Properties

Label 245.2.b.e.99.4
Level $245$
Weight $2$
Character 245.99
Analytic conductor $1.956$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,2,Mod(99,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.99"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 99.4
Root \(-0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 245.99
Dual form 245.2.b.e.99.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.44949i q^{2} +1.73205i q^{3} -4.00000 q^{4} +(-1.41421 + 1.73205i) q^{5} -4.24264 q^{6} -4.89898i q^{8} +(-4.24264 - 3.46410i) q^{10} +5.00000 q^{11} -6.92820i q^{12} -1.73205i q^{13} +(-3.00000 - 2.44949i) q^{15} +4.00000 q^{16} +1.73205i q^{17} -2.82843 q^{19} +(5.65685 - 6.92820i) q^{20} +12.2474i q^{22} +2.44949i q^{23} +8.48528 q^{24} +(-1.00000 - 4.89898i) q^{25} +4.24264 q^{26} +5.19615i q^{27} -5.00000 q^{29} +(6.00000 - 7.34847i) q^{30} +1.41421 q^{31} +8.66025i q^{33} -4.24264 q^{34} +2.44949i q^{37} -6.92820i q^{38} +3.00000 q^{39} +(8.48528 + 6.92820i) q^{40} +9.89949 q^{41} -20.0000 q^{44} -6.00000 q^{46} -8.66025i q^{47} +6.92820i q^{48} +(12.0000 - 2.44949i) q^{50} -3.00000 q^{51} +6.92820i q^{52} +7.34847i q^{53} -12.7279 q^{54} +(-7.07107 + 8.66025i) q^{55} -4.89898i q^{57} -12.2474i q^{58} +1.41421 q^{59} +(12.0000 + 9.79796i) q^{60} -2.82843 q^{61} +3.46410i q^{62} +8.00000 q^{64} +(3.00000 + 2.44949i) q^{65} -21.2132 q^{66} +7.34847i q^{67} -6.92820i q^{68} -4.24264 q^{69} +2.00000 q^{71} +13.8564i q^{73} -6.00000 q^{74} +(8.48528 - 1.73205i) q^{75} +11.3137 q^{76} +7.34847i q^{78} +3.00000 q^{79} +(-5.65685 + 6.92820i) q^{80} -9.00000 q^{81} +24.2487i q^{82} -13.8564i q^{83} +(-3.00000 - 2.44949i) q^{85} -8.66025i q^{87} -24.4949i q^{88} +16.9706 q^{89} -9.79796i q^{92} +2.44949i q^{93} +21.2132 q^{94} +(4.00000 - 4.89898i) q^{95} -1.73205i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 20 q^{11} - 12 q^{15} + 16 q^{16} - 4 q^{25} - 20 q^{29} + 24 q^{30} + 12 q^{39} - 80 q^{44} - 24 q^{46} + 48 q^{50} - 12 q^{51} + 48 q^{60} + 32 q^{64} + 12 q^{65} + 8 q^{71} - 24 q^{74}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44949i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(3\) 1.73205i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) −4.00000 −2.00000
\(5\) −1.41421 + 1.73205i −0.632456 + 0.774597i
\(6\) −4.24264 −1.73205
\(7\) 0 0
\(8\) 4.89898i 1.73205i
\(9\) 0 0
\(10\) −4.24264 3.46410i −1.34164 1.09545i
\(11\) 5.00000 1.50756 0.753778 0.657129i \(-0.228229\pi\)
0.753778 + 0.657129i \(0.228229\pi\)
\(12\) 6.92820i 2.00000i
\(13\) 1.73205i 0.480384i −0.970725 0.240192i \(-0.922790\pi\)
0.970725 0.240192i \(-0.0772105\pi\)
\(14\) 0 0
\(15\) −3.00000 2.44949i −0.774597 0.632456i
\(16\) 4.00000 1.00000
\(17\) 1.73205i 0.420084i 0.977692 + 0.210042i \(0.0673601\pi\)
−0.977692 + 0.210042i \(0.932640\pi\)
\(18\) 0 0
\(19\) −2.82843 −0.648886 −0.324443 0.945905i \(-0.605177\pi\)
−0.324443 + 0.945905i \(0.605177\pi\)
\(20\) 5.65685 6.92820i 1.26491 1.54919i
\(21\) 0 0
\(22\) 12.2474i 2.61116i
\(23\) 2.44949i 0.510754i 0.966842 + 0.255377i \(0.0821996\pi\)
−0.966842 + 0.255377i \(0.917800\pi\)
\(24\) 8.48528 1.73205
\(25\) −1.00000 4.89898i −0.200000 0.979796i
\(26\) 4.24264 0.832050
\(27\) 5.19615i 1.00000i
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 6.00000 7.34847i 1.09545 1.34164i
\(31\) 1.41421 0.254000 0.127000 0.991903i \(-0.459465\pi\)
0.127000 + 0.991903i \(0.459465\pi\)
\(32\) 0 0
\(33\) 8.66025i 1.50756i
\(34\) −4.24264 −0.727607
\(35\) 0 0
\(36\) 0 0
\(37\) 2.44949i 0.402694i 0.979520 + 0.201347i \(0.0645318\pi\)
−0.979520 + 0.201347i \(0.935468\pi\)
\(38\) 6.92820i 1.12390i
\(39\) 3.00000 0.480384
\(40\) 8.48528 + 6.92820i 1.34164 + 1.09545i
\(41\) 9.89949 1.54604 0.773021 0.634381i \(-0.218745\pi\)
0.773021 + 0.634381i \(0.218745\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −20.0000 −3.01511
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 8.66025i 1.26323i −0.775283 0.631614i \(-0.782393\pi\)
0.775283 0.631614i \(-0.217607\pi\)
\(48\) 6.92820i 1.00000i
\(49\) 0 0
\(50\) 12.0000 2.44949i 1.69706 0.346410i
\(51\) −3.00000 −0.420084
\(52\) 6.92820i 0.960769i
\(53\) 7.34847i 1.00939i 0.863298 + 0.504695i \(0.168395\pi\)
−0.863298 + 0.504695i \(0.831605\pi\)
\(54\) −12.7279 −1.73205
\(55\) −7.07107 + 8.66025i −0.953463 + 1.16775i
\(56\) 0 0
\(57\) 4.89898i 0.648886i
\(58\) 12.2474i 1.60817i
\(59\) 1.41421 0.184115 0.0920575 0.995754i \(-0.470656\pi\)
0.0920575 + 0.995754i \(0.470656\pi\)
\(60\) 12.0000 + 9.79796i 1.54919 + 1.26491i
\(61\) −2.82843 −0.362143 −0.181071 0.983470i \(-0.557957\pi\)
−0.181071 + 0.983470i \(0.557957\pi\)
\(62\) 3.46410i 0.439941i
\(63\) 0 0
\(64\) 8.00000 1.00000
\(65\) 3.00000 + 2.44949i 0.372104 + 0.303822i
\(66\) −21.2132 −2.61116
\(67\) 7.34847i 0.897758i 0.893592 + 0.448879i \(0.148177\pi\)
−0.893592 + 0.448879i \(0.851823\pi\)
\(68\) 6.92820i 0.840168i
\(69\) −4.24264 −0.510754
