0.980390 + 0.197066i 0.0631413π0.0631413\pi
−0.980390 + 0.197066i 0.936859π0.936859\pi
104104 4.00000 0.392232
105105 0 0
106106 −6.00000 −0.582772
107107 − 12.0000i − 1.16008i −0.814587 0.580042i 0.803036π-0.803036\pi
0.814587 0.580042i 0.196964π-0.196964\pi
108108 − 4.00000i − 0.384900i
109109 −2.00000 −0.191565 −0.0957826 0.995402i 0.530535π-0.530535\pi
−0.0957826 + 0.995402i 0.530535π0.530535\pi
110110 0 0
111111 4.00000 0.379663
112112 0 0
113113 6.00000i 0.564433i 0.959351 + 0.282216i 0.0910696π0.0910696\pi
−0.959351 + 0.282216i 0.908930π0.908930\pi
114114 −4.00000 −0.374634
115115 0 0
116116 −6.00000 −0.557086
117117 − 4.00000i − 0.369800i
118118 − 6.00000i − 0.552345i
119119 0 0
120120 0 0
121121 −11.0000 −1.00000
122122 − 8.00000i − 0.724286i
123123 − 12.0000i − 1.08200i
124124 −4.00000 −0.359211
125125 0 0
126126 0 0
127127 16.0000i 1.41977i 0.704317 + 0.709885i 0.251253π0.251253\pi
−0.704317 + 0.709885i 0.748747π0.748747\pi
128128 − 1.00000i − 0.0883883i
129129 −16.0000 −1.40872
130130 0 0
131131 −18.0000 −1.57267 −0.786334 0.617802i 0.788023π-0.788023\pi
−0.786334 + 0.617802i 0.788023π0.788023\pi
132132 0 0
133133 0 0
134134 −4.00000 −0.345547
135135 0 0
136136 6.00000 0.514496
137137 − 18.0000i − 1.53784i −0.639343 0.768922i 0.720793π-0.720793\pi
0.639343 0.768922i 0.279207π-0.279207\pi
138138 0 0
139139 14.0000 1.18746 0.593732 0.804663i 0.297654π-0.297654\pi
0.593732 + 0.804663i 0.297654π0.297654\pi
140140 0 0
141141 24.0000 2.02116
142142 0 0
143143 0 0
144144 −1.00000 −0.0833333
145145 0 0
146146 2.00000 0.165521
147147 0 0
148148 2.00000i 0.164399i
149149 18.0000 1.47462 0.737309 0.675556i 0.236096π-0.236096\pi
0.737309 + 0.675556i 0.236096π0.236096\pi
150150 0 0
151151 8.00000 0.651031 0.325515 0.945537i 0.394462π-0.394462\pi
0.325515 + 0.945537i 0.394462π0.394462\pi
152152 − 2.00000i − 0.162221i
153153 − 6.00000i − 0.485071i
154154 0 0
155155 0 0
156156 8.00000 0.640513
157157 − 4.00000i − 0.319235i −0.987179 0.159617i 0.948974π-0.948974\pi
0.987179 0.159617i 0.0510260π-0.0510260\pi
158158 − 8.00000i − 0.636446i
159159 −12.0000 −0.951662
160160 0 0
161161 0 0
162162 − 11.0000i − 0.864242i
163163 − 16.0000i − 1.25322i −0.779334 0.626608i 0.784443π-0.784443\pi
0.779334 0.626608i 0.215557π-0.215557\pi
164164 6.00000 0.468521
165165 0 0
166166 −6.00000 −0.465690
167167 − 12.0000i − 0.928588i −0.885681 0.464294i 0.846308π-0.846308\pi
0.885681 0.464294i 0.153692π-0.153692\pi
168168 0 0
169169 −3.00000 −0.230769
170170 0 0
171171 −2.00000 −0.152944
172172 − 8.00000i − 0.609994i
173173 12.0000i 0.912343i 0.889892 + 0.456172i 0.150780π0.150780\pi
−0.889892 + 0.456172i 0.849220π0.849220\pi
174174 −12.0000 −0.909718
175175 0 0
176176 0 0
177177 − 12.0000i − 0.901975i
178178 − 6.00000i − 0.449719i
179179 12.0000 0.896922 0.448461 0.893802i 0.351972π-0.351972\pi
0.448461 + 0.893802i 0.351972π0.351972\pi
180180 0 0
181181 −20.0000 −1.48659 −0.743294 0.668965i 0.766738π-0.766738\pi
−0.743294 + 0.668965i 0.766738π0.766738\pi
182182 0 0
183183 − 16.0000i − 1.18275i
184184 0 0
185185 0 0
186186 −8.00000 −0.586588
187187 0 0
188188 12.0000i 0.875190i
189189 0 0
190190 0 0
191191 24.0000 1.73658 0.868290 0.496058i 0.165220π-0.165220\pi
0.868290 + 0.496058i 0.165220π0.165220\pi
192192 − 2.00000i − 0.144338i
193193 14.0000i 1.00774i 0.863779 + 0.503871i 0.168091π0.168091\pi
−0.863779 + 0.503871i 0.831909π0.831909\pi
194194 10.0000 0.717958
195195 0 0
196196 0 0
197197 18.0000i 1.28245i 0.767354 + 0.641223i 0.221573π0.221573\pi
−0.767354 + 0.641223i 0.778427π0.778427\pi
198198 0 0
199199 20.0000 1.41776 0.708881 0.705328i 0.249200π-0.249200\pi
0.708881 + 0.705328i 0.249200π0.249200\pi
200200 0 0
201201 −8.00000 −0.564276
202202 0 0
203203 0 0
204204 12.0000 0.840168
205205 0 0
206206 −4.00000 −0.278693
207207 0 0
208208 4.00000i 0.277350i
209209 0 0
210210 0 0
211211 −4.00000 −0.275371 −0.137686 0.990476i 0.543966π-0.543966\pi
−0.137686 + 0.990476i 0.543966π0.543966\pi
212212 − 6.00000i − 0.412082i
213213 0 0
214214 12.0000 0.820303
215215 0 0
216216 4.00000 0.272166
217217 0 0
218218 − 2.00000i − 0.135457i
219219 4.00000 0.270295
220220 0 0
221221 −24.0000 −1.61441
