Properties

Label 3150.2.g.j.2899.2
Level 31503150
Weight 22
Character 3150.2899
Analytic conductor 25.15325.153
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3150,2,Mod(2899,3150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3150.2899"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 3150=232527 3150 = 2 \cdot 3^{2} \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3150.g (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,0,0,0,0,0,0,0,-2,0,2,0,0,-4,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(26)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 25.152876636725.1528766367
Analytic rank: 11
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 2899.2
Root 1.00000i-1.00000i of defining polynomial
Character χ\chi == 3150.2899
Dual form 3150.2.g.j.2899.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000iq21.00000q4+1.00000iq71.00000iq8+4.00000iq131.00000q14+1.00000q166.00000iq172.00000q194.00000q261.00000iq286.00000q294.00000q31+1.00000iq32+6.00000q34+2.00000iq372.00000iq386.00000q418.00000iq43+12.0000iq471.00000q494.00000iq52+6.00000iq53+1.00000q566.00000iq586.00000q59+8.00000q614.00000iq621.00000q644.00000iq67+6.00000iq682.00000iq732.00000q74+2.00000q768.00000q796.00000iq826.00000iq83+8.00000q866.00000q894.00000q9112.0000q9410.0000iq971.00000iq98+O(q100)q+1.00000i q^{2} -1.00000 q^{4} +1.00000i q^{7} -1.00000i q^{8} +4.00000i q^{13} -1.00000 q^{14} +1.00000 q^{16} -6.00000i q^{17} -2.00000 q^{19} -4.00000 q^{26} -1.00000i q^{28} -6.00000 q^{29} -4.00000 q^{31} +1.00000i q^{32} +6.00000 q^{34} +2.00000i q^{37} -2.00000i q^{38} -6.00000 q^{41} -8.00000i q^{43} +12.0000i q^{47} -1.00000 q^{49} -4.00000i q^{52} +6.00000i q^{53} +1.00000 q^{56} -6.00000i q^{58} -6.00000 q^{59} +8.00000 q^{61} -4.00000i q^{62} -1.00000 q^{64} -4.00000i q^{67} +6.00000i q^{68} -2.00000i q^{73} -2.00000 q^{74} +2.00000 q^{76} -8.00000 q^{79} -6.00000i q^{82} -6.00000i q^{83} +8.00000 q^{86} -6.00000 q^{89} -4.00000 q^{91} -12.0000 q^{94} -10.0000i q^{97} -1.00000i q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q42q14+2q164q198q2612q298q31+12q3412q412q49+2q5612q59+16q612q644q74+4q7616q79+16q86+24q94+O(q100) 2 q - 2 q^{4} - 2 q^{14} + 2 q^{16} - 4 q^{19} - 8 q^{26} - 12 q^{29} - 8 q^{31} + 12 q^{34} - 12 q^{41} - 2 q^{49} + 2 q^{56} - 12 q^{59} + 16 q^{61} - 2 q^{64} - 4 q^{74} + 4 q^{76} - 16 q^{79} + 16 q^{86}+ \cdots - 24 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3150Z)×\left(\mathbb{Z}/3150\mathbb{Z}\right)^\times.

nn 127127 451451 28012801
χ(n)\chi(n) 1-1 11 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000i 0.707107i
33 0 0
44 −1.00000 −0.500000
55 0 0
66 0 0
77 1.00000i 0.377964i
88 − 1.00000i − 0.353553i
99 0 0
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 4.00000i 1.10940i 0.832050 + 0.554700i 0.187167π0.187167\pi
−0.832050 + 0.554700i 0.812833π0.812833\pi
1414 −1.00000 −0.267261
1515 0 0
1616 1.00000 0.250000
1717 − 6.00000i − 1.45521i −0.685994 0.727607i 0.740633π-0.740633\pi
0.685994 0.727607i 0.259367π-0.259367\pi
1818 0 0
1919 −2.00000 −0.458831 −0.229416 0.973329i 0.573682π-0.573682\pi
−0.229416 + 0.973329i 0.573682π0.573682\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 0 0
2626 −4.00000 −0.784465
2727 0 0
2828 − 1.00000i − 0.188982i
2929 −6.00000 −1.11417 −0.557086 0.830455i 0.688081π-0.688081\pi
−0.557086 + 0.830455i 0.688081π0.688081\pi
3030 0 0
3131 −4.00000 −0.718421 −0.359211 0.933257i 0.616954π-0.616954\pi
−0.359211 + 0.933257i 0.616954π0.616954\pi
3232 1.00000i 0.176777i
3333 0 0
3434 6.00000 1.02899
3535 0 0
3636 0 0
3737 2.00000i 0.328798i 0.986394 + 0.164399i 0.0525685π0.0525685\pi
−0.986394 + 0.164399i 0.947432π0.947432\pi
3838 − 2.00000i − 0.324443i
3939 0 0
4040 0 0
4141 −6.00000 −0.937043 −0.468521 0.883452i 0.655213π-0.655213\pi
−0.468521 + 0.883452i 0.655213π0.655213\pi
4242 0 0
4343 − 8.00000i − 1.21999i −0.792406 0.609994i 0.791172π-0.791172\pi
0.792406 0.609994i 0.208828π-0.208828\pi
4444 0 0
4545 0 0
4646 0 0
4747 12.0000i 1.75038i 0.483779 + 0.875190i 0.339264π0.339264\pi
−0.483779 + 0.875190i 0.660736π0.660736\pi
4848 0 0
4949 −1.00000 −0.142857
5050 0 0
5151 0 0
5252 − 4.00000i − 0.554700i
5353 6.00000i 0.824163i 0.911147 + 0.412082i 0.135198π0.135198\pi
−0.911147 + 0.412082i 0.864802π0.864802\pi
5454 0 0
5555 0 0
5656 1.00000 0.133631
5757 0 0
5858 − 6.00000i − 0.787839i
5959 −6.00000 −0.781133 −0.390567 0.920575i 0.627721π-0.627721\pi
−0.390567 + 0.920575i 0.627721π0.627721\pi
6060 0 0
6161 8.00000 1.02430 0.512148 0.858898i 0.328850π-0.328850\pi
0.512148 + 0.858898i 0.328850π0.328850\pi
6262 − 4.00000i − 0.508001i
6363 0 0
6464 −1.00000 −0.125000