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 13.8564i 1.62177i 0.585206 + 0.810885i \(0.301014\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) −6.00000 −0.697486
\(75\) 8.48528 1.73205i 0.979796 0.200000i
\(76\) 11.3137 1.29777
\(77\) 0 0
\(78\) 7.34847i 0.832050i
\(79\) 3.00000 0.337526 0.168763 0.985657i \(-0.446023\pi\)
0.168763 + 0.985657i \(0.446023\pi\)
\(80\) −5.65685 + 6.92820i −0.632456 + 0.774597i
\(81\) −9.00000 −1.00000
\(82\) 24.2487i 2.67782i
\(83\) 13.8564i 1.52094i −0.649374 0.760469i \(-0.724969\pi\)
0.649374 0.760469i \(-0.275031\pi\)
\(84\) 0 0
\(85\) −3.00000 2.44949i −0.325396 0.265684i
\(86\) 0 0
\(87\) 8.66025i 0.928477i
\(88\) 24.4949i 2.61116i
\(89\) 16.9706 1.79888 0.899438 0.437048i \(-0.143976\pi\)
0.899438 + 0.437048i \(0.143976\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 9.79796i 1.02151i
\(93\) 2.44949i 0.254000i
\(94\) 21.2132 2.18797
\(95\) 4.00000 4.89898i 0.410391 0.502625i
\(96\) 0 0
\(97\) 1.73205i 0.175863i −0.996127 0.0879316i \(-0.971974\pi\)
0.996127 0.0879316i \(-0.0280257\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.00000 + 19.5959i 0.400000 + 1.95959i
\(101\) 11.3137 1.12576 0.562878 0.826540i \(-0.309694\pi\)
0.562878 + 0.826540i \(0.309694\pi\)
\(102\) 7.34847i 0.727607i
\(103\) 8.66025i 0.853320i −0.904412 0.426660i \(-0.859690\pi\)
0.904412 0.426660i \(-0.140310\pi\)
\(104\) −8.48528 −0.832050
\(105\) 0 0
\(106\) −18.0000 −1.74831
\(107\) 14.6969i 1.42081i −0.703795 0.710403i \(-0.748513\pi\)
0.703795 0.710403i \(-0.251487\pi\)
\(108\) 20.7846i 2.00000i
\(109\) −9.00000 −0.862044 −0.431022 0.902342i \(-0.641847\pi\)
−0.431022 + 0.902342i \(0.641847\pi\)
\(110\) −21.2132 17.3205i −2.02260 1.65145i
\(111\) −4.24264 −0.402694
\(112\) 0 0
\(113\) 17.1464i 1.61300i 0.591234 + 0.806500i \(0.298641\pi\)
−0.591234 + 0.806500i \(0.701359\pi\)
\(114\) 12.0000 1.12390
\(115\) −4.24264 3.46410i −0.395628 0.323029i
\(116\) 20.0000 1.85695
\(117\) 0 0
\(118\) 3.46410i 0.318896i
\(119\) 0 0
\(120\) −12.0000 + 14.6969i −1.09545 + 1.34164i
\(121\) 14.0000 1.27273
\(122\) 6.92820i 0.627250i
\(123\) 17.1464i 1.54604i
\(124\) −5.65685 −0.508001
\(125\) 9.89949 + 5.19615i 0.885438 + 0.464758i
\(126\) 0 0
\(127\) 17.1464i 1.52150i −0.649045 0.760750i \(-0.724831\pi\)
0.649045 0.760750i \(-0.275169\pi\)
\(128\) 19.5959i 1.73205i
\(129\) 0 0
\(130\) −6.00000 + 7.34847i −0.526235 + 0.644503i
\(131\) −12.7279 −1.11204 −0.556022 0.831168i \(-0.687673\pi\)
−0.556022 + 0.831168i \(0.687673\pi\)
\(132\) 34.6410i 3.01511i
\(133\) 0 0
\(134\) −18.0000 −1.55496
\(135\) −9.00000 7.34847i −0.774597 0.632456i
\(136\) 8.48528 0.727607
\(137\) 9.79796i 0.837096i −0.908195 0.418548i \(-0.862539\pi\)
0.908195 0.418548i \(-0.137461\pi\)
\(138\) 10.3923i 0.884652i
\(139\) 9.89949 0.839664 0.419832 0.907602i \(-0.362089\pi\)
0.419832 + 0.907602i \(0.362089\pi\)
\(140\) 0 0
\(141\) 15.0000 1.26323
\(142\) 4.89898i 0.411113i
\(143\) 8.66025i 0.724207i
\(144\) 0 0
\(145\) 7.07107 8.66025i 0.587220 0.719195i
\(146\) −33.9411 −2.80899
\(147\) 0 0
\(148\) 9.79796i 0.805387i
\(149\) −4.00000 −0.327693 −0.163846 0.986486i \(-0.552390\pi\)
−0.163846 + 0.986486i \(0.552390\pi\)
\(150\) 4.24264 + 20.7846i 0.346410 + 1.69706i
\(151\) 5.00000 0.406894 0.203447 0.979086i \(-0.434786\pi\)
0.203447 + 0.979086i \(0.434786\pi\)
\(152\) 13.8564i 1.12390i
\(153\) 0 0
\(154\) 0 0
\(155\) −2.00000 + 2.44949i −0.160644 + 0.196748i
\(156\) −12.0000 −0.960769
\(157\) 10.3923i 0.829396i −0.909959 0.414698i \(-0.863887\pi\)
0.909959 0.414698i \(-0.136113\pi\)
\(158\) 7.34847i 0.584613i
\(159\) −12.7279 −1.00939
\(160\) 0 0
\(161\) 0 0
\(162\) 22.0454i 1.73205i
\(163\) 2.44949i 0.191859i 0.995388 + 0.0959294i \(0.0305823\pi\)
−0.995388 + 0.0959294i \(0.969418\pi\)
\(164\) −39.5980 −3.09208
\(165\) −15.0000 12.2474i −1.16775 0.953463i
\(166\) 33.9411 2.63434
\(167\) 1.73205i 0.134030i −0.997752 0.0670151i \(-0.978652\pi\)
0.997752 0.0670151i \(-0.0213476\pi\)
\(168\) 0 0
\(169\) 10.0000 0.769231
\(170\) 6.00000 7.34847i 0.460179 0.563602i
\(171\) 0 0
\(172\) 0 0
\(173\) 15.5885i 1.18517i 0.805508 + 0.592584i \(0.201892\pi\)
−0.805508 + 0.592584i \(0.798108\pi\)
\(174\) 21.2132 1.60817
\(175\) 0 0
\(176\) 20.0000 1.50756
\(177\) 2.44949i 0.184115i
\(178\) 41.5692i 3.11574i
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) −9.89949 −0.735824 −0.367912 0.929861i \(-0.619927\pi\)
−0.367912 + 0.929861i \(0.619927\pi\)
\(182\) 0 0
\(183\) 4.89898i 0.362143i
\(184\) 12.0000 0.884652
\(185\) −4.24264 3.46410i −0.311925 0.254686i
\(186\) −6.00000 −0.439941
\(187\) 8.66025i 0.633300i
\(188\) 34.6410i 2.52646i
\(189\) 0 0
\(190\) 12.0000 + 9.79796i 0.870572 + 0.710819i
\(191\) 17.0000 1.23008 0.615038 0.788497i \(-0.289140\pi\)
0.615038 + 0.788497i \(0.289140\pi\)
\(192\) 13.8564i 1.00000i
\(193\) 9.79796i 0.705273i −0.935760 0.352636i \(-0.885285\pi\)
0.935760 0.352636i \(-0.114715\pi\)
