Properties

Label 2450.2.c.c
Level 2450
Weight 2
Character orbit 2450.c
Analytic conductor 19.563
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2450 = 2 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 2450.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(19.5633484952\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + 2 i q^{3} - q^{4} -2 q^{6} -i q^{8} - q^{9} +O(q^{10})\) \( q + i q^{2} + 2 i q^{3} - q^{4} -2 q^{6} -i q^{8} - q^{9} -2 i q^{12} + 4 i q^{13} + q^{16} + 6 i q^{17} -i q^{18} + 2 q^{19} + 2 q^{24} -4 q^{26} + 4 i q^{27} + 6 q^{29} + 4 q^{31} + i q^{32} -6 q^{34} + q^{36} -2 i q^{37} + 2 i q^{38} -8 q^{39} -6 q^{41} + 8 i q^{43} -12 i q^{47} + 2 i q^{48} -12 q^{51} -4 i q^{52} + 6 i q^{53} -4 q^{54} + 4 i q^{57} + 6 i q^{58} -6 q^{59} -8 q^{61} + 4 i q^{62} - q^{64} + 4 i q^{67} -6 i q^{68} + i q^{72} -2 i q^{73} + 2 q^{74} -2 q^{76} -8 i q^{78} -8 q^{79} -11 q^{81} -6 i q^{82} + 6 i q^{83} -8 q^{86} + 12 i q^{87} -6 q^{89} + 8 i q^{93} + 12 q^{94} -2 q^{96} -10 i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} - 4q^{6} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{4} - 4q^{6} - 2q^{9} + 2q^{16} + 4q^{19} + 4q^{24} - 8q^{26} + 12q^{29} + 8q^{31} - 12q^{34} + 2q^{36} - 16q^{39} - 12q^{41} - 24q^{51} - 8q^{54} - 12q^{59} - 16q^{61} - 2q^{64} + 4q^{74} - 4q^{76} - 16q^{79} - 22q^{81} - 16q^{86} - 12q^{89} + 24q^{94} - 4q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(1177\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.00000i
1.00000i
1.00000i 2.00000i −1.00000 0 −2.00000 0 1.00000i −1.00000 0
99.2 1.00000i 2.00000i −1.00000 0 −2.00000 0 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2450.2.c.c 2
5.b even 2 1 inner 2450.2.c.c 2
5.c odd 4 1 98.2.a.a 1
5.c odd 4 1 2450.2.a.t 1
7.b odd 2 1 350.2.c.d 2
15.e even 4 1 882.2.a.i 1
20.e even 4 1 784.2.a.b 1
21.c even 2 1 3150.2.g.j 2
28.d even 2 1 2800.2.g.h 2
35.c odd 2 1 350.2.c.d 2
35.f even 4 1 14.2.a.a 1
35.f even 4 1 350.2.a.f 1
35.k even 12 2 98.2.c.b 2
35.l odd 12 2 98.2.c.a 2
40.i odd 4 1 3136.2.a.e 1
40.k even 4 1 3136.2.a.z 1
60.l odd 4 1 7056.2.a.bd 1
105.g even 2 1 3150.2.g.j 2
105.k odd 4 1 126.2.a.b 1
105.k odd 4 1 3150.2.a.i 1
105.w odd 12 2 882.2.g.c 2
105.x even 12 2 882.2.g.d 2
140.c even 2 1 2800.2.g.h 2
140.j odd 4 1 112.2.a.c 1
140.j odd 4 1 2800.2.a.g 1
140.w even 12 2 784.2.i.i 2
140.x odd 12 2 784.2.i.c 2
280.s even 4 1 448.2.a.g 1
280.y odd 4 1 448.2.a.a 1
315.cb even 12 2 1134.2.f.l 2
315.cf odd 12 2 1134.2.f.f 2
385.l odd 4 1 1694.2.a.e 1
420.w even 4 1 1008.2.a.h 1
455.n odd 4 1 2366.2.d.b 2
455.s even 4 1 2366.2.a.j 1
455.w odd 4 1 2366.2.d.b 2
