Defining parameters
Level: | \( N \) | = | \( 245 = 5 \cdot 7^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 12 \) | ||
Newform subspaces: | \( 61 \) | ||
Sturm bound: | \(18816\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(245))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7296 | 6351 | 945 |
Cusp forms | 6816 | 6061 | 755 |
Eisenstein series | 480 | 290 | 190 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(245))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(245))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(245)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(35))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)