\(194\) 4.24264 0.304604
\(195\) −4.24264 + 5.19615i −0.303822 + 0.372104i
\(196\) 0 0
\(197\) 17.1464i 1.22163i 0.791772 + 0.610816i \(0.209159\pi\)
−0.791772 + 0.610816i \(0.790841\pi\)
\(198\) 0 0
\(199\) −18.3848 −1.30326 −0.651631 0.758536i \(-0.725915\pi\)
−0.651631 + 0.758536i \(0.725915\pi\)
\(200\) −24.0000 + 4.89898i −1.69706 + 0.346410i
\(201\) −12.7279 −0.897758
\(202\) 27.7128i 1.94987i
\(203\) 0 0
\(204\) 12.0000 0.840168
\(205\) −14.0000 + 17.1464i −0.977802 + 1.19756i
\(206\) 21.2132 1.47799
\(207\) 0 0
\(208\) 6.92820i 0.480384i
\(209\) −14.1421 −0.978232
\(210\) 0 0
\(211\) 9.00000 0.619586 0.309793 0.950804i \(-0.399740\pi\)
0.309793 + 0.950804i \(0.399740\pi\)
\(212\) 29.3939i 2.01878i
\(213\) 3.46410i 0.237356i
\(214\) 36.0000 2.46091
\(215\) 0 0
\(216\) 25.4558 1.73205
\(217\) 0 0
\(218\) 22.0454i 1.49310i
\(219\) −24.0000 −1.62177
\(220\) 28.2843 34.6410i 1.90693 2.33550i
\(221\) 3.00000 0.201802
\(222\) 10.3923i 0.697486i
\(223\) 25.9808i 1.73980i −0.493228 0.869900i \(-0.664183\pi\)
0.493228 0.869900i \(-0.335817\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −42.0000 −2.79380
\(227\) 1.73205i 0.114960i 0.998347 + 0.0574801i \(0.0183066\pi\)
−0.998347 + 0.0574801i \(0.981693\pi\)
\(228\) 19.5959i 1.29777i
\(229\) 7.07107 0.467269 0.233635 0.972324i \(-0.424938\pi\)
0.233635 + 0.972324i \(0.424938\pi\)
\(230\) 8.48528 10.3923i 0.559503 0.685248i
\(231\) 0 0
\(232\) 24.4949i 1.60817i
\(233\) 14.6969i 0.962828i −0.876493 0.481414i \(-0.840123\pi\)
0.876493 0.481414i \(-0.159877\pi\)
\(234\) 0 0
\(235\) 15.0000 + 12.2474i 0.978492 + 0.798935i
\(236\) −5.65685 −0.368230
\(237\) 5.19615i 0.337526i
\(238\) 0 0
\(239\) −19.0000 −1.22901 −0.614504 0.788914i \(-0.710644\pi\)
−0.614504 + 0.788914i \(0.710644\pi\)
\(240\) −12.0000 9.79796i −0.774597 0.632456i
\(241\) −18.3848 −1.18427 −0.592134 0.805840i \(-0.701714\pi\)
−0.592134 + 0.805840i \(0.701714\pi\)
\(242\) 34.2929i 2.20443i
\(243\) 0 0
\(244\) 11.3137 0.724286
\(245\) 0 0
\(246\) −42.0000 −2.67782
\(247\) 4.89898i 0.311715i
\(248\) 6.92820i 0.439941i
\(249\) 24.0000 1.52094
\(250\) −12.7279 + 24.2487i −0.804984 + 1.53362i
\(251\) 9.89949 0.624851 0.312425 0.949942i \(-0.398859\pi\)
0.312425 + 0.949942i \(0.398859\pi\)
\(252\) 0 0
\(253\) 12.2474i 0.769991i
\(254\) 42.0000 2.63531
\(255\) 4.24264 5.19615i 0.265684 0.325396i
\(256\) −32.0000 −2.00000
\(257\) 3.46410i 0.216085i 0.994146 + 0.108042i \(0.0344582\pi\)
−0.994146 + 0.108042i \(0.965542\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −12.0000 9.79796i −0.744208 0.607644i
\(261\) 0 0
\(262\) 31.1769i 1.92612i
\(263\) 9.79796i 0.604168i −0.953281 0.302084i \(-0.902318\pi\)
0.953281 0.302084i \(-0.0976823\pi\)
\(264\) 42.4264 2.61116
\(265\) −12.7279 10.3923i −0.781870 0.638394i
\(266\) 0 0
\(267\) 29.3939i 1.79888i
\(268\) 29.3939i 1.79552i
\(269\) 21.2132 1.29339 0.646696 0.762748i \(-0.276150\pi\)
0.646696 + 0.762748i \(0.276150\pi\)
\(270\) 18.0000 22.0454i 1.09545 1.34164i
\(271\) −22.6274 −1.37452 −0.687259 0.726413i \(-0.741186\pi\)
−0.687259 + 0.726413i \(0.741186\pi\)
\(272\) 6.92820i 0.420084i
\(273\) 0 0
\(274\) 24.0000 1.44989
\(275\) −5.00000 24.4949i −0.301511 1.47710i
\(276\) 16.9706 1.02151
\(277\) 26.9444i 1.61893i −0.587167 0.809466i \(-0.699757\pi\)
0.587167 0.809466i \(-0.300243\pi\)
\(278\) 24.2487i 1.45434i
\(279\) 0 0
\(280\) 0 0
\(281\) −5.00000 −0.298275 −0.149137 0.988816i \(-0.547650\pi\)
−0.149137 + 0.988816i \(0.547650\pi\)
\(282\) 36.7423i 2.18797i
\(283\) 1.73205i 0.102960i 0.998674 + 0.0514799i \(0.0163938\pi\)
−0.998674 + 0.0514799i \(0.983606\pi\)
\(284\) −8.00000 −0.474713
\(285\) 8.48528 + 6.92820i 0.502625 + 0.410391i
\(286\) 21.2132 1.25436
\(287\) 0 0
\(288\) 0 0
\(289\) 14.0000 0.823529
\(290\) 21.2132 + 17.3205i 1.24568 + 1.01710i
\(291\) 3.00000 0.175863
\(292\) 55.4256i 3.24354i
\(293\) 22.5167i 1.31544i 0.753264 + 0.657719i \(0.228478\pi\)
−0.753264 + 0.657719i \(0.771522\pi\)
\(294\) 0 0
\(295\) −2.00000 + 2.44949i −0.116445 + 0.142615i
\(296\) 12.0000 0.697486
\(297\) 25.9808i 1.50756i
\(298\) 9.79796i 0.567581i
\(299\) 4.24264 0.245358
\(300\) −33.9411 + 6.92820i −1.95959 + 0.400000i
\(301\) 0 0
\(302\) 12.2474i 0.704761i
\(303\) 19.5959i 1.12576i
\(304\) −11.3137 −0.648886
\(305\) 4.00000 4.89898i 0.229039 0.280515i
\(306\) 0 0
\(307\) 1.73205i 0.0988534i −0.998778 0.0494267i \(-0.984261\pi\)
0.998778 0.0494267i \(-0.0157394\pi\)
\(308\) 0 0
\(309\) 15.0000 0.853320
\(310\) −6.00000 4.89898i −0.340777 0.278243i
\(311\) −8.48528 −0.481156 −0.240578 0.970630i \(-0.577337\pi\)
−0.240578 + 0.970630i \(0.577337\pi\)
\(312\) 14.6969i 0.832050i
\(313\) 8.66025i 0.489506i −0.969585 0.244753i \(-0.921293\pi\)
0.969585 0.244753i \(-0.0787070\pi\)
\(314\) 25.4558 1.43656
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) 19.5959i 1.10062i 0.834962 + 0.550308i \(0.185490\pi\)
−0.834962 + 0.550308i \(0.814510\pi\)