222222 4.00000i 0.268462i
223223 − 8.00000i − 0.535720i −0.963458 0.267860i 0.913684π-0.913684\pi
0.963458 0.267860i 0.0863164π-0.0863164\pi
224224 0 0
225225 0 0
226226 −6.00000 −0.399114
227227 18.0000i 1.19470i 0.801980 + 0.597351i 0.203780π0.203780\pi
−0.801980 + 0.597351i 0.796220π0.796220\pi
228228 − 4.00000i − 0.264906i
229229 −4.00000 −0.264327 −0.132164 0.991228i 0.542192π-0.542192\pi
−0.132164 + 0.991228i 0.542192π0.542192\pi
230230 0 0
231231 0 0
232232 − 6.00000i − 0.393919i
233233 − 6.00000i − 0.393073i −0.980497 0.196537i 0.937031π-0.937031\pi
0.980497 0.196537i 0.0629694π-0.0629694\pi
234234 4.00000 0.261488
235235 0 0
236236 6.00000 0.390567
237237 − 16.0000i − 1.03931i
238238 0 0
239239 −24.0000 −1.55243 −0.776215 0.630468i 0.782863π-0.782863\pi
−0.776215 + 0.630468i 0.782863π0.782863\pi
240240 0 0
241241 10.0000 0.644157 0.322078 0.946713i 0.395619π-0.395619\pi
0.322078 + 0.946713i 0.395619π0.395619\pi
242242 − 11.0000i − 0.707107i
243243 − 10.0000i − 0.641500i
244244 8.00000 0.512148
245245 0 0
246246 12.0000 0.765092
247247 8.00000i 0.509028i
248248 − 4.00000i − 0.254000i
249249 −12.0000 −0.760469
250250 0 0
251251 18.0000 1.13615 0.568075 0.822977i 0.307688π-0.307688\pi
0.568075 + 0.822977i 0.307688π0.307688\pi
252252 0 0
253253 0 0
254254 −16.0000 −1.00393
255255 0 0
256256 1.00000 0.0625000
257257 18.0000i 1.12281i 0.827541 + 0.561405i 0.189739π0.189739\pi
−0.827541 + 0.561405i 0.810261π0.810261\pi
258258 − 16.0000i − 0.996116i
259259 0 0
260260 0 0
261261 −6.00000 −0.371391
262262 − 18.0000i − 1.11204i
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 − 12.0000i − 0.734388i
268268 − 4.00000i − 0.244339i
269269 −12.0000 −0.731653 −0.365826 0.930683i 0.619214π-0.619214\pi
−0.365826 + 0.930683i 0.619214π0.619214\pi
270270 0 0
271271 16.0000 0.971931 0.485965 0.873978i 0.338468π-0.338468\pi
0.485965 + 0.873978i 0.338468π0.338468\pi
272272 6.00000i 0.363803i
273273 0 0
274274 18.0000 1.08742
275275 0 0
276276 0 0
277277 10.0000i 0.600842i 0.953807 + 0.300421i 0.0971271π0.0971271\pi
−0.953807 + 0.300421i 0.902873π0.902873\pi
278278 14.0000i 0.839664i
279279 −4.00000 −0.239474
280280 0 0
281281 −6.00000 −0.357930 −0.178965 0.983855i 0.557275π-0.557275\pi
−0.178965 + 0.983855i 0.557275π0.557275\pi
282282 24.0000i 1.42918i
283283 22.0000i 1.30776i 0.756596 + 0.653882i 0.226861π0.226861\pi
−0.756596 + 0.653882i 0.773139π0.773139\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 − 1.00000i − 0.0589256i
289289 −19.0000 −1.11765
290290 0 0
291291 20.0000 1.17242
292292 2.00000i 0.117041i
293293 − 24.0000i − 1.40209i −0.713115 0.701047i 0.752716π-0.752716\pi
0.713115 0.701047i 0.247284π-0.247284\pi
294294 0 0
295295 0 0
296296 −2.00000 −0.116248
297297 0 0
298298 18.0000i 1.04271i
299299 0 0
300300 0 0
301301 0 0
302302 8.00000i 0.460348i
303303 0 0
304304 2.00000 0.114708
305305 0 0
306306 6.00000 0.342997
307307 2.00000i 0.114146i 0.998370 + 0.0570730i 0.0181768π0.0181768\pi
−0.998370 + 0.0570730i 0.981823π0.981823\pi
308308 0 0
309309 −8.00000 −0.455104
310310 0 0
311311 24.0000 1.36092 0.680458 0.732787i 0.261781π-0.261781\pi
0.680458 + 0.732787i 0.261781π0.261781\pi
312312 8.00000i 0.452911i
313313 10.0000i 0.565233i 0.959233 + 0.282617i 0.0912024π0.0912024\pi
−0.959233 + 0.282617i 0.908798π0.908798\pi
314314 4.00000 0.225733
315315 0 0
316316 8.00000 0.450035
317317 − 6.00000i − 0.336994i −0.985702 0.168497i 0.946109π-0.946109\pi
0.985702 0.168497i 0.0538913π-0.0538913\pi
318318 − 12.0000i − 0.672927i
319319 0 0
320320 0 0
321321 24.0000 1.33955
322322 0 0
323323 12.0000i 0.667698i
324324 11.0000 0.611111
325325 0 0
326326 16.0000 0.886158
327327 − 4.00000i − 0.221201i
328328 6.00000i 0.331295i
329329 0 0
330330 0 0
331331 8.00000 0.439720 0.219860 0.975531i 0.429440π-0.429440\pi
0.219860 + 0.975531i 0.429440π0.429440\pi
332332 − 6.00000i − 0.329293i
333333 2.00000i 0.109599i
334334 12.0000 0.656611
335335 0 0
336336 0 0
337337 − 14.0000i − 0.762629i −0.924445 0.381314i 0.875472π-0.875472\pi
0.924445 0.381314i 0.124528π-0.124528\pi
338338 − 3.00000i − 0.163178i
339339 −12.0000 −0.651751
340340 0 0
341341 0 0
342342 − 2.00000i − 0.108148i