6565 0 0
6666 0 0
6767 − 4.00000i − 0.488678i −0.969690 0.244339i 0.921429π-0.921429\pi
0.969690 0.244339i 0.0785709π-0.0785709\pi
6868 6.00000i 0.727607i
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 − 2.00000i − 0.234082i −0.993127 0.117041i 0.962659π-0.962659\pi
0.993127 0.117041i 0.0373409π-0.0373409\pi
7474 −2.00000 −0.232495
7575 0 0
7676 2.00000 0.229416
7777 0 0
7878 0 0
7979 −8.00000 −0.900070 −0.450035 0.893011i 0.648589π-0.648589\pi
−0.450035 + 0.893011i 0.648589π0.648589\pi
8080 0 0
8181 0 0
8282 − 6.00000i − 0.662589i
8383 − 6.00000i − 0.658586i −0.944228 0.329293i 0.893190π-0.893190\pi
0.944228 0.329293i 0.106810π-0.106810\pi
8484 0 0
8585 0 0
8686 8.00000 0.862662
8787 0 0
8888 0 0
8989 −6.00000 −0.635999 −0.317999 0.948091i 0.603011π-0.603011\pi
−0.317999 + 0.948091i 0.603011π0.603011\pi
9090 0 0
9191 −4.00000 −0.419314
9292 0 0
9393 0 0
9494 −12.0000 −1.23771
9595 0 0
9696 0 0
9797 − 10.0000i − 1.01535i −0.861550 0.507673i 0.830506π-0.830506\pi
0.861550 0.507673i 0.169494π-0.169494\pi
9898 − 1.00000i − 0.101015i
9999 0 0
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 4.00000i 0.394132i 0.980390 + 0.197066i 0.0631413π0.0631413\pi
−0.980390 + 0.197066i 0.936859π0.936859\pi
104104 4.00000 0.392232
105105 0 0
106106 −6.00000 −0.582772
107107 − 12.0000i − 1.16008i −0.814587 0.580042i 0.803036π-0.803036\pi
0.814587 0.580042i 0.196964π-0.196964\pi
108108 0 0
109109 −2.00000 −0.191565 −0.0957826 0.995402i 0.530535π-0.530535\pi
−0.0957826 + 0.995402i 0.530535π0.530535\pi
110110 0 0
111111 0 0
112112 1.00000i 0.0944911i
113113 6.00000i 0.564433i 0.959351 + 0.282216i 0.0910696π0.0910696\pi
−0.959351 + 0.282216i 0.908930π0.908930\pi
114114 0 0
115115 0 0
116116 6.00000 0.557086
117117 0 0
118118 − 6.00000i − 0.552345i
119119 6.00000 0.550019
120120 0 0
121121 −11.0000 −1.00000
122122 8.00000i 0.724286i
123123 0 0
124124 4.00000 0.359211
125125 0 0
126126 0 0
127127 − 16.0000i − 1.41977i −0.704317 0.709885i 0.748747π-0.748747\pi
0.704317 0.709885i 0.251253π-0.251253\pi
128128 − 1.00000i − 0.0883883i
129129 0 0
130130 0 0
131131 −18.0000 −1.57267 −0.786334 0.617802i 0.788023π-0.788023\pi
−0.786334 + 0.617802i 0.788023π0.788023\pi
132132 0 0
133133 − 2.00000i − 0.173422i
134134 4.00000 0.345547
135135 0 0
136136 −6.00000 −0.514496
137137 − 18.0000i − 1.53784i −0.639343 0.768922i 0.720793π-0.720793\pi
0.639343 0.768922i 0.279207π-0.279207\pi
138138 0 0
139139 −14.0000 −1.18746 −0.593732 0.804663i 0.702346π-0.702346\pi
−0.593732 + 0.804663i 0.702346π0.702346\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 2.00000 0.165521
147147 0 0
148148 − 2.00000i − 0.164399i
149149 −18.0000 −1.47462 −0.737309 0.675556i 0.763904π-0.763904\pi
−0.737309 + 0.675556i 0.763904π0.763904\pi
150150 0 0
151151 8.00000 0.651031 0.325515 0.945537i 0.394462π-0.394462\pi
0.325515 + 0.945537i 0.394462π0.394462\pi
152152 2.00000i 0.162221i
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 − 4.00000i − 0.319235i −0.987179 0.159617i 0.948974π-0.948974\pi
0.987179 0.159617i 0.0510260π-0.0510260\pi
158158 − 8.00000i − 0.636446i
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 16.0000i 1.25322i 0.779334 + 0.626608i 0.215557π0.215557\pi
−0.779334 + 0.626608i 0.784443π0.784443\pi
164164 6.00000 0.468521
165165 0 0
166166 6.00000 0.465690
167167 12.0000i 0.928588i 0.885681 + 0.464294i 0.153692π0.153692\pi
−0.885681 + 0.464294i 0.846308π0.846308\pi
168168 0 0
169169 −3.00000 −0.230769
170170 0 0
171171 0 0
172172 8.00000i 0.609994i
173173 − 12.0000i − 0.912343i −0.889892 0.456172i 0.849220π-0.849220\pi
0.889892 0.456172i 0.150780π-0.150780\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 − 6.00000i − 0.449719i
179179 −12.0000 −0.896922 −0.448461 0.893802i 0.648028π-0.648028\pi
−0.448461 + 0.893802i 0.648028π0.648028\pi
180180 0 0
181181 20.0000 1.48659 0.743294 0.668965i 0.233262π-0.233262\pi
0.743294 + 0.668965i 0.233262π0.233262\pi
182182 − 4.00000i − 0.296500i
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 − 12.0000i − 0.875190i
189189 0 0
190190 0 0
191191 −24.0000 −1.73658 −0.868290 0.496058i 0.834780π-0.834780\pi
−0.868290 + 0.496058i 0.834780π0.834780\pi
192192 0 0
193193 − 14.0000i − 1.00774i −0.863779 0.503871i 0.831909π-0.831909\pi
0.863779 0.503871i 0.168091π-0.168091\pi
194194 10.0000 0.717958
195195 0 0
196196 1.00000 0.0714286
197197 18.0000i 1.28245i 0.767354 + 0.641223i 0.221573π0.221573\pi
−0.767354 + 0.641223i 0.778427π0.778427\pi
198198 0 0
199199 −20.0000 −1.41776 −0.708881 0.705328i 0.750800π-0.750800\pi
−0.708881 + 0.705328i 0.750800π0.750800\pi
200200 0 0
201201 0 0
202202 0 0
203203 − 6.00000i − 0.421117i
204204 0 0
205205 0 0