\(318\) 31.1769i 1.74831i
\(319\) −25.0000 −1.39973
\(320\) −11.3137 + 13.8564i −0.632456 + 0.774597i
\(321\) 25.4558 1.42081
\(322\) 0 0
\(323\) 4.89898i 0.272587i
\(324\) 36.0000 2.00000
\(325\) −8.48528 + 1.73205i −0.470679 + 0.0960769i
\(326\) −6.00000 −0.332309
\(327\) 15.5885i 0.862044i
\(328\) 48.4974i 2.67782i
\(329\) 0 0
\(330\) 30.0000 36.7423i 1.65145 2.02260i
\(331\) −18.0000 −0.989369 −0.494685 0.869072i \(-0.664716\pi\)
−0.494685 + 0.869072i \(0.664716\pi\)
\(332\) 55.4256i 3.04188i
\(333\) 0 0
\(334\) 4.24264 0.232147
\(335\) −12.7279 10.3923i −0.695401 0.567792i
\(336\) 0 0
\(337\) 17.1464i 0.934025i −0.884251 0.467013i \(-0.845330\pi\)
0.884251 0.467013i \(-0.154670\pi\)
\(338\) 24.4949i 1.33235i
\(339\) −29.6985 −1.61300
\(340\) 12.0000 + 9.79796i 0.650791 + 0.531369i
\(341\) 7.07107 0.382920
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 6.00000 7.34847i 0.323029 0.395628i
\(346\) −38.1838 −2.05277
\(347\) 7.34847i 0.394486i 0.980355 + 0.197243i \(0.0631989\pi\)
−0.980355 + 0.197243i \(0.936801\pi\)
\(348\) 34.6410i 1.85695i
\(349\) −19.7990 −1.05982 −0.529908 0.848055i \(-0.677773\pi\)
−0.529908 + 0.848055i \(0.677773\pi\)
\(350\) 0 0
\(351\) 9.00000 0.480384
\(352\) 0 0
\(353\) 22.5167i 1.19844i −0.800584 0.599220i \(-0.795477\pi\)
0.800584 0.599220i \(-0.204523\pi\)
\(354\) −6.00000 −0.318896
\(355\) −2.82843 + 3.46410i −0.150117 + 0.183855i
\(356\) −67.8823 −3.59775
\(357\) 0 0
\(358\) 4.89898i 0.258919i
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) −11.0000 −0.578947
\(362\) 24.2487i 1.27448i
\(363\) 24.2487i 1.27273i
\(364\) 0 0
\(365\) −24.0000 19.5959i −1.25622 1.02570i
\(366\) 12.0000 0.627250
\(367\) 1.73205i 0.0904123i 0.998978 + 0.0452062i \(0.0143945\pi\)
−0.998978 + 0.0452062i \(0.985606\pi\)
\(368\) 9.79796i 0.510754i
\(369\) 0 0
\(370\) 8.48528 10.3923i 0.441129 0.540270i
\(371\) 0 0
\(372\) 9.79796i 0.508001i
\(373\) 14.6969i 0.760979i −0.924785 0.380489i \(-0.875756\pi\)
0.924785 0.380489i \(-0.124244\pi\)
\(374\) −21.2132 −1.09691
\(375\) −9.00000 + 17.1464i −0.464758 + 0.885438i
\(376\) −42.4264 −2.18797
\(377\) 8.66025i 0.446026i
\(378\) 0 0
\(379\) −26.0000 −1.33553 −0.667765 0.744372i \(-0.732749\pi\)
−0.667765 + 0.744372i \(0.732749\pi\)
\(380\) −16.0000 + 19.5959i −0.820783 + 1.00525i
\(381\) 29.6985 1.52150
\(382\) 41.6413i 2.13056i
\(383\) 20.7846i 1.06204i −0.847358 0.531022i \(-0.821808\pi\)
0.847358 0.531022i \(-0.178192\pi\)
\(384\) −33.9411 −1.73205
\(385\) 0 0
\(386\) 24.0000 1.22157
\(387\) 0 0
\(388\) 6.92820i 0.351726i
\(389\) 5.00000 0.253510 0.126755 0.991934i \(-0.459544\pi\)
0.126755 + 0.991934i \(0.459544\pi\)
\(390\) −12.7279 10.3923i −0.644503 0.526235i
\(391\) −4.24264 −0.214560
\(392\) 0 0
\(393\) 22.0454i 1.11204i
\(394\) −42.0000 −2.11593
\(395\) −4.24264 + 5.19615i −0.213470 + 0.261447i
\(396\) 0 0
\(397\) 15.5885i 0.782362i 0.920314 + 0.391181i \(0.127933\pi\)
−0.920314 + 0.391181i \(0.872067\pi\)
\(398\) 45.0333i 2.25732i
\(399\) 0 0
\(400\) −4.00000 19.5959i −0.200000 0.979796i
\(401\) −11.0000 −0.549314 −0.274657 0.961542i \(-0.588564\pi\)
−0.274657 + 0.961542i \(0.588564\pi\)
\(402\) 31.1769i 1.55496i
\(403\) 2.44949i 0.122018i
\(404\) −45.2548 −2.25151
\(405\) 12.7279 15.5885i 0.632456 0.774597i
\(406\) 0 0
\(407\) 12.2474i 0.607083i
\(408\) 14.6969i 0.727607i
\(409\) 11.3137 0.559427 0.279713 0.960084i \(-0.409761\pi\)
0.279713 + 0.960084i \(0.409761\pi\)
\(410\) −42.0000 34.2929i −2.07423 1.69360i
\(411\) 16.9706 0.837096
\(412\) 34.6410i 1.70664i
\(413\) 0 0
\(414\) 0 0
\(415\) 24.0000 + 19.5959i 1.17811 + 0.961926i
\(416\) 0 0
\(417\) 17.1464i 0.839664i
\(418\) 34.6410i 1.69435i
\(419\) 29.6985 1.45087 0.725433 0.688293i \(-0.241640\pi\)
0.725433 + 0.688293i \(0.241640\pi\)
\(420\) 0 0
\(421\) 9.00000 0.438633 0.219317 0.975654i \(-0.429617\pi\)
0.219317 + 0.975654i \(0.429617\pi\)
\(422\) 22.0454i 1.07315i
\(423\) 0 0
\(424\) 36.0000 1.74831
\(425\) 8.48528 1.73205i 0.411597 0.0840168i
\(426\) −8.48528 −0.411113
\(427\) 0 0
\(428\) 58.7878i 2.84161i
\(429\) 15.0000 0.724207
\(430\) 0 0
\(431\) 19.0000 0.915198 0.457599 0.889159i \(-0.348710\pi\)
0.457599 + 0.889159i \(0.348710\pi\)
\(432\) 20.7846i 1.00000i
\(433\) 10.3923i 0.499422i 0.968320 + 0.249711i \(0.0803357\pi\)
−0.968320 + 0.249711i \(0.919664\pi\)
\(434\) 0 0
\(435\) 15.0000 + 12.2474i 0.719195 + 0.587220i
\(436\) 36.0000 1.72409
\(437\) 6.92820i 0.331421i
\(438\) 58.7878i 2.80899i
\(439\) 7.07107 0.337484 0.168742 0.985660i \(-0.446030\pi\)
0.168742 + 0.985660i \(0.446030\pi\)
\(440\) 42.4264 + 34.6410i 2.02260 + 1.65145i
\(441\) 0 0
\(442\) 7.34847i 0.349531i
\(443\) 14.6969i 0.698273i −0.937072 0.349136i \(-0.886475\pi\)
0.937072 0.349136i \(-0.113525\pi\)
\(444\) 16.9706 0.805387
\(445\) −24.0000 + 29.3939i −1.13771 + 1.39340i
\(446\) 63.6396 3.01342
\(447\) 6.92820i 0.327693i
\(448\) 0 0
\(449\) 23.0000 1.08544 0.542719 0.839915i \(-0.317395\pi\)