343343 0 0
344344 8.00000 0.431331
345345 0 0
346346 −12.0000 −0.645124
347347 24.0000i 1.28839i 0.764862 + 0.644194i 0.222807π0.222807\pi
−0.764862 + 0.644194i 0.777193π0.777193\pi
348348 − 12.0000i − 0.643268i
349349 −28.0000 −1.49881 −0.749403 0.662114i 0.769659π-0.769659\pi
−0.749403 + 0.662114i 0.769659π0.769659\pi
350350 0 0
351351 −16.0000 −0.854017
352352 0 0
353353 − 18.0000i − 0.958043i −0.877803 0.479022i 0.840992π-0.840992\pi
0.877803 0.479022i 0.159008π-0.159008\pi
354354 12.0000 0.637793
355355 0 0
356356 6.00000 0.317999
357357 0 0
358358 12.0000i 0.634220i
359359 24.0000 1.26667 0.633336 0.773877i 0.281685π-0.281685\pi
0.633336 + 0.773877i 0.281685π0.281685\pi
360360 0 0
361361 −15.0000 −0.789474
362362 − 20.0000i − 1.05118i
363363 − 22.0000i − 1.15470i
364364 0 0
365365 0 0
366366 16.0000 0.836333
367367 8.00000i 0.417597i 0.977959 + 0.208798i 0.0669552π0.0669552\pi
−0.977959 + 0.208798i 0.933045π0.933045\pi
368368 0 0
369369 6.00000 0.312348
370370 0 0
371371 0 0
372372 − 8.00000i − 0.414781i
373373 14.0000i 0.724893i 0.932005 + 0.362446i 0.118058π0.118058\pi
−0.932005 + 0.362446i 0.881942π0.881942\pi
374374 0 0
375375 0 0
376376 −12.0000 −0.618853
377377 24.0000i 1.23606i
378378 0 0
379379 16.0000 0.821865 0.410932 0.911666i 0.365203π-0.365203\pi
0.410932 + 0.911666i 0.365203π0.365203\pi
380380 0 0
381381 −32.0000 −1.63941
382382 24.0000i 1.22795i
383383 − 36.0000i − 1.83951i −0.392488 0.919757i 0.628386π-0.628386\pi
0.392488 0.919757i 0.371614π-0.371614\pi
384384 2.00000 0.102062
385385 0 0
386386 −14.0000 −0.712581
387387 − 8.00000i − 0.406663i
388388 10.0000i 0.507673i
389389 −18.0000 −0.912636 −0.456318 0.889817i 0.650832π-0.650832\pi
−0.456318 + 0.889817i 0.650832π0.650832\pi
390390 0 0
391391 0 0
392392 0 0
393393 − 36.0000i − 1.81596i
394394 −18.0000 −0.906827
395395 0 0
396396 0 0
397397 20.0000i 1.00377i 0.864934 + 0.501886i 0.167360π0.167360\pi
−0.864934 + 0.501886i 0.832640π0.832640\pi
398398 20.0000i 1.00251i
399399 0 0
400400 0 0
401401 −18.0000 −0.898877 −0.449439 0.893311i 0.648376π-0.648376\pi
−0.449439 + 0.893311i 0.648376π0.648376\pi
402402 − 8.00000i − 0.399004i
403403 16.0000i 0.797017i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 12.0000i 0.594089i
409409 14.0000 0.692255 0.346128 0.938187i 0.387496π-0.387496\pi
0.346128 + 0.938187i 0.387496π0.387496\pi
410410 0 0
411411 36.0000 1.77575
412412 − 4.00000i − 0.197066i
413413 0 0
414414 0 0
415415 0 0
416416 −4.00000 −0.196116
417417 28.0000i 1.37117i
418418 0 0
419419 6.00000 0.293119 0.146560 0.989202i 0.453180π-0.453180\pi
0.146560 + 0.989202i 0.453180π0.453180\pi
420420 0 0
421421 −10.0000 −0.487370 −0.243685 0.969854i 0.578356π-0.578356\pi
−0.243685 + 0.969854i 0.578356π0.578356\pi
422422 − 4.00000i − 0.194717i
423423 12.0000i 0.583460i
424424 6.00000 0.291386
425425 0 0
426426 0 0
427427 0 0
428428 12.0000i 0.580042i
429429 0 0
430430 0 0
431431 24.0000 1.15604 0.578020 0.816023i 0.303826π-0.303826\pi
0.578020 + 0.816023i 0.303826π0.303826\pi
432432 4.00000i 0.192450i
433433 34.0000i 1.63394i 0.576683 + 0.816968i 0.304347π0.304347\pi
−0.576683 + 0.816968i 0.695653π0.695653\pi
434434 0 0
435435 0 0
436436 2.00000 0.0957826
437437 0 0
438438 4.00000i 0.191127i
439439 8.00000 0.381819 0.190910 0.981608i 0.438856π-0.438856\pi
0.190910 + 0.981608i 0.438856π0.438856\pi
440440 0 0
441441 0 0
442442 − 24.0000i − 1.14156i
443443 − 12.0000i − 0.570137i −0.958507 0.285069i 0.907984π-0.907984\pi
0.958507 0.285069i 0.0920164π-0.0920164\pi
444444 −4.00000 −0.189832
445445 0 0
446446 8.00000 0.378811
447447 36.0000i 1.70274i
448448 0 0
449449 −18.0000 −0.849473 −0.424736 0.905317i 0.639633π-0.639633\pi
−0.424736 + 0.905317i 0.639633π0.639633\pi
450450 0 0
451451 0 0
452452 − 6.00000i − 0.282216i
453453 16.0000i 0.751746i
454454 −18.0000 −0.844782
455455 0 0
456456 4.00000 0.187317
457457 10.0000i 0.467780i 0.972263 + 0.233890i 0.0751456π0.0751456\pi
−0.972263 + 0.233890i 0.924854π0.924854\pi
458458 − 4.00000i − 0.186908i
459459 −24.0000 −1.12022
460460 0 0
461461 −12.0000 −0.558896 −0.279448 0.960161i 0.590151π-0.590151\pi
−0.279448 + 0.960161i 0.590151π0.590151\pi
462462 0 0