206206 −4.00000 −0.278693
207207 0 0
208208 4.00000i 0.277350i
209209 0 0
210210 0 0
211211 −4.00000 −0.275371 −0.137686 0.990476i 0.543966π-0.543966\pi
−0.137686 + 0.990476i 0.543966π0.543966\pi
212212 − 6.00000i − 0.412082i
213213 0 0
214214 12.0000 0.820303
215215 0 0
216216 0 0
217217 − 4.00000i − 0.271538i
218218 − 2.00000i − 0.135457i
219219 0 0
220220 0 0
221221 24.0000 1.61441
222222 0 0
223223 − 8.00000i − 0.535720i −0.963458 0.267860i 0.913684π-0.913684\pi
0.963458 0.267860i 0.0863164π-0.0863164\pi
224224 −1.00000 −0.0668153
225225 0 0
226226 −6.00000 −0.399114
227227 − 18.0000i − 1.19470i −0.801980 0.597351i 0.796220π-0.796220\pi
0.801980 0.597351i 0.203780π-0.203780\pi
228228 0 0
229229 4.00000 0.264327 0.132164 0.991228i 0.457808π-0.457808\pi
0.132164 + 0.991228i 0.457808π0.457808\pi
230230 0 0
231231 0 0
232232 6.00000i 0.393919i
233233 − 6.00000i − 0.393073i −0.980497 0.196537i 0.937031π-0.937031\pi
0.980497 0.196537i 0.0629694π-0.0629694\pi
234234 0 0
235235 0 0
236236 6.00000 0.390567
237237 0 0
238238 6.00000i 0.388922i
239239 24.0000 1.55243 0.776215 0.630468i 0.217137π-0.217137\pi
0.776215 + 0.630468i 0.217137π0.217137\pi
240240 0 0
241241 −10.0000 −0.644157 −0.322078 0.946713i 0.604381π-0.604381\pi
−0.322078 + 0.946713i 0.604381π0.604381\pi
242242 − 11.0000i − 0.707107i
243243 0 0
244244 −8.00000 −0.512148
245245 0 0
246246 0 0
247247 − 8.00000i − 0.509028i
248248 4.00000i 0.254000i
249249 0 0
250250 0 0
251251 18.0000 1.13615 0.568075 0.822977i 0.307688π-0.307688\pi
0.568075 + 0.822977i 0.307688π0.307688\pi
252252 0 0
253253 0 0
254254 16.0000 1.00393
255255 0 0
256256 1.00000 0.0625000
257257 − 18.0000i − 1.12281i −0.827541 0.561405i 0.810261π-0.810261\pi
0.827541 0.561405i 0.189739π-0.189739\pi
258258 0 0
259259 −2.00000 −0.124274
260260 0 0
261261 0 0
262262 − 18.0000i − 1.11204i
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 2.00000 0.122628
267267 0 0
268268 4.00000i 0.244339i
269269 −12.0000 −0.731653 −0.365826 0.930683i 0.619214π-0.619214\pi
−0.365826 + 0.930683i 0.619214π0.619214\pi
270270 0 0
271271 −16.0000 −0.971931 −0.485965 0.873978i 0.661532π-0.661532\pi
−0.485965 + 0.873978i 0.661532π0.661532\pi
272272 − 6.00000i − 0.363803i
273273 0 0
274274 18.0000 1.08742
275275 0 0
276276 0 0
277277 − 10.0000i − 0.600842i −0.953807 0.300421i 0.902873π-0.902873\pi
0.953807 0.300421i 0.0971271π-0.0971271\pi
278278 − 14.0000i − 0.839664i
279279 0 0
280280 0 0
281281 6.00000 0.357930 0.178965 0.983855i 0.442725π-0.442725\pi
0.178965 + 0.983855i 0.442725π0.442725\pi
282282 0 0
283283 22.0000i 1.30776i 0.756596 + 0.653882i 0.226861π0.226861\pi
−0.756596 + 0.653882i 0.773139π0.773139\pi
284284 0 0
285285 0 0
286286 0 0
287287 − 6.00000i − 0.354169i
288288 0 0
289289 −19.0000 −1.11765
290290 0 0
291291 0 0
292292 2.00000i 0.117041i
293293 24.0000i 1.40209i 0.713115 + 0.701047i 0.247284π0.247284\pi
−0.713115 + 0.701047i 0.752716π0.752716\pi
294294 0 0
295295 0 0
296296 2.00000 0.116248
297297 0 0
298298 − 18.0000i − 1.04271i
299299 0 0
300300 0 0
301301 8.00000 0.461112
302302 8.00000i 0.460348i
303303 0 0
304304 −2.00000 −0.114708
305305 0 0
306306 0 0
307307 2.00000i 0.114146i 0.998370 + 0.0570730i 0.0181768π0.0181768\pi
−0.998370 + 0.0570730i 0.981823π0.981823\pi
308308 0 0
309309 0 0
310310 0 0
311311 24.0000 1.36092 0.680458 0.732787i 0.261781π-0.261781\pi
0.680458 + 0.732787i 0.261781π0.261781\pi
312312 0 0
313313 10.0000i 0.565233i 0.959233 + 0.282617i 0.0912024π0.0912024\pi
−0.959233 + 0.282617i 0.908798π0.908798\pi
314314 4.00000 0.225733
315315 0 0
316316 8.00000 0.450035
317317 − 6.00000i − 0.336994i −0.985702 0.168497i 0.946109π-0.946109\pi
0.985702 0.168497i 0.0538913π-0.0538913\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 12.0000i 0.667698i
324324 0 0
325325 0 0
326326 −16.0000 −0.886158
327327 0 0
328328 6.00000i 0.331295i
329329 −12.0000 −0.661581
330330 0 0
331331 8.00000 0.439720 0.219860 0.975531i 0.429440π-0.429440\pi
0.219860 + 0.975531i 0.429440π0.429440\pi
332332 6.00000i 0.329293i
333333 0 0
334334 −12.0000 −0.656611
335335 0 0
336336 0 0
337337 14.0000i 0.762629i 0.924445 + 0.381314i 0.124528π0.124528\pi
−0.924445 + 0.381314i 0.875472π0.875472\pi
338338 − 3.00000i − 0.163178i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 − 1.00000i − 0.0539949i
344344 −8.00000 −0.431331
345345 0 0
346346 12.0000 0.645124
347347 24.0000i 1.28839i 0.764862 + 0.644194i 0.222807π0.222807\pi
−0.764862 + 0.644194i 0.777193π0.777193\pi
348348 0 0
349349 28.0000 1.49881 0.749403 0.662114i 0.230341π-0.230341\pi
0.749403 + 0.662114i 0.230341π0.230341\pi
350350 0 0
351351 0 0
352352 0 0