0.542719 + 0.839915i \(0.317395\pi\)
\(450\) 0 0
\(451\) 49.4975 2.33075
\(452\) 68.5857i 3.22600i
\(453\) 8.66025i 0.406894i
\(454\) −4.24264 −0.199117
\(455\) 0 0
\(456\) −24.0000 −1.12390
\(457\) 2.44949i 0.114582i 0.998358 + 0.0572911i \(0.0182463\pi\)
−0.998358 + 0.0572911i \(0.981754\pi\)
\(458\) 17.3205i 0.809334i
\(459\) −9.00000 −0.420084
\(460\) 16.9706 + 13.8564i 0.791257 + 0.646058i
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 34.2929i 1.59372i −0.604161 0.796862i \(-0.706492\pi\)
0.604161 0.796862i \(-0.293508\pi\)
\(464\) −20.0000 −0.928477
\(465\) −4.24264 3.46410i −0.196748 0.160644i
\(466\) 36.0000 1.66767
\(467\) 15.5885i 0.721348i 0.932692 + 0.360674i \(0.117453\pi\)
−0.932692 + 0.360674i \(0.882547\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −30.0000 + 36.7423i −1.38380 + 1.69480i
\(471\) 18.0000 0.829396
\(472\) 6.92820i 0.318896i
\(473\) 0 0
\(474\) −12.7279 −0.584613
\(475\) 2.82843 + 13.8564i 0.129777 + 0.635776i
\(476\) 0 0
\(477\) 0 0
\(478\) 46.5403i 2.12870i
\(479\) 21.2132 0.969256 0.484628 0.874720i \(-0.338955\pi\)
0.484628 + 0.874720i \(0.338955\pi\)
\(480\) 0 0
\(481\) 4.24264 0.193448
\(482\) 45.0333i 2.05121i
\(483\) 0 0
\(484\) −56.0000 −2.54545
\(485\) 3.00000 + 2.44949i 0.136223 + 0.111226i
\(486\) 0 0
\(487\) 7.34847i 0.332991i 0.986042 + 0.166495i \(0.0532451\pi\)
−0.986042 + 0.166495i \(0.946755\pi\)
\(488\) 13.8564i 0.627250i
\(489\) −4.24264 −0.191859
\(490\) 0 0
\(491\) 23.0000 1.03798 0.518988 0.854782i \(-0.326309\pi\)
0.518988 + 0.854782i \(0.326309\pi\)
\(492\) 68.5857i 3.09208i
\(493\) 8.66025i 0.390038i
\(494\) −12.0000 −0.539906
\(495\) 0 0
\(496\) 5.65685 0.254000
\(497\) 0 0
\(498\) 58.7878i 2.63434i
\(499\) 17.0000 0.761025 0.380512 0.924776i \(-0.375748\pi\)
0.380512 + 0.924776i \(0.375748\pi\)
\(500\) −39.5980 20.7846i −1.77088 0.929516i
\(501\) 3.00000 0.134030
\(502\) 24.2487i 1.08227i
\(503\) 1.73205i 0.0772283i −0.999254 0.0386142i \(-0.987706\pi\)
0.999254 0.0386142i \(-0.0122943\pi\)
\(504\) 0 0
\(505\) −16.0000 + 19.5959i −0.711991 + 0.872007i
\(506\) −30.0000 −1.33366
\(507\) 17.3205i 0.769231i
\(508\) 68.5857i 3.04300i
\(509\) −12.7279 −0.564155 −0.282078 0.959392i \(-0.591024\pi\)
−0.282078 + 0.959392i \(0.591024\pi\)
\(510\) 12.7279 + 10.3923i 0.563602 + 0.460179i
\(511\) 0 0
\(512\) 39.1918i 1.73205i
\(513\) 14.6969i 0.648886i
\(514\) −8.48528 −0.374270
\(515\) 15.0000 + 12.2474i 0.660979 + 0.539687i
\(516\) 0 0
\(517\) 43.3013i 1.90439i
\(518\) 0 0
\(519\) −27.0000 −1.18517
\(520\) 12.0000 14.6969i 0.526235 0.644503i
\(521\) −8.48528 −0.371747 −0.185873 0.982574i \(-0.559511\pi\)
−0.185873 + 0.982574i \(0.559511\pi\)
\(522\) 0 0
\(523\) 20.7846i 0.908848i −0.890786 0.454424i \(-0.849845\pi\)
0.890786 0.454424i \(-0.150155\pi\)
\(524\) 50.9117 2.22409
\(525\) 0 0
\(526\) 24.0000 1.04645
\(527\) 2.44949i 0.106701i
\(528\) 34.6410i 1.50756i
\(529\) 17.0000 0.739130
\(530\) 25.4558 31.1769i 1.10573 1.35424i
\(531\) 0 0
\(532\) 0 0
\(533\) 17.1464i 0.742694i
\(534\) −72.0000 −3.11574
\(535\) 25.4558 + 20.7846i 1.10055 + 0.898597i
\(536\) 36.0000 1.55496
\(537\) 3.46410i 0.149487i
\(538\) 51.9615i 2.24022i
\(539\) 0 0
\(540\) 36.0000 + 29.3939i 1.54919 + 1.26491i
\(541\) 3.00000 0.128980 0.0644900 0.997918i \(-0.479458\pi\)
0.0644900 + 0.997918i \(0.479458\pi\)
\(542\) 55.4256i 2.38073i
\(543\) 17.1464i 0.735824i
\(544\) 0 0
\(545\) 12.7279 15.5885i 0.545204 0.667736i
\(546\) 0 0
\(547\) 34.2929i 1.46626i −0.680090 0.733128i \(-0.738059\pi\)
0.680090 0.733128i \(-0.261941\pi\)
\(548\) 39.1918i 1.67419i
\(549\) 0 0
\(550\) 60.0000 12.2474i 2.55841 0.522233i
\(551\) 14.1421 0.602475
\(552\) 20.7846i 0.884652i
\(553\) 0 0
\(554\) 66.0000 2.80407
\(555\) 6.00000 7.34847i 0.254686 0.311925i
\(556\) −39.5980 −1.67933
\(557\) 24.4949i 1.03788i 0.854810 + 0.518941i \(0.173674\pi\)
−0.854810 + 0.518941i \(0.826326\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −15.0000 −0.633300
\(562\) 12.2474i 0.516627i
\(563\) 10.3923i 0.437983i −0.975727 0.218992i \(-0.929723\pi\)
0.975727 0.218992i \(-0.0702768\pi\)
\(564\) −60.0000 −2.52646
\(565\) −29.6985 24.2487i −1.24942 1.02015i
\(566\) −4.24264 −0.178331
\(567\) 0 0
\(568\) 9.79796i 0.411113i
\(569\) −4.00000 −0.167689 −0.0838444 0.996479i \(-0.526720\pi\)
−0.0838444 + 0.996479i \(0.526720\pi\)
\(570\) −16.9706 + 20.7846i −0.710819 + 0.870572i
\(571\) −2.00000 −0.0836974 −0.0418487 0.999124i \(-0.513325\pi\)
−0.0418487 + 0.999124i \(0.513325\pi\)
\(572\) 34.6410i 1.44841i
\(573\) 29.4449i 1.23008i
\(574\) 0 0
\(575\) 12.0000 2.44949i 0.500435 0.102151i
\(576\) 0 0
\(577\) 1.73205i 0.0721062i 0.999350 + 0.0360531i \(0.0114785\pi\)
−0.999350 + 0.0360531i \(0.988521\pi\)
\(578\) 34.2929i 1.42639i
\(579\) 16.9706 0.705273
\(580\) −28.2843 + 34.6410i −1.17444 + 1.43839i
\(581\) 0 0
\(582\) 7.34847i 0.304604i
\(583\) 36.7423i 1.52171i