463463 32.0000i 1.48717i 0.668644 + 0.743583i 0.266875π0.266875\pi
−0.668644 + 0.743583i 0.733125π0.733125\pi
464464 6.00000 0.278543
465465 0 0
466466 6.00000 0.277945
467467 − 6.00000i − 0.277647i −0.990317 0.138823i 0.955668π-0.955668\pi
0.990317 0.138823i 0.0443321π-0.0443321\pi
468468 4.00000i 0.184900i
469469 0 0
470470 0 0
471471 8.00000 0.368621
472472 6.00000i 0.276172i
473473 0 0
474474 16.0000 0.734904
475475 0 0
476476 0 0
477477 − 6.00000i − 0.274721i
478478 − 24.0000i − 1.09773i
479479 −36.0000 −1.64488 −0.822441 0.568850i 0.807388π-0.807388\pi
−0.822441 + 0.568850i 0.807388π0.807388\pi
480480 0 0
481481 8.00000 0.364769
482482 10.0000i 0.455488i
483483 0 0
484484 11.0000 0.500000
485485 0 0
486486 10.0000 0.453609
487487 16.0000i 0.725029i 0.931978 + 0.362515i 0.118082π0.118082\pi
−0.931978 + 0.362515i 0.881918π0.881918\pi
488488 8.00000i 0.362143i
489489 32.0000 1.44709
490490 0 0
491491 −12.0000 −0.541552 −0.270776 0.962642i 0.587280π-0.587280\pi
−0.270776 + 0.962642i 0.587280π0.587280\pi
492492 12.0000i 0.541002i
493493 36.0000i 1.62136i
494494 −8.00000 −0.359937
495495 0 0
496496 4.00000 0.179605
497497 0 0
498498 − 12.0000i − 0.537733i
499499 4.00000 0.179065 0.0895323 0.995984i 0.471463π-0.471463\pi
0.0895323 + 0.995984i 0.471463π0.471463\pi
500500 0 0
501501 24.0000 1.07224
502502 18.0000i 0.803379i
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 6.00000i − 0.266469i
508508 − 16.0000i − 0.709885i
509509 36.0000 1.59567 0.797836 0.602875i 0.205978π-0.205978\pi
0.797836 + 0.602875i 0.205978π0.205978\pi
510510 0 0
511511 0 0
512512 1.00000i 0.0441942i
513513 8.00000i 0.353209i
514514 −18.0000 −0.793946
515515 0 0
516516 16.0000 0.704361
517517 0 0
518518 0 0
519519 −24.0000 −1.05348
520520 0 0
521521 −6.00000 −0.262865 −0.131432 0.991325i 0.541958π-0.541958\pi
−0.131432 + 0.991325i 0.541958π0.541958\pi
522522 − 6.00000i − 0.262613i
523523 − 2.00000i − 0.0874539i −0.999044 0.0437269i 0.986077π-0.986077\pi
0.999044 0.0437269i 0.0139232π-0.0139232\pi
524524 18.0000 0.786334
525525 0 0
526526 0 0
527527 24.0000i 1.04546i
528528 0 0
529529 23.0000 1.00000
530530 0 0
531531 6.00000 0.260378
532532 0 0
533533 − 24.0000i − 1.03956i
534534 12.0000 0.519291
535535 0 0
536536 4.00000 0.172774
537537 24.0000i 1.03568i
538538 − 12.0000i − 0.517357i
539539 0 0
540540 0 0
541541 38.0000 1.63375 0.816874 0.576816i 0.195705π-0.195705\pi
0.816874 + 0.576816i 0.195705π0.195705\pi
542542 16.0000i 0.687259i
543543 − 40.0000i − 1.71656i
544544 −6.00000 −0.257248
545545 0 0
546546 0 0
547547 − 8.00000i − 0.342055i −0.985266 0.171028i 0.945291π-0.945291\pi
0.985266 0.171028i 0.0547087π-0.0547087\pi
548548 18.0000i 0.768922i
549549 8.00000 0.341432
550550 0 0
551551 12.0000 0.511217
552552 0 0
553553 0 0
554554 −10.0000 −0.424859
555555 0 0
556556 −14.0000 −0.593732
557557 − 6.00000i − 0.254228i −0.991888 0.127114i 0.959429π-0.959429\pi
0.991888 0.127114i 0.0405714π-0.0405714\pi
558558 − 4.00000i − 0.169334i
559559 −32.0000 −1.35346
560560 0 0
561561 0 0
562562 − 6.00000i − 0.253095i
563563 − 30.0000i − 1.26435i −0.774826 0.632175i 0.782163π-0.782163\pi
0.774826 0.632175i 0.217837π-0.217837\pi
564564 −24.0000 −1.01058
565565 0 0
566566 −22.0000 −0.924729
567567 0 0
568568 0 0
569569 −6.00000 −0.251533 −0.125767 0.992060i 0.540139π-0.540139\pi
−0.125767 + 0.992060i 0.540139π0.540139\pi
570570 0 0
571571 32.0000 1.33916 0.669579 0.742741i 0.266474π-0.266474\pi
0.669579 + 0.742741i 0.266474π0.266474\pi
572572 0 0
573573 48.0000i 2.00523i
574574 0 0
575575 0 0
576576 1.00000 0.0416667
577577 2.00000i 0.0832611i 0.999133 + 0.0416305i 0.0132552π0.0132552\pi
−0.999133 + 0.0416305i 0.986745π0.986745\pi
578578 − 19.0000i − 0.790296i
579579 −28.0000 −1.16364
580580 0 0
581581 0 0
582582 20.0000i 0.829027i
583583 0 0
584584 −2.00000 −0.0827606
585585 0 0
586586 24.0000 0.991431
587587 − 42.0000i − 1.73353i −0.498721 0.866763i 0.666197π-0.666197\pi
0.498721 0.866763i 0.333803π-0.333803\pi
588588 0 0
589589 8.00000 0.329634
590590 0 0
591591 −36.0000 −1.48084
592592 − 2.00000i − 0.0821995i
593593 6.00000i 0.246390i 0.992382 + 0.123195i 0.0393141π0.0393141\pi
−0.992382 + 0.123195i 0.960686π0.960686\pi
