Properties

Label 245.4.a.a
Level 245245
Weight 44
Character orbit 245.a
Self dual yes
Analytic conductor 14.45514.455
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,4,Mod(1,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: N N == 245=572 245 = 5 \cdot 7^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 245.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-4,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 14.455467951414.4554679514
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 5)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q4q22q3+8q4+5q5+8q623q920q10+32q1116q12+38q1310q1564q1626q17+92q18100q19+40q20128q2278q23+736q99+O(q100) q - 4 q^{2} - 2 q^{3} + 8 q^{4} + 5 q^{5} + 8 q^{6} - 23 q^{9} - 20 q^{10} + 32 q^{11} - 16 q^{12} + 38 q^{13} - 10 q^{15} - 64 q^{16} - 26 q^{17} + 92 q^{18} - 100 q^{19} + 40 q^{20} - 128 q^{22} - 78 q^{23}+ \cdots - 736 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−4.00000 −2.00000 8.00000 5.00000 8.00000 0 0 −23.0000 −20.0000
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.4.a.a 1
3.b odd 2 1 2205.4.a.q 1
5.b even 2 1 1225.4.a.k 1
7.b odd 2 1 5.4.a.a 1
7.c even 3 2 245.4.e.g 2
7.d odd 6 2 245.4.e.f 2
21.c even 2 1 45.4.a.d 1
28.d even 2 1 80.4.a.d 1
35.c odd 2 1 25.4.a.c 1
35.f even 4 2 25.4.b.a 2
56.e even 2 1 320.4.a.h 1
56.h odd 2 1 320.4.a.g 1
63.l odd 6 2 405.4.e.l 2
63.o even 6 2 405.4.e.c 2
77.b even 2 1 605.4.a.d 1
84.h odd 2 1 720.4.a.u 1
91.b odd 2 1 845.4.a.b 1
105.g even 2 1 225.4.a.b 1
105.k odd 4 2 225.4.b.c 2
112.j even 4 2 1280.4.d.l 2
112.l odd 4 2 1280.4.d.e 2
119.d odd 2 1 1445.4.a.a 1
133.c even 2 1 1805.4.a.h 1
140.c even 2 1 400.4.a.m 1
140.j odd 4 2 400.4.c.k 2
280.c odd 2 1 1600.4.a.bi 1
280.n even 2 1 1600.4.a.s 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5.4.a.a 1 7.b odd 2 1
25.4.a.c 1 35.c odd 2 1
25.4.b.a 2 35.f even 4 2
45.4.a.d 1 21.c even 2 1
80.4.a.d 1 28.d even 2 1
225.4.a.b 1 105.g even 2 1
225.4.b.c 2 105.k odd 4 2
245.4.a.a 1 1.a even 1 1 trivial
245.4.e.f 2 7.d odd 6 2
245.4.e.g 2 7.c even 3 2
320.4.a.g 1 56.h odd 2 1
320.4.a.h 1 56.e even 2 1
400.4.a.m 1 140.c even 2 1
400.4.c.k 2 140.j odd 4 2
405.4.e.c 2 63.o even 6 2
405.4.e.l 2 63.l odd 6 2
605.4.a.d 1 77.b even 2 1
720.4.a.u 1 84.h odd 2 1
845.4.a.b 1 91.b odd 2 1
1225.4.a.k 1 5.b even 2 1
1280.4.d.e 2 112.l odd 4 2
1280.4.d.l 2 112.j even 4 2
1445.4.a.a 1 119.d odd 2 1
1600.4.a.s 1 280.n even 2 1
1600.4.a.bi 1 280.c odd 2 1
1805.4.a.h 1 133.c even 2 1
2205.4.a.q 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(245))S_{4}^{\mathrm{new}}(\Gamma_0(245)):

T2+4 T_{2} + 4 Copy content Toggle raw display
T3+2 T_{3} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+4 T + 4 Copy content Toggle raw display
33 T+2 T + 2 Copy content Toggle raw display
55 T5 T - 5 Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T32 T - 32 Copy content Toggle raw display
1313 T38 T - 38 Copy content Toggle raw display
1717 T+26 T + 26 Copy content Toggle raw display
1919 T+100 T + 100 Copy content Toggle raw display
2323 T+78 T + 78 Copy content Toggle raw display
2929 T+50 T + 50 Copy content Toggle raw display
3131 T108 T - 108 Copy content Toggle raw display
3737 T266 T - 266 Copy content Toggle raw display
4141 T+22 T + 22 Copy content Toggle raw display
4343 T442 T - 442 Copy content Toggle raw display
4747 T514 T - 514 Copy content Toggle raw display
5353 T2 T - 2 Copy content Toggle raw display
5959 T+500 T + 500 Copy content Toggle raw display
6161 T518 T - 518 Copy content Toggle raw display
6767 T126 T - 126 Copy content Toggle raw display
7171 T412 T - 412 Copy content Toggle raw display
7373 T878 T - 878 Copy content Toggle raw display
7979 T600 T - 600 Copy content Toggle raw display
8383 T+282 T + 282 Copy content Toggle raw display
8989 T150 T - 150 Copy content Toggle raw display
9797 T+386 T + 386 Copy content Toggle raw display
show more
show less