353353 18.0000i 0.958043i 0.877803 + 0.479022i 0.159008π0.159008\pi
−0.877803 + 0.479022i 0.840992π0.840992\pi
354354 0 0
355355 0 0
356356 6.00000 0.317999
357357 0 0
358358 − 12.0000i − 0.634220i
359359 −24.0000 −1.26667 −0.633336 0.773877i 0.718315π-0.718315\pi
−0.633336 + 0.773877i 0.718315π0.718315\pi
360360 0 0
361361 −15.0000 −0.789474
362362 20.0000i 1.05118i
363363 0 0
364364 4.00000 0.209657
365365 0 0
366366 0 0
367367 8.00000i 0.417597i 0.977959 + 0.208798i 0.0669552π0.0669552\pi
−0.977959 + 0.208798i 0.933045π0.933045\pi
368368 0 0
369369 0 0
370370 0 0
371371 −6.00000 −0.311504
372372 0 0
373373 − 14.0000i − 0.724893i −0.932005 0.362446i 0.881942π-0.881942\pi
0.932005 0.362446i 0.118058π-0.118058\pi
374374 0 0
375375 0 0
376376 12.0000 0.618853
377377 − 24.0000i − 1.23606i
378378 0 0
379379 16.0000 0.821865 0.410932 0.911666i 0.365203π-0.365203\pi
0.410932 + 0.911666i 0.365203π0.365203\pi
380380 0 0
381381 0 0
382382 − 24.0000i − 1.22795i
383383 36.0000i 1.83951i 0.392488 + 0.919757i 0.371614π0.371614\pi
−0.392488 + 0.919757i 0.628386π0.628386\pi
384384 0 0
385385 0 0
386386 14.0000 0.712581
387387 0 0
388388 10.0000i 0.507673i
389389 18.0000 0.912636 0.456318 0.889817i 0.349168π-0.349168\pi
0.456318 + 0.889817i 0.349168π0.349168\pi
390390 0 0
391391 0 0
392392 1.00000i 0.0505076i
393393 0 0
394394 −18.0000 −0.906827
395395 0 0
396396 0 0
397397 20.0000i 1.00377i 0.864934 + 0.501886i 0.167360π0.167360\pi
−0.864934 + 0.501886i 0.832640π0.832640\pi
398398 − 20.0000i − 1.00251i
399399 0 0
400400 0 0
401401 18.0000 0.898877 0.449439 0.893311i 0.351624π-0.351624\pi
0.449439 + 0.893311i 0.351624π0.351624\pi
402402 0 0
403403 − 16.0000i − 0.797017i
404404 0 0
405405 0 0
406406 6.00000 0.297775
407407 0 0
408408 0 0
409409 −14.0000 −0.692255 −0.346128 0.938187i 0.612504π-0.612504\pi
−0.346128 + 0.938187i 0.612504π0.612504\pi
410410 0 0
411411 0 0
412412 − 4.00000i − 0.197066i
413413 − 6.00000i − 0.295241i
414414 0 0
415415 0 0
416416 −4.00000 −0.196116
417417 0 0
418418 0 0
419419 6.00000 0.293119 0.146560 0.989202i 0.453180π-0.453180\pi
0.146560 + 0.989202i 0.453180π0.453180\pi
420420 0 0
421421 −10.0000 −0.487370 −0.243685 0.969854i 0.578356π-0.578356\pi
−0.243685 + 0.969854i 0.578356π0.578356\pi
422422 − 4.00000i − 0.194717i
423423 0 0
424424 6.00000 0.291386
425425 0 0
426426 0 0
427427 8.00000i 0.387147i
428428 12.0000i 0.580042i
429429 0 0
430430 0 0
431431 −24.0000 −1.15604 −0.578020 0.816023i 0.696174π-0.696174\pi
−0.578020 + 0.816023i 0.696174π0.696174\pi
432432 0 0
433433 34.0000i 1.63394i 0.576683 + 0.816968i 0.304347π0.304347\pi
−0.576683 + 0.816968i 0.695653π0.695653\pi
434434 4.00000 0.192006
435435 0 0
436436 2.00000 0.0957826
437437 0 0
438438 0 0
439439 −8.00000 −0.381819 −0.190910 0.981608i 0.561144π-0.561144\pi
−0.190910 + 0.981608i 0.561144π0.561144\pi
440440 0 0
441441 0 0
442442 24.0000i 1.14156i
443443 − 12.0000i − 0.570137i −0.958507 0.285069i 0.907984π-0.907984\pi
0.958507 0.285069i 0.0920164π-0.0920164\pi
444444 0 0
445445 0 0
446446 8.00000 0.378811
447447 0 0
448448 − 1.00000i − 0.0472456i
449449 18.0000 0.849473 0.424736 0.905317i 0.360367π-0.360367\pi
0.424736 + 0.905317i 0.360367π0.360367\pi
450450 0 0
451451 0 0
452452 − 6.00000i − 0.282216i
453453 0 0
454454 18.0000 0.844782
455455 0 0
456456 0 0
457457 − 10.0000i − 0.467780i −0.972263 0.233890i 0.924854π-0.924854\pi
0.972263 0.233890i 0.0751456π-0.0751456\pi
458458 4.00000i 0.186908i
459459 0 0
460460 0 0
461461 −12.0000 −0.558896 −0.279448 0.960161i 0.590151π-0.590151\pi
−0.279448 + 0.960161i 0.590151π0.590151\pi
462462 0 0
463463 − 32.0000i − 1.48717i −0.668644 0.743583i 0.733125π-0.733125\pi
0.668644 0.743583i 0.266875π-0.266875\pi
464464 −6.00000 −0.278543
465465 0 0
466466 6.00000 0.277945
467467 6.00000i 0.277647i 0.990317 + 0.138823i 0.0443321π0.0443321\pi
−0.990317 + 0.138823i 0.955668π0.955668\pi
468468 0 0
469469 4.00000 0.184703
470470 0 0
471471 0 0
472472 6.00000i 0.276172i
473473 0 0
474474 0 0
475475 0 0
476476 −6.00000 −0.275010
477477 0 0
478478 24.0000i 1.09773i
479479 −36.0000 −1.64488 −0.822441 0.568850i 0.807388π-0.807388\pi
−0.822441 + 0.568850i 0.807388π0.807388\pi
480480 0 0
481481 −8.00000 −0.364769
482482 − 10.0000i − 0.455488i
483483 0 0
484484 11.0000 0.500000
485485 0 0
486486 0 0
487487 − 16.0000i − 0.725029i −0.931978 0.362515i 0.881918π-0.881918\pi
0.931978 0.362515i 0.118082π-0.118082\pi
488488 − 8.00000i − 0.362143i
489489 0 0
490490 0 0
491491 12.0000 0.541552 0.270776 0.962642i 0.412720π-0.412720\pi
0.270776 + 0.962642i 0.412720π0.412720\pi
492492 0 0
493493 36.0000i 1.62136i
494494 8.00000 0.359937
495495 0 0
496496 −4.00000 −0.179605
497497 0 0