594594 0 0
595595 0 0
596596 −18.0000 −0.737309
597597 40.0000i 1.63709i
598598 0 0
599599 24.0000 0.980613 0.490307 0.871550i 0.336885π-0.336885\pi
0.490307 + 0.871550i 0.336885π0.336885\pi
600600 0 0
601601 −26.0000 −1.06056 −0.530281 0.847822i 0.677914π-0.677914\pi
−0.530281 + 0.847822i 0.677914π0.677914\pi
602602 0 0
603603 − 4.00000i − 0.162893i
604604 −8.00000 −0.325515
605605 0 0
606606 0 0
607607 32.0000i 1.29884i 0.760430 + 0.649420i 0.224988π0.224988\pi
−0.760430 + 0.649420i 0.775012π0.775012\pi
608608 2.00000i 0.0811107i
609609 0 0
610610 0 0
611611 48.0000 1.94187
612612 6.00000i 0.242536i
613613 2.00000i 0.0807792i 0.999184 + 0.0403896i 0.0128599π0.0128599\pi
−0.999184 + 0.0403896i 0.987140π0.987140\pi
614614 −2.00000 −0.0807134
615615 0 0
616616 0 0
617617 − 6.00000i − 0.241551i −0.992680 0.120775i 0.961462π-0.961462\pi
0.992680 0.120775i 0.0385381π-0.0385381\pi
618618 − 8.00000i − 0.321807i
619619 26.0000 1.04503 0.522514 0.852631i 0.324994π-0.324994\pi
0.522514 + 0.852631i 0.324994π0.324994\pi
620620 0 0
621621 0 0
622622 24.0000i 0.962312i
623623 0 0
624624 −8.00000 −0.320256
625625 0 0
626626 −10.0000 −0.399680
627627 0 0
628628 4.00000i 0.159617i
629629 12.0000 0.478471
630630 0 0
631631 −16.0000 −0.636950 −0.318475 0.947931i 0.603171π-0.603171\pi
−0.318475 + 0.947931i 0.603171π0.603171\pi
632632 8.00000i 0.318223i
633633 − 8.00000i − 0.317971i
634634 6.00000 0.238290
635635 0 0
636636 12.0000 0.475831
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −18.0000 −0.710957 −0.355479 0.934684i 0.615682π-0.615682\pi
−0.355479 + 0.934684i 0.615682π0.615682\pi
642642 24.0000i 0.947204i
643643 − 14.0000i − 0.552106i −0.961142 0.276053i 0.910973π-0.910973\pi
0.961142 0.276053i 0.0890266π-0.0890266\pi
644644 0 0
645645 0 0
646646 −12.0000 −0.472134
647647 − 12.0000i − 0.471769i −0.971781 0.235884i 0.924201π-0.924201\pi
0.971781 0.235884i 0.0757987π-0.0757987\pi
648648 11.0000i 0.432121i
649649 0 0
650650 0 0
651651 0 0
652652 16.0000i 0.626608i
653653 18.0000i 0.704394i 0.935926 + 0.352197i 0.114565π0.114565\pi
−0.935926 + 0.352197i 0.885435π0.885435\pi
654654 4.00000 0.156412
655655 0 0
656656 −6.00000 −0.234261
657657 2.00000i 0.0780274i
658658 0 0
659659 24.0000 0.934907 0.467454 0.884018i 0.345171π-0.345171\pi
0.467454 + 0.884018i 0.345171π0.345171\pi
660660 0 0
661661 40.0000 1.55582 0.777910 0.628376i 0.216280π-0.216280\pi
0.777910 + 0.628376i 0.216280π0.216280\pi
662662 8.00000i 0.310929i
663663 − 48.0000i − 1.86417i
664664 6.00000 0.232845
665665 0 0
666666 −2.00000 −0.0774984
667667 0 0
668668 12.0000i 0.464294i
669669 16.0000 0.618596
670670 0 0
671671 0 0
672672 0 0
673673 26.0000i 1.00223i 0.865382 + 0.501113i 0.167076π0.167076\pi
−0.865382 + 0.501113i 0.832924π0.832924\pi
674674 14.0000 0.539260
675675 0 0
676676 3.00000 0.115385
677677 − 12.0000i − 0.461197i −0.973049 0.230599i 0.925932π-0.925932\pi
0.973049 0.230599i 0.0740685π-0.0740685\pi
678678 − 12.0000i − 0.460857i
679679 0 0
680680 0 0
681681 −36.0000 −1.37952
682682 0 0
683683 − 12.0000i − 0.459167i −0.973289 0.229584i 0.926264π-0.926264\pi
0.973289 0.229584i 0.0737364π-0.0737364\pi
684684 2.00000 0.0764719
685685 0 0
686686 0 0
687687 − 8.00000i − 0.305219i
688688 8.00000i 0.304997i
689689 −24.0000 −0.914327
690690 0 0
691691 46.0000 1.74992 0.874961 0.484193i 0.160887π-0.160887\pi
0.874961 + 0.484193i 0.160887π0.160887\pi
692692 − 12.0000i − 0.456172i
693693 0 0
694694 −24.0000 −0.911028
695695 0 0
696696 12.0000 0.454859
697697 − 36.0000i − 1.36360i
698698 − 28.0000i − 1.05982i
699699 12.0000 0.453882
700700 0 0
701701 18.0000 0.679851 0.339925 0.940452i 0.389598π-0.389598\pi
0.339925 + 0.940452i 0.389598π0.389598\pi
702702 − 16.0000i − 0.603881i
703703 − 4.00000i − 0.150863i
704704 0 0
705705 0 0
706706 18.0000 0.677439
707707 0 0
708708 12.0000i 0.450988i
709709 46.0000 1.72757 0.863783 0.503864i 0.168089π-0.168089\pi
0.863783 + 0.503864i 0.168089π0.168089\pi
710710 0 0
711711 8.00000 0.300023
712712 6.00000i 0.224860i
713713 0 0
714714 0 0
715715 0 0
716716 −12.0000 −0.448461
717717 − 48.0000i − 1.79259i
718718 24.0000i 0.895672i
