gp: [N,k,chi] = [245,4,Mod(1,245)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("245.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(245, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 4, names="a")
Newform invariants
sage: traces = [1,-4,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
5 5 5
− 1 -1 − 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 4 n e w ( Γ 0 ( 245 ) ) S_{4}^{\mathrm{new}}(\Gamma_0(245)) S 4 n e w ( Γ 0 ( 2 4 5 ) ) :
T 2 + 4 T_{2} + 4 T 2 + 4
T2 + 4
T 3 + 2 T_{3} + 2 T 3 + 2
T3 + 2
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 4 T + 4 T + 4
T + 4
3 3 3
T + 2 T + 2 T + 2
T + 2
5 5 5
T − 5 T - 5 T − 5
T - 5
7 7 7
T T T
T
11 11 1 1
T − 32 T - 32 T − 3 2
T - 32
13 13 1 3
T − 38 T - 38 T − 3 8
T - 38
17 17 1 7
T + 26 T + 26 T + 2 6
T + 26
19 19 1 9
T + 100 T + 100 T + 1 0 0
T + 100
23 23 2 3
T + 78 T + 78 T + 7 8
T + 78
29 29 2 9
T + 50 T + 50 T + 5 0
T + 50
31 31 3 1
T − 108 T - 108 T − 1 0 8
T - 108
37 37 3 7
T − 266 T - 266 T − 2 6 6
T - 266
41 41 4 1
T + 22 T + 22 T + 2 2
T + 22
43 43 4 3
T − 442 T - 442 T − 4 4 2
T - 442
47 47 4 7
T − 514 T - 514 T − 5 1 4
T - 514
53 53 5 3
T − 2 T - 2 T − 2
T - 2
59 59 5 9
T + 500 T + 500 T + 5 0 0
T + 500
61 61 6 1
T − 518 T - 518 T − 5 1 8
T - 518
67 67 6 7
T − 126 T - 126 T − 1 2 6
T - 126
71 71 7 1
T − 412 T - 412 T − 4 1 2
T - 412
73 73 7 3
T − 878 T - 878 T − 8 7 8
T - 878
79 79 7 9
T − 600 T - 600 T − 6 0 0
T - 600
83 83 8 3
T + 282 T + 282 T + 2 8 2
T + 282
89 89 8 9
T − 150 T - 150 T − 1 5 0
T - 150
97 97 9 7
T + 386 T + 386 T + 3 8 6
T + 386
show more
show less