\(584\) 67.8823 2.80899
\(585\) 0 0
\(586\) −55.1543 −2.27840
\(587\) 34.6410i 1.42979i 0.699233 + 0.714894i \(0.253525\pi\)
−0.699233 + 0.714894i \(0.746475\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) −6.00000 4.89898i −0.247016 0.201688i
\(591\) −29.6985 −1.22163
\(592\) 9.79796i 0.402694i
\(593\) 8.66025i 0.355634i −0.984064 0.177817i \(-0.943096\pi\)
0.984064 0.177817i \(-0.0569035\pi\)
\(594\) −63.6396 −2.61116
\(595\) 0 0
\(596\) 16.0000 0.655386
\(597\) 31.8434i 1.30326i
\(598\) 10.3923i 0.424973i
\(599\) −37.0000 −1.51178 −0.755890 0.654699i \(-0.772795\pi\)
−0.755890 + 0.654699i \(0.772795\pi\)
\(600\) −8.48528 41.5692i −0.346410 1.69706i
\(601\) 19.7990 0.807618 0.403809 0.914843i \(-0.367686\pi\)
0.403809 + 0.914843i \(0.367686\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −20.0000 −0.813788
\(605\) −19.7990 + 24.2487i −0.804943 + 0.985850i
\(606\) −48.0000 −1.94987
\(607\) 39.8372i 1.61694i 0.588537 + 0.808470i \(0.299704\pi\)
−0.588537 + 0.808470i \(0.700296\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 12.0000 + 9.79796i 0.485866 + 0.396708i
\(611\) −15.0000 −0.606835
\(612\) 0 0
\(613\) 9.79796i 0.395736i −0.980229 0.197868i \(-0.936598\pi\)
0.980229 0.197868i \(-0.0634017\pi\)
\(614\) 4.24264 0.171219
\(615\) −29.6985 24.2487i −1.19756 0.977802i
\(616\) 0 0
\(617\) 17.1464i 0.690289i −0.938550 0.345145i \(-0.887830\pi\)
0.938550 0.345145i \(-0.112170\pi\)
\(618\) 36.7423i 1.47799i
\(619\) 1.41421 0.0568420 0.0284210 0.999596i \(-0.490952\pi\)
0.0284210 + 0.999596i \(0.490952\pi\)
\(620\) 8.00000 9.79796i 0.321288 0.393496i
\(621\) −12.7279 −0.510754
\(622\) 20.7846i 0.833387i
\(623\) 0 0
\(624\) 12.0000 0.480384
\(625\) −23.0000 + 9.79796i −0.920000 + 0.391918i
\(626\) 21.2132 0.847850
\(627\) 24.4949i 0.978232i
\(628\) 41.5692i 1.65879i
\(629\) −4.24264 −0.169165
\(630\) 0 0
\(631\) −33.0000 −1.31371 −0.656855 0.754017i \(-0.728113\pi\)
−0.656855 + 0.754017i \(0.728113\pi\)
\(632\) 14.6969i 0.584613i
\(633\) 15.5885i 0.619586i
\(634\) −48.0000 −1.90632
\(635\) 29.6985 + 24.2487i 1.17855 + 0.962281i
\(636\) 50.9117 2.01878
\(637\) 0 0
\(638\) 61.2372i 2.42441i
\(639\) 0 0
\(640\) −33.9411 27.7128i −1.34164 1.09545i
\(641\) −16.0000 −0.631962 −0.315981 0.948766i \(-0.602334\pi\)
−0.315981 + 0.948766i \(0.602334\pi\)
\(642\) 62.3538i 2.46091i
\(643\) 46.7654i 1.84425i 0.386897 + 0.922123i \(0.373547\pi\)
−0.386897 + 0.922123i \(0.626453\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) 13.8564i 0.544752i 0.962191 + 0.272376i \(0.0878094\pi\)
−0.962191 + 0.272376i \(0.912191\pi\)
\(648\) 44.0908i 1.73205i
\(649\) 7.07107 0.277564
\(650\) −4.24264 20.7846i −0.166410 0.815239i
\(651\) 0 0
\(652\) 9.79796i 0.383718i
\(653\) 19.5959i 0.766848i 0.923573 + 0.383424i \(0.125255\pi\)
−0.923573 + 0.383424i \(0.874745\pi\)
\(654\) 38.1838 1.49310
\(655\) 18.0000 22.0454i 0.703318 0.861385i
\(656\) 39.5980 1.54604
\(657\) 0 0
\(658\) 0 0
\(659\) 37.0000 1.44132 0.720658 0.693291i \(-0.243840\pi\)
0.720658 + 0.693291i \(0.243840\pi\)
\(660\) 60.0000 + 48.9898i 2.33550 + 1.90693i
\(661\) −48.0833 −1.87022 −0.935111 0.354355i \(-0.884701\pi\)
−0.935111 + 0.354355i \(0.884701\pi\)
\(662\) 44.0908i 1.71364i
\(663\) 5.19615i 0.201802i
\(664\) −67.8823 −2.63434
\(665\) 0 0
\(666\) 0 0
\(667\) 12.2474i 0.474223i
\(668\) 6.92820i 0.268060i
\(669\) 45.0000 1.73980
\(670\) 25.4558 31.1769i 0.983445 1.20447i
\(671\) −14.1421 −0.545951
\(672\) 0 0
\(673\) 34.2929i 1.32189i 0.750433 + 0.660946i \(0.229845\pi\)
−0.750433 + 0.660946i \(0.770155\pi\)
\(674\) 42.0000 1.61778
\(675\) 25.4558 5.19615i 0.979796 0.200000i
\(676\) −40.0000 −1.53846
\(677\) 32.9090i 1.26479i −0.774644 0.632397i \(-0.782071\pi\)
0.774644 0.632397i \(-0.217929\pi\)
\(678\) 72.7461i 2.79380i
\(679\) 0 0
\(680\) −12.0000 + 14.6969i −0.460179 + 0.563602i
\(681\) −3.00000 −0.114960
\(682\) 17.3205i 0.663237i
\(683\) 44.0908i 1.68709i −0.537060 0.843544i \(-0.680465\pi\)
0.537060 0.843544i \(-0.319535\pi\)
\(684\) 0 0
\(685\) 16.9706 + 13.8564i 0.648412 + 0.529426i
\(686\) 0 0
\(687\) 12.2474i 0.467269i
\(688\) 0 0
\(689\) 12.7279 0.484895
\(690\) 18.0000 + 14.6969i 0.685248 + 0.559503i
\(691\) −2.82843 −0.107598 −0.0537992 0.998552i \(-0.517133\pi\)
−0.0537992 + 0.998552i \(0.517133\pi\)
\(692\) 62.3538i 2.37034i
\(693\) 0 0
\(694\) −18.0000 −0.683271
\(695\) −14.0000 + 17.1464i −0.531050 + 0.650401i
\(696\) −42.4264 −1.60817
\(697\) 17.1464i 0.649467i
\(698\) 48.4974i 1.83565i
\(699\) 25.4558 0.962828
\(700\) 0 0
\(701\) −47.0000 −1.77517 −0.887583 0.460648i \(-0.847617\pi\)
−0.887583 + 0.460648i \(0.847617\pi\)
\(702\) 22.0454i 0.832050i
\(703\) 6.92820i 0.261302i
\(704\) 40.0000 1.50756
\(705\) −21.2132 + 25.9808i −0.798935 + 0.978492i
\(706\) 55.1543 2.07576
\(707\) 0 0
\(708\) 9.79796i 0.368230i
\(709\) −25.0000 −0.938895 −0.469447 0.882960i \(-0.655547\pi\)
−0.469447 + 0.882960i \(0.655547\pi\)