719719 12.0000 0.447524 0.223762 0.974644i 0.428166π-0.428166\pi
0.223762 + 0.974644i 0.428166π0.428166\pi
720720 0 0
721721 0 0
722722 − 15.0000i − 0.558242i
723723 20.0000i 0.743808i
724724 20.0000 0.743294
725725 0 0
726726 22.0000 0.816497
727727 44.0000i 1.63187i 0.578144 + 0.815935i 0.303777π0.303777\pi
−0.578144 + 0.815935i 0.696223π0.696223\pi
728728 0 0
729729 −13.0000 −0.481481
730730 0 0
731731 −48.0000 −1.77534
732732 16.0000i 0.591377i
733733 40.0000i 1.47743i 0.674016 + 0.738717i 0.264568π0.264568\pi
−0.674016 + 0.738717i 0.735432π0.735432\pi
734734 −8.00000 −0.295285
735735 0 0
736736 0 0
737737 0 0
738738 6.00000i 0.220863i
739739 16.0000 0.588570 0.294285 0.955718i 0.404919π-0.404919\pi
0.294285 + 0.955718i 0.404919π0.404919\pi
740740 0 0
741741 −16.0000 −0.587775
742742 0 0
743743 24.0000i 0.880475i 0.897881 + 0.440237i 0.145106π0.145106\pi
−0.897881 + 0.440237i 0.854894π0.854894\pi
744744 8.00000 0.293294
745745 0 0
746746 −14.0000 −0.512576
747747 − 6.00000i − 0.219529i
748748 0 0
749749 0 0
750750 0 0
751751 −40.0000 −1.45962 −0.729810 0.683650i 0.760392π-0.760392\pi
−0.729810 + 0.683650i 0.760392π0.760392\pi
752752 − 12.0000i − 0.437595i
753753 36.0000i 1.31191i
754754 −24.0000 −0.874028
755755 0 0
756756 0 0
757757 − 2.00000i − 0.0726912i −0.999339 0.0363456i 0.988428π-0.988428\pi
0.999339 0.0363456i 0.0115717π-0.0115717\pi
758758 16.0000i 0.581146i
759759 0 0
760760 0 0
761761 18.0000 0.652499 0.326250 0.945284i 0.394215π-0.394215\pi
0.326250 + 0.945284i 0.394215π0.394215\pi
762762 − 32.0000i − 1.15924i
763763 0 0
764764 −24.0000 −0.868290
765765 0 0
766766 36.0000 1.30073
767767 − 24.0000i − 0.866590i
768768 2.00000i 0.0721688i
769769 14.0000 0.504853 0.252426 0.967616i 0.418771π-0.418771\pi
0.252426 + 0.967616i 0.418771π0.418771\pi
770770 0 0
771771 −36.0000 −1.29651
772772 − 14.0000i − 0.503871i
773773 − 24.0000i − 0.863220i −0.902060 0.431610i 0.857946π-0.857946\pi
0.902060 0.431610i 0.142054π-0.142054\pi
774774 8.00000 0.287554
775775 0 0
776776 −10.0000 −0.358979
777777 0 0
778778 − 18.0000i − 0.645331i
779779 −12.0000 −0.429945
780780 0 0
781781 0 0
782782 0 0
783783 24.0000i 0.857690i
784784 0 0
785785 0 0
786786 36.0000 1.28408
787787 − 22.0000i − 0.784215i −0.919919 0.392108i 0.871746π-0.871746\pi
0.919919 0.392108i 0.128254π-0.128254\pi
788788 − 18.0000i − 0.641223i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 − 32.0000i − 1.13635i
794794 −20.0000 −0.709773
795795 0 0
796796 −20.0000 −0.708881
797797 − 12.0000i − 0.425062i −0.977154 0.212531i 0.931829π-0.931829\pi
0.977154 0.212531i 0.0681706π-0.0681706\pi
798798 0 0
799799 72.0000 2.54718
800800 0 0
801801 6.00000 0.212000
802802 − 18.0000i − 0.635602i
803803 0 0
804804 8.00000 0.282138
805805 0 0
806806 −16.0000 −0.563576
807807 − 24.0000i − 0.844840i
808808 0 0
809809 −6.00000 −0.210949 −0.105474 0.994422i 0.533636π-0.533636\pi
−0.105474 + 0.994422i 0.533636π0.533636\pi
810810 0 0
811811 −2.00000 −0.0702295 −0.0351147 0.999383i 0.511180π-0.511180\pi
−0.0351147 + 0.999383i 0.511180π0.511180\pi
812812 0 0
813813 32.0000i 1.12229i
814814 0 0
815815 0 0
816816 −12.0000 −0.420084
817817 16.0000i 0.559769i
818818 14.0000i 0.489499i
819819 0 0
820820 0 0
821821 6.00000 0.209401 0.104701 0.994504i 0.466612π-0.466612\pi
0.104701 + 0.994504i 0.466612π0.466612\pi
822822 36.0000i 1.25564i
823823 − 40.0000i − 1.39431i −0.716919 0.697156i 0.754448π-0.754448\pi
0.716919 0.697156i 0.245552π-0.245552\pi
824824 4.00000 0.139347
825825 0 0
826826 0 0
827827 36.0000i 1.25184i 0.779886 + 0.625921i 0.215277π0.215277\pi
−0.779886 + 0.625921i 0.784723π0.784723\pi
828828 0 0
829829 56.0000 1.94496 0.972480 0.232986i 0.0748495π-0.0748495\pi
0.972480 + 0.232986i 0.0748495π0.0748495\pi
830830 0 0
831831 −20.0000 −0.693792
832832 − 4.00000i − 0.138675i
833833 0 0
834834 −28.0000 −0.969561
835835 0 0
836836 0 0
837837 16.0000i 0.553041i
838838 6.00000i 0.207267i
839839 12.0000 0.414286 0.207143 0.978311i 0.433583π-0.433583\pi
0.207143 + 0.978311i 0.433583π0.433583\pi
840840 0 0
841841 7.00000 0.241379
842842 − 10.0000i − 0.344623i
843843 − 12.0000i − 0.413302i
844844 4.00000 0.137686
845845 0 0
846846 −12.0000 −0.412568
847847 0 0