498498 0 0
499499 4.00000 0.179065 0.0895323 0.995984i 0.471463π-0.471463\pi
0.0895323 + 0.995984i 0.471463π0.471463\pi
500500 0 0
501501 0 0
502502 18.0000i 0.803379i
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 16.0000i 0.709885i
509509 36.0000 1.59567 0.797836 0.602875i 0.205978π-0.205978\pi
0.797836 + 0.602875i 0.205978π0.205978\pi
510510 0 0
511511 2.00000 0.0884748
512512 1.00000i 0.0441942i
513513 0 0
514514 18.0000 0.793946
515515 0 0
516516 0 0
517517 0 0
518518 − 2.00000i − 0.0878750i
519519 0 0
520520 0 0
521521 −6.00000 −0.262865 −0.131432 0.991325i 0.541958π-0.541958\pi
−0.131432 + 0.991325i 0.541958π0.541958\pi
522522 0 0
523523 − 2.00000i − 0.0874539i −0.999044 0.0437269i 0.986077π-0.986077\pi
0.999044 0.0437269i 0.0139232π-0.0139232\pi
524524 18.0000 0.786334
525525 0 0
526526 0 0
527527 24.0000i 1.04546i
528528 0 0
529529 23.0000 1.00000
530530 0 0
531531 0 0
532532 2.00000i 0.0867110i
533533 − 24.0000i − 1.03956i
534534 0 0
535535 0 0
536536 −4.00000 −0.172774
537537 0 0
538538 − 12.0000i − 0.517357i
539539 0 0
540540 0 0
541541 38.0000 1.63375 0.816874 0.576816i 0.195705π-0.195705\pi
0.816874 + 0.576816i 0.195705π0.195705\pi
542542 − 16.0000i − 0.687259i
543543 0 0
544544 6.00000 0.257248
545545 0 0
546546 0 0
547547 8.00000i 0.342055i 0.985266 + 0.171028i 0.0547087π0.0547087\pi
−0.985266 + 0.171028i 0.945291π0.945291\pi
548548 18.0000i 0.768922i
549549 0 0
550550 0 0
551551 12.0000 0.511217
552552 0 0
553553 − 8.00000i − 0.340195i
554554 10.0000 0.424859
555555 0 0
556556 14.0000 0.593732
557557 − 6.00000i − 0.254228i −0.991888 0.127114i 0.959429π-0.959429\pi
0.991888 0.127114i 0.0405714π-0.0405714\pi
558558 0 0
559559 32.0000 1.35346
560560 0 0
561561 0 0
562562 6.00000i 0.253095i
563563 30.0000i 1.26435i 0.774826 + 0.632175i 0.217837π0.217837\pi
−0.774826 + 0.632175i 0.782163π0.782163\pi
564564 0 0
565565 0 0
566566 −22.0000 −0.924729
567567 0 0
568568 0 0
569569 6.00000 0.251533 0.125767 0.992060i 0.459861π-0.459861\pi
0.125767 + 0.992060i 0.459861π0.459861\pi
570570 0 0
571571 32.0000 1.33916 0.669579 0.742741i 0.266474π-0.266474\pi
0.669579 + 0.742741i 0.266474π0.266474\pi
572572 0 0
573573 0 0
574574 6.00000 0.250435
575575 0 0
576576 0 0
577577 2.00000i 0.0832611i 0.999133 + 0.0416305i 0.0132552π0.0132552\pi
−0.999133 + 0.0416305i 0.986745π0.986745\pi
578578 − 19.0000i − 0.790296i
579579 0 0
580580 0 0
581581 6.00000 0.248922
582582 0 0
583583 0 0
584584 −2.00000 −0.0827606
585585 0 0
586586 −24.0000 −0.991431
587587 42.0000i 1.73353i 0.498721 + 0.866763i 0.333803π0.333803\pi
−0.498721 + 0.866763i 0.666197π0.666197\pi
588588 0 0
589589 8.00000 0.329634
590590 0 0
591591 0 0
592592 2.00000i 0.0821995i
593593 − 6.00000i − 0.246390i −0.992382 0.123195i 0.960686π-0.960686\pi
0.992382 0.123195i 0.0393141π-0.0393141\pi
594594 0 0
595595 0 0
596596 18.0000 0.737309
597597 0 0
598598 0 0
599599 −24.0000 −0.980613 −0.490307 0.871550i 0.663115π-0.663115\pi
−0.490307 + 0.871550i 0.663115π0.663115\pi
600600 0 0
601601 26.0000 1.06056 0.530281 0.847822i 0.322086π-0.322086\pi
0.530281 + 0.847822i 0.322086π0.322086\pi
602602 8.00000i 0.326056i
603603 0 0
604604 −8.00000 −0.325515
605605 0 0
606606 0 0
607607 32.0000i 1.29884i 0.760430 + 0.649420i 0.224988π0.224988\pi
−0.760430 + 0.649420i 0.775012π0.775012\pi
608608 − 2.00000i − 0.0811107i
609609 0 0
610610 0 0
611611 −48.0000 −1.94187
612612 0 0
613613 − 2.00000i − 0.0807792i −0.999184 0.0403896i 0.987140π-0.987140\pi
0.999184 0.0403896i 0.0128599π-0.0128599\pi
614614 −2.00000 −0.0807134
615615 0 0
616616 0 0
617617 − 6.00000i − 0.241551i −0.992680 0.120775i 0.961462π-0.961462\pi
0.992680 0.120775i 0.0385381π-0.0385381\pi
618618 0 0
619619 −26.0000 −1.04503 −0.522514 0.852631i 0.675006π-0.675006\pi
−0.522514 + 0.852631i 0.675006π0.675006\pi
620620 0 0
621621 0 0
622622 24.0000i 0.962312i
623623 − 6.00000i − 0.240385i
624624 0 0
625625 0 0
626626 −10.0000 −0.399680
627627 0 0
628628 4.00000i 0.159617i
629629 12.0000 0.478471
630630 0 0
631631 −16.0000 −0.636950 −0.318475 0.947931i 0.603171π-0.603171\pi
−0.318475 + 0.947931i 0.603171π0.603171\pi
632632 8.00000i 0.318223i
633633 0 0
634634 6.00000 0.238290
635635 0 0
636636 0 0
637637 − 4.00000i − 0.158486i
638638 0 0
639639 0 0
640640 0 0
641641 18.0000 0.710957 0.355479 0.934684i 0.384318π-0.384318\pi
0.355479 + 0.934684i 0.384318π0.384318\pi
642642 0 0
643643 − 14.0000i − 0.552106i −0.961142 0.276053i 0.910973π-0.910973\pi
0.961142 0.276053i 0.0890266π-0.0890266\pi
644644 0 0
645645 0 0
646646 −12.0000 −0.472134
647647 12.0000i 0.471769i 0.971781 + 0.235884i 0.0757987π0.0757987\pi