\(710\) −8.48528 6.92820i −0.318447 0.260011i
\(711\) 0 0
\(712\) 83.1384i 3.11574i
\(713\) 3.46410i 0.129732i
\(714\) 0 0
\(715\) 15.0000 + 12.2474i 0.560968 + 0.458029i
\(716\) 8.00000 0.298974
\(717\) 32.9090i 1.22901i
\(718\) 9.79796i 0.365657i
\(719\) −52.3259 −1.95143 −0.975713 0.219051i \(-0.929704\pi\)
−0.975713 + 0.219051i \(0.929704\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 26.9444i 1.00277i
\(723\) 31.8434i 1.18427i
\(724\) 39.5980 1.47165
\(725\) 5.00000 + 24.4949i 0.185695 + 0.909718i
\(726\) −59.3970 −2.20443
\(727\) 38.1051i 1.41324i −0.707593 0.706620i \(-0.750219\pi\)
0.707593 0.706620i \(-0.249781\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 48.0000 58.7878i 1.77656 2.17583i
\(731\) 0 0
\(732\) 19.5959i 0.724286i
\(733\) 32.9090i 1.21552i −0.794121 0.607760i \(-0.792068\pi\)
0.794121 0.607760i \(-0.207932\pi\)
\(734\) −4.24264 −0.156599
\(735\) 0 0
\(736\) 0 0
\(737\) 36.7423i 1.35342i
\(738\) 0 0
\(739\) 19.0000 0.698926 0.349463 0.936950i \(-0.386364\pi\)
0.349463 + 0.936950i \(0.386364\pi\)
\(740\) 16.9706 + 13.8564i 0.623850 + 0.509372i
\(741\) −8.48528 −0.311715
\(742\) 0 0
\(743\) 17.1464i 0.629041i 0.949251 + 0.314521i \(0.101844\pi\)
−0.949251 + 0.314521i \(0.898156\pi\)
\(744\) 12.0000 0.439941
\(745\) 5.65685 6.92820i 0.207251 0.253830i
\(746\) 36.0000 1.31805
\(747\) 0 0
\(748\) 34.6410i 1.26660i
\(749\) 0 0
\(750\) −42.0000 22.0454i −1.53362 0.804984i
\(751\) 45.0000 1.64207 0.821037 0.570875i \(-0.193396\pi\)
0.821037 + 0.570875i \(0.193396\pi\)
\(752\) 34.6410i 1.26323i
\(753\) 17.1464i 0.624851i
\(754\) −21.2132 −0.772539
\(755\) −7.07107 + 8.66025i −0.257343 + 0.315179i
\(756\) 0 0
\(757\) 34.2929i 1.24640i 0.782064 + 0.623198i \(0.214167\pi\)
−0.782064 + 0.623198i \(0.785833\pi\)
\(758\) 63.6867i 2.31321i
\(759\) −21.2132 −0.769991
\(760\) −24.0000 19.5959i −0.870572 0.710819i
\(761\) −12.7279 −0.461387 −0.230693 0.973026i \(-0.574099\pi\)
−0.230693 + 0.973026i \(0.574099\pi\)
\(762\) 72.7461i 2.63531i
\(763\) 0 0
\(764\) −68.0000 −2.46015
\(765\) 0 0
\(766\) 50.9117 1.83951
\(767\) 2.44949i 0.0884459i
\(768\) 55.4256i 2.00000i
\(769\) −39.5980 −1.42794 −0.713970 0.700176i \(-0.753105\pi\)
−0.713970 + 0.700176i \(0.753105\pi\)
\(770\) 0 0
\(771\) −6.00000 −0.216085
\(772\) 39.1918i 1.41055i
\(773\) 25.9808i 0.934463i 0.884135 + 0.467232i \(0.154749\pi\)
−0.884135 + 0.467232i \(0.845251\pi\)
\(774\) 0 0
\(775\) −1.41421 6.92820i −0.0508001 0.248868i
\(776\) −8.48528 −0.304604
\(777\) 0 0
\(778\) 12.2474i 0.439092i
\(779\) −28.0000 −1.00320
\(780\) 16.9706 20.7846i 0.607644 0.744208i
\(781\) 10.0000 0.357828
\(782\) 10.3923i 0.371628i
\(783\) 25.9808i 0.928477i
\(784\) 0 0
\(785\) 18.0000 + 14.6969i 0.642448 + 0.524556i
\(786\) 54.0000 1.92612
\(787\) 22.5167i 0.802632i −0.915940 0.401316i \(-0.868553\pi\)
0.915940 0.401316i \(-0.131447\pi\)
\(788\) 68.5857i 2.44326i
\(789\) 16.9706 0.604168
\(790\) −12.7279 10.3923i −0.452839 0.369742i
\(791\) 0 0
\(792\) 0 0
\(793\) 4.89898i 0.173968i
\(794\) −38.1838 −1.35509
\(795\) 18.0000 22.0454i 0.638394 0.781870i
\(796\) 73.5391 2.60652
\(797\) 1.73205i 0.0613524i −0.999529 0.0306762i \(-0.990234\pi\)
0.999529 0.0306762i \(-0.00976607\pi\)
\(798\) 0 0
\(799\) 15.0000 0.530662
\(800\) 0 0
\(801\) 0 0
\(802\) 26.9444i 0.951439i
\(803\) 69.2820i 2.44491i
\(804\) 50.9117 1.79552
\(805\) 0 0
\(806\) 6.00000 0.211341
\(807\) 36.7423i 1.29339i
\(808\) 55.4256i 1.94987i
\(809\) 5.00000 0.175791 0.0878953 0.996130i \(-0.471986\pi\)
0.0878953 + 0.996130i \(0.471986\pi\)
\(810\) 38.1838 + 31.1769i 1.34164 + 1.09545i
\(811\) −49.4975 −1.73809 −0.869046 0.494732i \(-0.835266\pi\)
−0.869046 + 0.494732i \(0.835266\pi\)
\(812\) 0 0
\(813\) 39.1918i 1.37452i
\(814\) −30.0000 −1.05150
\(815\) −4.24264 3.46410i −0.148613 0.121342i
\(816\) −12.0000 −0.420084
\(817\) 0 0
\(818\) 27.7128i 0.968956i
\(819\) 0 0
\(820\) 56.0000 68.5857i 1.95560 2.39512i
\(821\) −11.0000 −0.383903 −0.191951 0.981404i \(-0.561482\pi\)
−0.191951 + 0.981404i \(0.561482\pi\)
\(822\) 41.5692i 1.44989i
\(823\) 26.9444i 0.939222i −0.882873 0.469611i \(-0.844394\pi\)
0.882873 0.469611i \(-0.155606\pi\)
\(824\) −42.4264 −1.47799
\(825\) 42.4264 8.66025i 1.47710 0.301511i
\(826\) 0 0
\(827\) 17.1464i 0.596240i 0.954528 + 0.298120i \(0.0963595\pi\)
−0.954528 + 0.298120i \(0.903640\pi\)
\(828\) 0 0
\(829\) −18.3848 −0.638530 −0.319265 0.947666i \(-0.603436\pi\)
−0.319265 + 0.947666i \(0.603436\pi\)
\(830\) −48.0000 + 58.7878i −1.66610 + 2.04055i
\(831\) 46.6690 1.61893
\(832\) 13.8564i 0.480384i
\(833\) 0 0
\(834\) −42.0000 −1.45434
\(835\) 3.00000 + 2.44949i 0.103819 + 0.0847681i
\(836\) 56.5685 1.95646
\(837\) 7.34847i 0.254000i
\(838\) 72.7461i 2.51297i
\(839\) 9.89949 0.341769 0.170884 0.985291i \(-0.445338\pi\)
0.170884 + 0.985291i \(0.445338\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 22.0454i 0.759735i
\(843\) 8.66025i 0.298275i