848848 6.00000i 0.206041i
849849 −44.0000 −1.51008
850850 0 0
851851 0 0
852852 0 0
853853 − 44.0000i − 1.50653i −0.657716 0.753266i 0.728477π-0.728477\pi
0.657716 0.753266i 0.271523π-0.271523\pi
854854 0 0
855855 0 0
856856 −12.0000 −0.410152
857857 − 18.0000i − 0.614868i −0.951569 0.307434i 0.900530π-0.900530\pi
0.951569 0.307434i 0.0994704π-0.0994704\pi
858858 0 0
859859 14.0000 0.477674 0.238837 0.971060i 0.423234π-0.423234\pi
0.238837 + 0.971060i 0.423234π0.423234\pi
860860 0 0
861861 0 0
862862 24.0000i 0.817443i
863863 − 24.0000i − 0.816970i −0.912765 0.408485i 0.866057π-0.866057\pi
0.912765 0.408485i 0.133943π-0.133943\pi
864864 −4.00000 −0.136083
865865 0 0
866866 −34.0000 −1.15537
867867 − 38.0000i − 1.29055i
868868 0 0
869869 0 0
870870 0 0
871871 −16.0000 −0.542139
872872 2.00000i 0.0677285i
873873 10.0000i 0.338449i
874874 0 0
875875 0 0
876876 −4.00000 −0.135147
877877 22.0000i 0.742887i 0.928456 + 0.371444i 0.121137π0.121137\pi
−0.928456 + 0.371444i 0.878863π0.878863\pi
878878 8.00000i 0.269987i
879879 48.0000 1.61900
880880 0 0
881881 54.0000 1.81931 0.909653 0.415369i 0.136347π-0.136347\pi
0.909653 + 0.415369i 0.136347π0.136347\pi
882882 0 0
883883 20.0000i 0.673054i 0.941674 + 0.336527i 0.109252π0.109252\pi
−0.941674 + 0.336527i 0.890748π0.890748\pi
884884 24.0000 0.807207
885885 0 0
886886 12.0000 0.403148
887887 − 36.0000i − 1.20876i −0.796696 0.604381i 0.793421π-0.793421\pi
0.796696 0.604381i 0.206579π-0.206579\pi
888888 − 4.00000i − 0.134231i
889889 0 0
890890 0 0
891891 0 0
892892 8.00000i 0.267860i
893893 − 24.0000i − 0.803129i
894894 −36.0000 −1.20402
895895 0 0
896896 0 0
897897 0 0
898898 − 18.0000i − 0.600668i
899899 24.0000 0.800445
900900 0 0
901901 −36.0000 −1.19933
902902 0 0
903903 0 0
904904 6.00000 0.199557
905905 0 0
906906 −16.0000 −0.531564
907907 − 44.0000i − 1.46100i −0.682915 0.730498i 0.739288π-0.739288\pi
0.682915 0.730498i 0.260712π-0.260712\pi
908908 − 18.0000i − 0.597351i
909909 0 0
910910 0 0
911911 48.0000 1.59031 0.795155 0.606406i 0.207389π-0.207389\pi
0.795155 + 0.606406i 0.207389π0.207389\pi
912912 4.00000i 0.132453i
913913 0 0
914914 −10.0000 −0.330771
915915 0 0
916916 4.00000 0.132164
917917 0 0
918918 − 24.0000i − 0.792118i
919919 −56.0000 −1.84727 −0.923635 0.383274i 0.874797π-0.874797\pi
−0.923635 + 0.383274i 0.874797π0.874797\pi
920920 0 0
921921 −4.00000 −0.131804
922922 − 12.0000i − 0.395199i
923923 0 0
924924 0 0
925925 0 0
926926 −32.0000 −1.05159
927927 − 4.00000i − 0.131377i
928928 6.00000i 0.196960i
929929 6.00000 0.196854 0.0984268 0.995144i 0.468619π-0.468619\pi
0.0984268 + 0.995144i 0.468619π0.468619\pi
930930 0 0
931931 0 0
932932 6.00000i 0.196537i
933933 48.0000i 1.57145i
934934 6.00000 0.196326
935935 0 0
936936 −4.00000 −0.130744
937937 2.00000i 0.0653372i 0.999466 + 0.0326686i 0.0104006π0.0104006\pi
−0.999466 + 0.0326686i 0.989599π0.989599\pi
938938 0 0
939939 −20.0000 −0.652675
940940 0 0
941941 24.0000 0.782378 0.391189 0.920310i 0.372064π-0.372064\pi
0.391189 + 0.920310i 0.372064π0.372064\pi
942942 8.00000i 0.260654i
943943 0 0
944944 −6.00000 −0.195283
945945 0 0
946946 0 0
947947 − 24.0000i − 0.779895i −0.920837 0.389948i 0.872493π-0.872493\pi
0.920837 0.389948i 0.127507π-0.127507\pi
948948 16.0000i 0.519656i
949949 8.00000 0.259691
950950 0 0
951951 12.0000 0.389127
952952 0 0
953953 − 54.0000i − 1.74923i −0.484817 0.874616i 0.661114π-0.661114\pi
0.484817 0.874616i 0.338886π-0.338886\pi
954954 6.00000 0.194257
955955 0 0
956956 24.0000 0.776215
957957 0 0
958958 − 36.0000i − 1.16311i
959959 0 0
960960 0 0
961961 −15.0000 −0.483871
962962 8.00000i 0.257930i
963963 12.0000i 0.386695i
964964 −10.0000 −0.322078
965965 0 0
966966 0 0
967967 − 32.0000i − 1.02905i −0.857475 0.514525i 0.827968π-0.827968\pi
0.857475 0.514525i 0.172032π-0.172032\pi
968968 11.0000i 0.353553i
969969 −24.0000 −0.770991
970970 0 0
971971 6.00000 0.192549 0.0962746 0.995355i 0.469307π-0.469307\pi
0.0962746 + 0.995355i 0.469307π0.469307\pi
972972 10.0000i 0.320750i
973973 0 0
974974 −16.0000 −0.512673
975975 0 0
976976 −8.00000 −0.256074
977977 6.00000i 0.191957i 0.995383 + 0.0959785i 0.0305980π0.0305980\pi