−0.971781 + 0.235884i 0.924201π0.924201\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 − 16.0000i − 0.626608i
653653 18.0000i 0.704394i 0.935926 + 0.352197i 0.114565π0.114565\pi
−0.935926 + 0.352197i 0.885435π0.885435\pi
654654 0 0
655655 0 0
656656 −6.00000 −0.234261
657657 0 0
658658 − 12.0000i − 0.467809i
659659 −24.0000 −0.934907 −0.467454 0.884018i 0.654829π-0.654829\pi
−0.467454 + 0.884018i 0.654829π0.654829\pi
660660 0 0
661661 −40.0000 −1.55582 −0.777910 0.628376i 0.783720π-0.783720\pi
−0.777910 + 0.628376i 0.783720π0.783720\pi
662662 8.00000i 0.310929i
663663 0 0
664664 −6.00000 −0.232845
665665 0 0
666666 0 0
667667 0 0
668668 − 12.0000i − 0.464294i
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 − 26.0000i − 1.00223i −0.865382 0.501113i 0.832924π-0.832924\pi
0.865382 0.501113i 0.167076π-0.167076\pi
674674 −14.0000 −0.539260
675675 0 0
676676 3.00000 0.115385
677677 12.0000i 0.461197i 0.973049 + 0.230599i 0.0740685π0.0740685\pi
−0.973049 + 0.230599i 0.925932π0.925932\pi
678678 0 0
679679 10.0000 0.383765
680680 0 0
681681 0 0
682682 0 0
683683 − 12.0000i − 0.459167i −0.973289 0.229584i 0.926264π-0.926264\pi
0.973289 0.229584i 0.0737364π-0.0737364\pi
684684 0 0
685685 0 0
686686 1.00000 0.0381802
687687 0 0
688688 − 8.00000i − 0.304997i
689689 −24.0000 −0.914327
690690 0 0
691691 −46.0000 −1.74992 −0.874961 0.484193i 0.839113π-0.839113\pi
−0.874961 + 0.484193i 0.839113π0.839113\pi
692692 12.0000i 0.456172i
693693 0 0
694694 −24.0000 −0.911028
695695 0 0
696696 0 0
697697 36.0000i 1.36360i
698698 28.0000i 1.05982i
699699 0 0
700700 0 0
701701 −18.0000 −0.679851 −0.339925 0.940452i 0.610402π-0.610402\pi
−0.339925 + 0.940452i 0.610402π0.610402\pi
702702 0 0
703703 − 4.00000i − 0.150863i
704704 0 0
705705 0 0
706706 −18.0000 −0.677439
707707 0 0
708708 0 0
709709 46.0000 1.72757 0.863783 0.503864i 0.168089π-0.168089\pi
0.863783 + 0.503864i 0.168089π0.168089\pi
710710 0 0
711711 0 0
712712 6.00000i 0.224860i
713713 0 0
714714 0 0
715715 0 0
716716 12.0000 0.448461
717717 0 0
718718 − 24.0000i − 0.895672i
719719 12.0000 0.447524 0.223762 0.974644i 0.428166π-0.428166\pi
0.223762 + 0.974644i 0.428166π0.428166\pi
720720 0 0
721721 −4.00000 −0.148968
722722 − 15.0000i − 0.558242i
723723 0 0
724724 −20.0000 −0.743294
725725 0 0
726726 0 0
727727 44.0000i 1.63187i 0.578144 + 0.815935i 0.303777π0.303777\pi
−0.578144 + 0.815935i 0.696223π0.696223\pi
728728 4.00000i 0.148250i
729729 0 0
730730 0 0
731731 −48.0000 −1.77534
732732 0 0
733733 40.0000i 1.47743i 0.674016 + 0.738717i 0.264568π0.264568\pi
−0.674016 + 0.738717i 0.735432π0.735432\pi
734734 −8.00000 −0.295285
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 16.0000 0.588570 0.294285 0.955718i 0.404919π-0.404919\pi
0.294285 + 0.955718i 0.404919π0.404919\pi
740740 0 0
741741 0 0
742742 − 6.00000i − 0.220267i
743743 24.0000i 0.880475i 0.897881 + 0.440237i 0.145106π0.145106\pi
−0.897881 + 0.440237i 0.854894π0.854894\pi
744744 0 0
745745 0 0
746746 14.0000 0.512576
747747 0 0
748748 0 0
749749 12.0000 0.438470
750750 0 0
751751 −40.0000 −1.45962 −0.729810 0.683650i 0.760392π-0.760392\pi
−0.729810 + 0.683650i 0.760392π0.760392\pi
752752 12.0000i 0.437595i
753753 0 0
754754 24.0000 0.874028
755755 0 0
756756 0 0
757757 2.00000i 0.0726912i 0.999339 + 0.0363456i 0.0115717π0.0115717\pi
−0.999339 + 0.0363456i 0.988428π0.988428\pi
758758 16.0000i 0.581146i
759759 0 0
760760 0 0
761761 18.0000 0.652499 0.326250 0.945284i 0.394215π-0.394215\pi
0.326250 + 0.945284i 0.394215π0.394215\pi
762762 0 0
763763 − 2.00000i − 0.0724049i
764764 24.0000 0.868290
765765 0 0
766766 −36.0000 −1.30073
767767 − 24.0000i − 0.866590i
768768 0 0
769769 −14.0000 −0.504853 −0.252426 0.967616i 0.581229π-0.581229\pi
−0.252426 + 0.967616i 0.581229π0.581229\pi
770770 0 0
771771 0 0
772772 14.0000i 0.503871i
773773 24.0000i 0.863220i 0.902060 + 0.431610i 0.142054π0.142054\pi
−0.902060 + 0.431610i 0.857946π0.857946\pi
774774 0 0
775775 0 0
776776 −10.0000 −0.358979
777777 0 0
778778 18.0000i 0.645331i
779779 12.0000 0.429945
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −1.00000 −0.0357143
785785 0 0
786786 0 0
787787 − 22.0000i − 0.784215i −0.919919 0.392108i 0.871746π-0.871746\pi
0.919919 0.392108i 0.128254π-0.128254\pi
788788 − 18.0000i − 0.641223i
789789 0 0
790790 0 0
791791 −6.00000 −0.213335
792792 0 0
793793 32.0000i 1.13635i
794794 −20.0000 −0.709773
795795 0 0
796796 20.0000 0.708881
797797 12.0000i 0.425062i 0.977154 + 0.212531i 0.0681706π0.0681706\pi
−0.977154 + 0.212531i 0.931829π0.931829\pi
798798 0 0
799799 72.0000 2.54718
800800 0 0
801801 0 0
802802 18.0000i 0.635602i
803803 0 0
804804 0 0
805805 0 0
806806 16.0000 0.563576
807807 0 0
808808 0 0