560.r even 4 1 1792.2.b.c 2
560.u odd 4 1 1792.2.b.g 2
560.bm odd 4 1 1792.2.b.g 2
560.bn even 4 1 1792.2.b.c 2
595.p even 4 1 4046.2.a.f 1
665.n odd 4 1 5054.2.a.c 1
805.j odd 4 1 7406.2.a.a 1
840.bm even 4 1 4032.2.a.r 1
840.bp odd 4 1 4032.2.a.w 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.2.a.a 1 35.f even 4 1
98.2.a.a 1 5.c odd 4 1
98.2.c.a 2 35.l odd 12 2
98.2.c.b 2 35.k even 12 2
112.2.a.c 1 140.j odd 4 1
126.2.a.b 1 105.k odd 4 1
350.2.a.f 1 35.f even 4 1
350.2.c.d 2 7.b odd 2 1
350.2.c.d 2 35.c odd 2 1
448.2.a.a 1 280.y odd 4 1
448.2.a.g 1 280.s even 4 1
784.2.a.b 1 20.e even 4 1
784.2.i.c 2 140.x odd 12 2
784.2.i.i 2 140.w even 12 2
882.2.a.i 1 15.e even 4 1
882.2.g.c 2 105.w odd 12 2
882.2.g.d 2 105.x even 12 2
1008.2.a.h 1 420.w even 4 1
1134.2.f.f 2 315.cf odd 12 2
1134.2.f.l 2 315.cb even 12 2
1694.2.a.e 1 385.l odd 4 1
1792.2.b.c 2 560.r even 4 1
1792.2.b.c 2 560.bn even 4 1
1792.2.b.g 2 560.u odd 4 1
1792.2.b.g 2 560.bm odd 4 1
2366.2.a.j 1 455.s even 4 1
2366.2.d.b 2 455.n odd 4 1
2366.2.d.b 2 455.w odd 4 1
2450.2.a.t 1 5.c odd 4 1
2450.2.c.c 2 1.a even 1 1 trivial
2450.2.c.c 2 5.b even 2 1 inner
2800.2.a.g 1 140.j odd 4 1
2800.2.g.h 2 28.d even 2 1
2800.2.g.h 2 140.c even 2 1
3136.2.a.e 1 40.i odd 4 1
3136.2.a.z 1 40.k even 4 1
3150.2.a.i 1 105.k odd 4 1
3150.2.g.j 2 21.c even 2 1
3150.2.g.j 2 105.g even 2 1
4032.2.a.r 1 840.bm even 4 1
4032.2.a.w 1 840.bp odd 4 1
4046.2.a.f 1 595.p even 4 1
5054.2.a.c 1 665.n odd 4 1
7056.2.a.bd 1 60.l odd 4 1
7406.2.a.a 1 805.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2450, [\chi])\):

\( T_{3}^{2} + 4 \)
\( T_{11} \)
\( T_{13}^{2} + 16 \)
\( T_{19} - 2 \)
\( T_{31} - 4 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( 1 - 2 T^{2} + 9 T^{4} \)
$5$ 1
$7$ 1
$11$ \( ( 1 + 11 T^{2} )^{2} \)
$13$ \( ( 1 - 6 T + 13 T^{2} )( 1 + 6 T + 13 T^{2} ) \)
$17$ \( 1 + 2 T^{2} + 289 T^{4} \)
$19$ \( ( 1 - 2 T + 19 T^{2} )^{2} \)
$23$ \( ( 1 - 23 T^{2} )^{2} \)
$29$ \( ( 1 - 6 T + 29 T^{2} )^{2} \)
$31$ \( ( 1 - 4 T + 31 T^{2} )^{2} \)
$37$ \( ( 1 - 12 T + 37 T^{2} )( 1 + 12 T + 37 T^{2} ) \)
$41$ \( ( 1 + 6 T + 41 T^{2} )^{2} \)
$43$ \( 1 - 22 T^{2} + 1849 T^{4} \)
$47$ \( 1 + 50 T^{2} + 2209 T^{4} \)
$53$ \( 1 - 70 T^{2} + 2809 T^{4} \)
$59$ \( ( 1 + 6 T + 59 T^{2} )^{2} \)
$61$ \( ( 1 + 8 T + 61 T^{2} )^{2} \)
$67$ \( 1 - 118 T^{2} + 4489 T^{4} \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( 1 - 142 T^{2} + 5329 T^{4} \)
$79$ \( ( 1 + 8 T + 79 T^{2} )^{2} \)
$83$ \( 1 - 130 T^{2} + 6889 T^{4} \)
$89$ \( ( 1 + 6 T + 89 T^{2} )^{2} \)
$97$ \( 1 - 94 T^{2} + 9409 T^{4} \)
show more
show less