−0.995383 + 0.0959785i 0.969402π0.969402\pi
978978 32.0000i 1.02325i
979979 0 0
980980 0 0
981981 2.00000 0.0638551
982982 − 12.0000i − 0.382935i
983983 36.0000i 1.14822i 0.818778 + 0.574111i 0.194652π0.194652\pi
−0.818778 + 0.574111i 0.805348π0.805348\pi
984984 −12.0000 −0.382546
985985 0 0
986986 −36.0000 −1.14647
987987 0 0
988988 − 8.00000i − 0.254514i
989989 0 0
990990 0 0
991991 −16.0000 −0.508257 −0.254128 0.967170i 0.581789π-0.581789\pi
−0.254128 + 0.967170i 0.581789π0.581789\pi
992992 4.00000i 0.127000i
993993 16.0000i 0.507745i
994994 0 0
995995 0 0
996996 12.0000 0.380235
997997 8.00000i 0.253363i 0.991943 + 0.126681i 0.0404325π0.0404325\pi
−0.991943 + 0.126681i 0.959567π0.959567\pi
998998 4.00000i 0.126618i
999999 8.00000 0.253109
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2450.2.c.c.99.2 2
5.2 odd 4 98.2.a.a.1.1 1
5.3 odd 4 2450.2.a.t.1.1 1
5.4 even 2 inner 2450.2.c.c.99.1 2
7.6 odd 2 350.2.c.d.99.2 2
15.2 even 4 882.2.a.i.1.1 1
20.7 even 4 784.2.a.b.1.1 1
21.20 even 2 3150.2.g.j.2899.1 2
28.27 even 2 2800.2.g.h.449.2 2
35.2 odd 12 98.2.c.a.67.1 2
35.12 even 12 98.2.c.b.67.1 2
35.13 even 4 350.2.a.f.1.1 1
35.17 even 12 98.2.c.b.79.1 2
35.27 even 4 14.2.a.a.1.1 1
35.32 odd 12 98.2.c.a.79.1 2
35.34 odd 2 350.2.c.d.99.1 2
40.27 even 4 3136.2.a.z.1.1 1
40.37 odd 4 3136.2.a.e.1.1 1
60.47 odd 4 7056.2.a.bd.1.1 1
105.2 even 12 882.2.g.d.361.1 2
105.17 odd 12 882.2.g.c.667.1 2
105.32 even 12 882.2.g.d.667.1 2
105.47 odd 12 882.2.g.c.361.1 2
105.62 odd 4 126.2.a.b.1.1 1
105.83 odd 4 3150.2.a.i.1.1 1
105.104 even 2 3150.2.g.j.2899.2 2
140.27 odd 4 112.2.a.c.1.1 1
140.47 odd 12 784.2.i.c.753.1 2
140.67 even 12 784.2.i.i.177.1 2
140.83 odd 4 2800.2.a.g.1.1 1
140.87 odd 12 784.2.i.c.177.1 2
140.107 even 12 784.2.i.i.753.1 2
140.139 even 2 2800.2.g.h.449.1 2
280.27 odd 4 448.2.a.a.1.1 1
280.237 even 4 448.2.a.g.1.1 1
315.97 even 12 1134.2.f.l.757.1 2
315.167 odd 12 1134.2.f.f.379.1 2
315.202 even 12 1134.2.f.l.379.1 2
315.272 odd 12 1134.2.f.f.757.1 2
385.307 odd 4 1694.2.a.e.1.1 1
420.167 even 4 1008.2.a.h.1.1 1
455.272 even 4 2366.2.a.j.1.1 1
455.307 odd 4 2366.2.d.b.337.1 2
455.447 odd 4 2366.2.d.b.337.2 2
560.27 odd 4 1792.2.b.g.897.1 2
560.237 even 4 1792.2.b.c.897.1 2
560.307 odd 4 1792.2.b.g.897.2 2
560.517 even 4 1792.2.b.c.897.2 2
595.237 even 4 4046.2.a.f.1.1 1
665.132 odd 4 5054.2.a.c.1.1 1
805.482 odd 4 7406.2.a.a.1.1 1
840.587 even 4 4032.2.a.r.1.1 1
840.797 odd 4 4032.2.a.w.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.2.a.a.1.1 1 35.27 even 4
98.2.a.a.1.1 1 5.2 odd 4
98.2.c.a.67.1 2 35.2 odd 12
98.2.c.a.79.1 2 35.32 odd 12
98.2.c.b.67.1 2 35.12 even 12
98.2.c.b.79.1 2 35.17 even 12
112.2.a.c.1.1 1 140.27 odd 4
126.2.a.b.1.1 1 105.62 odd 4
350.2.a.f.1.1 1 35.13 even 4
350.2.c.d.99.1 2 35.34 odd 2
350.2.c.d.99.2 2 7.6 odd 2
448.2.a.a.1.1 1 280.27 odd 4
448.2.a.g.1.1 1 280.237 even 4
784.2.a.b.1.1 1 20.7 even 4
784.2.i.c.177.1 2 140.87 odd 12
784.2.i.c.753.1 2 140.47 odd 12
784.2.i.i.177.1 2 140.67 even 12
784.2.i.i.753.1 2 140.107 even 12
882.2.a.i.1.1 1 15.2 even 4
882.2.g.c.361.1 2 105.47 odd 12
882.2.g.c.667.1 2 105.17 odd 12
882.2.g.d.361.1 2 105.2 even 12
882.2.g.d.667.1 2 105.32 even 12
1008.2.a.h.1.1 1 420.167 even 4
1134.2.f.f.379.1 2 315.167 odd 12
1134.2.f.f.757.1 2 315.272 odd 12
1134.2.f.l.379.1 2 315.202 even 12
1134.2.f.l.757.1 2 315.97 even 12
1694.2.a.e.1.1 1 385.307 odd 4
1792.2.b.c.897.1 2 560.237 even 4
1792.2.b.c.897.2 2 560.517 even 4
1792.2.b.g.897.1 2 560.27 odd 4
1792.2.b.g.897.2 2 560.307 odd 4
2366.2.a.j.1.1 1 455.272 even 4
2366.2.d.b.337.1 2 455.307 odd 4
2366.2.d.b.337.2 2 455.447 odd 4
2450.2.a.t.1.1 1 5.3 odd 4
2450.2.c.c.99.1 2 5.4 even 2 inner
2450.2.c.c.99.2 2 1.1 even 1 trivial
2800.2.a.g.1.1 1 140.83 odd 4
2800.2.g.h.449.1 2 140.139 even 2
2800.2.g.h.449.2 2 28.27 even 2
3136.2.a.e.1.1 1 40.37 odd 4
3136.2.a.z.1.1 1 40.27 even 4
3150.2.a.i.1.1 1 105.83 odd 4
3150.2.g.j.2899.1 2 21.20 even 2
3150.2.g.j.2899.2 2 105.104 even 2
4032.2.a.r.1.1 1 840.587 even 4
4032.2.a.w.1.1 1 840.797 odd 4
4046.2.a.f.1.1 1 595.237 even 4
5054.2.a.c.1.1 1 665.132 odd 4
7056.2.a.bd.1.1 1 60.47 odd 4
7406.2.a.a.1.1 1 805.482 odd 4