809809 6.00000 0.210949 0.105474 0.994422i 0.466364π-0.466364\pi
0.105474 + 0.994422i 0.466364π0.466364\pi
810810 0 0
811811 2.00000 0.0702295 0.0351147 0.999383i 0.488820π-0.488820\pi
0.0351147 + 0.999383i 0.488820π0.488820\pi
812812 6.00000i 0.210559i
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 16.0000i 0.559769i
818818 − 14.0000i − 0.489499i
819819 0 0
820820 0 0
821821 −6.00000 −0.209401 −0.104701 0.994504i 0.533388π-0.533388\pi
−0.104701 + 0.994504i 0.533388π0.533388\pi
822822 0 0
823823 40.0000i 1.39431i 0.716919 + 0.697156i 0.245552π0.245552\pi
−0.716919 + 0.697156i 0.754448π0.754448\pi
824824 4.00000 0.139347
825825 0 0
826826 6.00000 0.208767
827827 36.0000i 1.25184i 0.779886 + 0.625921i 0.215277π0.215277\pi
−0.779886 + 0.625921i 0.784723π0.784723\pi
828828 0 0
829829 −56.0000 −1.94496 −0.972480 0.232986i 0.925151π-0.925151\pi
−0.972480 + 0.232986i 0.925151π0.925151\pi
830830 0 0
831831 0 0
832832 − 4.00000i − 0.138675i
833833 6.00000i 0.207888i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 6.00000i 0.207267i
839839 12.0000 0.414286 0.207143 0.978311i 0.433583π-0.433583\pi
0.207143 + 0.978311i 0.433583π0.433583\pi
840840 0 0
841841 7.00000 0.241379
842842 − 10.0000i − 0.344623i
843843 0 0
844844 4.00000 0.137686
845845 0 0
846846 0 0
847847 − 11.0000i − 0.377964i
848848 6.00000i 0.206041i
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 − 44.0000i − 1.50653i −0.657716 0.753266i 0.728477π-0.728477\pi
0.657716 0.753266i 0.271523π-0.271523\pi
854854 −8.00000 −0.273754
855855 0 0
856856 −12.0000 −0.410152
857857 18.0000i 0.614868i 0.951569 + 0.307434i 0.0994704π0.0994704\pi
−0.951569 + 0.307434i 0.900530π0.900530\pi
858858 0 0
859859 −14.0000 −0.477674 −0.238837 0.971060i 0.576766π-0.576766\pi
−0.238837 + 0.971060i 0.576766π0.576766\pi
860860 0 0
861861 0 0
862862 − 24.0000i − 0.817443i
863863 − 24.0000i − 0.816970i −0.912765 0.408485i 0.866057π-0.866057\pi
0.912765 0.408485i 0.133943π-0.133943\pi
864864 0 0
865865 0 0
866866 −34.0000 −1.15537
867867 0 0
868868 4.00000i 0.135769i
869869 0 0
870870 0 0
871871 16.0000 0.542139
872872 2.00000i 0.0677285i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 − 22.0000i − 0.742887i −0.928456 0.371444i 0.878863π-0.878863\pi
0.928456 0.371444i 0.121137π-0.121137\pi
878878 − 8.00000i − 0.269987i
879879 0 0
880880 0 0
881881 54.0000 1.81931 0.909653 0.415369i 0.136347π-0.136347\pi
0.909653 + 0.415369i 0.136347π0.136347\pi
882882 0 0
883883 − 20.0000i − 0.673054i −0.941674 0.336527i 0.890748π-0.890748\pi
0.941674 0.336527i 0.109252π-0.109252\pi
884884 −24.0000 −0.807207
885885 0 0
886886 12.0000 0.403148
887887 36.0000i 1.20876i 0.796696 + 0.604381i 0.206579π0.206579\pi
−0.796696 + 0.604381i 0.793421π0.793421\pi
888888 0 0
889889 16.0000 0.536623
890890 0 0
891891 0 0
892892 8.00000i 0.267860i
893893 − 24.0000i − 0.803129i
894894 0 0
895895 0 0
896896 1.00000 0.0334077
897897 0 0
898898 18.0000i 0.600668i
899899 24.0000 0.800445
900900 0 0
901901 36.0000 1.19933
902902 0 0
903903 0 0
904904 6.00000 0.199557
905905 0 0
906906 0 0
907907 44.0000i 1.46100i 0.682915 + 0.730498i 0.260712π0.260712\pi
−0.682915 + 0.730498i 0.739288π0.739288\pi
908908 18.0000i 0.597351i
909909 0 0
910910 0 0
911911 −48.0000 −1.59031 −0.795155 0.606406i 0.792611π-0.792611\pi
−0.795155 + 0.606406i 0.792611π0.792611\pi
912912 0 0
913913 0 0
914914 10.0000 0.330771
915915 0 0
916916 −4.00000 −0.132164
917917 − 18.0000i − 0.594412i
918918 0 0
919919 −56.0000 −1.84727 −0.923635 0.383274i 0.874797π-0.874797\pi
−0.923635 + 0.383274i 0.874797π0.874797\pi
920920 0 0
921921 0 0
922922 − 12.0000i − 0.395199i
923923 0 0
924924 0 0
925925 0 0
926926 32.0000 1.05159
927927 0 0
928928 − 6.00000i − 0.196960i
929929 6.00000 0.196854 0.0984268 0.995144i 0.468619π-0.468619\pi
0.0984268 + 0.995144i 0.468619π0.468619\pi
930930 0 0
931931 2.00000 0.0655474
932932 6.00000i 0.196537i
933933 0 0
934934 −6.00000 −0.196326
935935 0 0
936936 0 0
937937 2.00000i 0.0653372i 0.999466 + 0.0326686i 0.0104006π0.0104006\pi
−0.999466 + 0.0326686i 0.989599π0.989599\pi
938938 4.00000i 0.130605i
939939 0 0
940940 0 0
941941 24.0000 0.782378 0.391189 0.920310i 0.372064π-0.372064\pi
0.391189 + 0.920310i 0.372064π0.372064\pi
942942 0 0
943943 0 0
944944 −6.00000 −0.195283
945945 0 0
946946 0 0
947947 − 24.0000i − 0.779895i −0.920837 0.389948i 0.872493π-0.872493\pi
0.920837 0.389948i 0.127507π-0.127507\pi
948948 0 0
949949 8.00000 0.259691
950950 0 0
951951 0 0
952952 − 6.00000i − 0.194461i
953953 − 54.0000i − 1.74923i −0.484817 0.874616i 0.661114π-0.661114\pi
0.484817 0.874616i 0.338886π-0.338886\pi
954954 0 0
955955 0 0
956956 −24.0000 −0.776215
957957 0 0
958958 − 36.0000i − 1.16311i
959959 18.0000 0.581250
960960 0 0
961961 −15.0000 −0.483871
962962 − 8.00000i − 0.257930i
963963 0 0
964964 10.0000 0.322078
965965 0 0
966966 0 0
967967 32.0000i 1.02905i 0.857475 + 0.514525i 0.172032π0.172032\pi
−0.857475 + 0.514525i 0.827968π0.827968\pi
968968 11.0000i 0.353553i
969969 0 0
970970 0 0
971971 6.00000 0.192549 0.0962746 0.995355i 0.469307π-0.469307\pi
0.0962746 + 0.995355i 0.469307π0.469307\pi
972972 0 0
973973 − 14.0000i − 0.448819i
974974 16.0000 0.512673
975975 0 0
976976 8.00000 0.256074
977977 6.00000i 0.191957i 0.995383 + 0.0959785i 0.0305980π0.0305980\pi
−0.995383 + 0.0959785i 0.969402π0.969402\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 12.0000i 0.382935i
983983 − 36.0000i − 1.14822i −0.818778 0.574111i 0.805348π-0.805348\pi
0.818778 0.574111i 0.194652π-0.194652\pi
984984 0 0
985985 0 0
986986 −36.0000 −1.14647
987987 0 0
988988 8.00000i 0.254514i
989989 0 0
990990 0 0
991991 −16.0000 −0.508257 −0.254128 0.967170i 0.581789π-0.581789\pi
−0.254128 + 0.967170i 0.581789π0.581789\pi
992992 − 4.00000i − 0.127000i
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 8.00000i 0.253363i 0.991943 + 0.126681i 0.0404325π0.0404325\pi
−0.991943 + 0.126681i 0.959567π0.959567\pi
998998 4.00000i 0.126618i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3150.2.g.j.2899.2 2
3.2 odd 2 350.2.c.d.99.1 2
5.2 odd 4 3150.2.a.i.1.1 1
5.3 odd 4 126.2.a.b.1.1 1
5.4 even 2 inner 3150.2.g.j.2899.1 2
12.11 even 2 2800.2.g.h.449.1 2
15.2 even 4 350.2.a.f.1.1 1
15.8 even 4 14.2.a.a.1.1 1
15.14 odd 2 350.2.c.d.99.2 2
20.3 even 4 1008.2.a.h.1.1 1
21.20 even 2 2450.2.c.c.99.1 2
35.3 even 12 882.2.g.d.667.1 2
35.13 even 4 882.2.a.i.1.1 1
35.18 odd 12 882.2.g.c.667.1 2
35.23 odd 12 882.2.g.c.361.1 2
35.33 even 12 882.2.g.d.361.1 2
40.3 even 4 4032.2.a.r.1.1 1
40.13 odd 4 4032.2.a.w.1.1 1
45.13 odd 12 1134.2.f.f.379.1 2
45.23 even 12 1134.2.f.l.379.1 2
45.38 even 12 1134.2.f.l.757.1 2
45.43 odd 12 1134.2.f.f.757.1 2
60.23 odd 4 112.2.a.c.1.1 1
60.47 odd 4 2800.2.a.g.1.1 1
60.59 even 2 2800.2.g.h.449.2 2
105.23 even 12 98.2.c.b.67.1 2
105.38 odd 12 98.2.c.a.79.1 2
105.53 even 12 98.2.c.b.79.1 2
105.62 odd 4 2450.2.a.t.1.1 1
105.68 odd 12 98.2.c.a.67.1 2
105.83 odd 4 98.2.a.a.1.1 1
105.104 even 2 2450.2.c.c.99.2 2
120.53 even 4 448.2.a.g.1.1 1
120.83 odd 4 448.2.a.a.1.1 1
140.83 odd 4 7056.2.a.bd.1.1 1
165.98 odd 4 1694.2.a.e.1.1 1
195.8 odd 4 2366.2.d.b.337.1 2
195.38 even 4 2366.2.a.j.1.1 1
195.83 odd 4 2366.2.d.b.337.2 2
240.53 even 4 1792.2.b.c.897.2 2
240.83 odd 4 1792.2.b.g.897.2 2
240.173 even 4 1792.2.b.c.897.1 2
240.203 odd 4 1792.2.b.g.897.1 2
255.203 even 4 4046.2.a.f.1.1 1
285.113 odd 4 5054.2.a.c.1.1 1
345.68 odd 4 7406.2.a.a.1.1 1
420.23 odd 12 784.2.i.c.753.1 2
420.83 even 4 784.2.a.b.1.1 1
420.143 even 12 784.2.i.i.177.1 2
420.263 odd 12 784.2.i.c.177.1 2
420.383 even 12 784.2.i.i.753.1 2
840.83 even 4 3136.2.a.z.1.1 1
840.293 odd 4 3136.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.2.a.a.1.1 1 15.8 even 4
98.2.a.a.1.1 1 105.83 odd 4
98.2.c.a.67.1 2 105.68 odd 12
98.2.c.a.79.1 2 105.38 odd 12
98.2.c.b.67.1 2 105.23 even 12
98.2.c.b.79.1 2 105.53 even 12
112.2.a.c.1.1 1 60.23 odd 4
126.2.a.b.1.1 1 5.3 odd 4
350.2.a.f.1.1 1 15.2 even 4
350.2.c.d.99.1 2 3.2 odd 2
350.2.c.d.99.2 2 15.14 odd 2
448.2.a.a.1.1 1 120.83 odd 4
448.2.a.g.1.1 1 120.53 even 4
784.2.a.b.1.1 1 420.83 even 4
784.2.i.c.177.1 2 420.263 odd 12
784.2.i.c.753.1 2 420.23 odd 12
784.2.i.i.177.1 2 420.143 even 12
784.2.i.i.753.1 2 420.383 even 12
882.2.a.i.1.1 1 35.13 even 4
882.2.g.c.361.1 2 35.23 odd 12
882.2.g.c.667.1 2 35.18 odd 12
882.2.g.d.361.1 2 35.33 even 12
882.2.g.d.667.1 2 35.3 even 12
1008.2.a.h.1.1 1 20.3 even 4
1134.2.f.f.379.1 2 45.13 odd 12
1134.2.f.f.757.1 2 45.43 odd 12
1134.2.f.l.379.1 2 45.23 even 12
1134.2.f.l.757.1 2 45.38 even 12
1694.2.a.e.1.1 1 165.98 odd 4
1792.2.b.c.897.1 2 240.173 even 4
1792.2.b.c.897.2 2 240.53 even 4
1792.2.b.g.897.1 2 240.203 odd 4
1792.2.b.g.897.2 2 240.83 odd 4
2366.2.a.j.1.1 1 195.38 even 4
2366.2.d.b.337.1 2 195.8 odd 4
2366.2.d.b.337.2 2 195.83 odd 4
2450.2.a.t.1.1 1 105.62 odd 4
2450.2.c.c.99.1 2 21.20 even 2
2450.2.c.c.99.2 2 105.104 even 2
2800.2.a.g.1.1 1 60.47 odd 4
2800.2.g.h.449.1 2 12.11 even 2
2800.2.g.h.449.2 2 60.59 even 2
3136.2.a.e.1.1 1 840.293 odd 4
3136.2.a.z.1.1 1 840.83 even 4
3150.2.a.i.1.1 1 5.2 odd 4
3150.2.g.j.2899.1 2 5.4 even 2 inner
3150.2.g.j.2899.2 2 1.1 even 1 trivial
4032.2.a.r.1.1 1 40.3 even 4
4032.2.a.w.1.1 1 40.13 odd 4
4046.2.a.f.1.1 1 255.203 even 4
5054.2.a.c.1.1 1 285.113 odd 4
7056.2.a.bd.1.1 1 140.83 odd 4
7406.2.a.a.1.1 1 345.68 odd 4