\(844\) −36.0000 −1.23917
\(845\) −14.1421 + 17.3205i −0.486504 + 0.595844i
\(846\) 0 0
\(847\) 0 0
\(848\) 29.3939i 1.00939i
\(849\) −3.00000 −0.102960
\(850\) 4.24264 + 20.7846i 0.145521 + 0.712906i
\(851\) −6.00000 −0.205677
\(852\) 13.8564i 0.474713i
\(853\) 38.1051i 1.30469i −0.757920 0.652347i \(-0.773784\pi\)
0.757920 0.652347i \(-0.226216\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −72.0000 −2.46091
\(857\) 38.1051i 1.30165i 0.759229 + 0.650823i \(0.225576\pi\)
−0.759229 + 0.650823i \(0.774424\pi\)
\(858\) 36.7423i 1.25436i
\(859\) −2.82843 −0.0965047 −0.0482523 0.998835i \(-0.515365\pi\)
−0.0482523 + 0.998835i \(0.515365\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 46.5403i 1.58517i
\(863\) 2.44949i 0.0833816i 0.999131 + 0.0416908i \(0.0132744\pi\)
−0.999131 + 0.0416908i \(0.986726\pi\)
\(864\) 0 0
\(865\) −27.0000 22.0454i −0.918028 0.749566i
\(866\) −25.4558 −0.865025
\(867\) 24.2487i 0.823529i
\(868\) 0 0
\(869\) 15.0000 0.508840
\(870\) −30.0000 + 36.7423i −1.01710 + 1.24568i
\(871\) 12.7279 0.431269
\(872\) 44.0908i 1.49310i
\(873\) 0 0
\(874\) 16.9706 0.574038
\(875\) 0 0
\(876\) 96.0000 3.24354
\(877\) 48.9898i 1.65427i −0.562005 0.827134i \(-0.689970\pi\)
0.562005 0.827134i \(-0.310030\pi\)
\(878\) 17.3205i 0.584539i
\(879\) −39.0000 −1.31544
\(880\) −28.2843 + 34.6410i −0.953463 + 1.16775i
\(881\) −39.5980 −1.33409 −0.667045 0.745018i \(-0.732441\pi\)
−0.667045 + 0.745018i \(0.732441\pi\)
\(882\) 0 0
\(883\) 34.2929i 1.15405i 0.816728 + 0.577023i \(0.195786\pi\)
−0.816728 + 0.577023i \(0.804214\pi\)
\(884\) −12.0000 −0.403604
\(885\) −4.24264 3.46410i −0.142615 0.116445i
\(886\) 36.0000 1.20944
\(887\) 45.0333i 1.51207i −0.654531 0.756035i \(-0.727134\pi\)
0.654531 0.756035i \(-0.272866\pi\)
\(888\) 20.7846i 0.697486i
\(889\) 0 0
\(890\) −72.0000 58.7878i −2.41345 1.97057i
\(891\) −45.0000 −1.50756
\(892\) 103.923i 3.47960i
\(893\) 24.4949i 0.819690i
\(894\) 16.9706 0.567581
\(895\) 2.82843 3.46410i 0.0945439 0.115792i
\(896\) 0 0
\(897\) 7.34847i 0.245358i
\(898\) 56.3383i 1.88003i
\(899\) −7.07107 −0.235833
\(900\) 0 0
\(901\) −12.7279 −0.424029
\(902\) 121.244i 4.03697i
\(903\) 0 0
\(904\) 84.0000 2.79380
\(905\) 14.0000 17.1464i 0.465376 0.569967i
\(906\) −21.2132 −0.704761
\(907\) 7.34847i 0.244002i 0.992530 + 0.122001i \(0.0389311\pi\)
−0.992530 + 0.122001i \(0.961069\pi\)
\(908\) 6.92820i 0.229920i
\(909\) 0 0
\(910\) 0 0
\(911\) 44.0000 1.45779 0.728893 0.684628i \(-0.240035\pi\)
0.728893 + 0.684628i \(0.240035\pi\)
\(912\) 19.5959i 0.648886i
\(913\) 69.2820i 2.29290i
\(914\) −6.00000 −0.198462
\(915\) 8.48528 + 6.92820i 0.280515 + 0.229039i
\(916\) −28.2843 −0.934539
\(917\) 0 0
\(918\) 22.0454i 0.727607i
\(919\) 45.0000 1.48441 0.742207 0.670171i \(-0.233779\pi\)
0.742207 + 0.670171i \(0.233779\pi\)
\(920\) −16.9706 + 20.7846i −0.559503 + 0.685248i
\(921\) 3.00000 0.0988534
\(922\) 0 0
\(923\) 3.46410i 0.114022i
\(924\) 0 0
\(925\) 12.0000 2.44949i 0.394558 0.0805387i
\(926\) 84.0000 2.76041
\(927\) 0 0
\(928\) 0 0
\(929\) −12.7279 −0.417590 −0.208795 0.977959i \(-0.566954\pi\)
−0.208795 + 0.977959i \(0.566954\pi\)
\(930\) 8.48528 10.3923i 0.278243 0.340777i
\(931\) 0 0
\(932\) 58.7878i 1.92566i
\(933\) 14.6969i 0.481156i
\(934\) −38.1838 −1.24941
\(935\) −15.0000 12.2474i −0.490552 0.400534i
\(936\) 0 0
\(937\) 22.5167i 0.735587i 0.929907 + 0.367794i \(0.119887\pi\)
−0.929907 + 0.367794i \(0.880113\pi\)
\(938\) 0 0
\(939\) 15.0000 0.489506
\(940\) −60.0000 48.9898i −1.95698 1.59787i
\(941\) −28.2843 −0.922041 −0.461020 0.887390i \(-0.652517\pi\)
−0.461020 + 0.887390i \(0.652517\pi\)
\(942\) 44.0908i 1.43656i
\(943\) 24.2487i 0.789647i
\(944\) 5.65685 0.184115
\(945\) 0 0
\(946\) 0 0
\(947\) 31.8434i 1.03477i −0.855753 0.517385i \(-0.826905\pi\)
0.855753 0.517385i \(-0.173095\pi\)
\(948\) 20.7846i 0.675053i
\(949\) 24.0000 0.779073
\(950\) −33.9411 + 6.92820i −1.10120 + 0.224781i
\(951\) −33.9411 −1.10062
\(952\) 0 0
\(953\) 17.1464i 0.555427i −0.960664 0.277714i \(-0.910423\pi\)
0.960664 0.277714i \(-0.0895766\pi\)
\(954\) 0 0
\(955\) −24.0416 + 29.4449i −0.777969 + 0.952813i
\(956\) 76.0000 2.45802
\(957\) 43.3013i 1.39973i
\(958\) 51.9615i 1.67880i
\(959\) 0 0
\(960\) −24.0000 19.5959i −0.774597 0.632456i
\(961\) −29.0000 −0.935484
\(962\) 10.3923i 0.335061i
\(963\) 0 0
\(964\) 73.5391 2.36854
\(965\) 16.9706 + 13.8564i 0.546302 + 0.446054i
\(966\) 0 0
\(967\) 34.2929i 1.10278i −0.834246 0.551392i \(-0.814097\pi\)
0.834246 0.551392i \(-0.185903\pi\)
\(968\) 68.5857i 2.20443i
\(969\) 8.48528 0.272587
\(970\) −6.00000 + 7.34847i −0.192648 + 0.235945i
\(971\) 26.8701 0.862301 0.431151 0.902280i \(-0.358108\pi\)
0.431151 + 0.902280i \(0.358108\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −18.0000 −0.576757
\(975\) −3.00000 14.6969i −0.0960769 0.470679i
\(976\) −11.3137 −0.362143
\(977\) 24.4949i 0.783661i 0.920037 + 0.391831i \(0.128158\pi\)
−0.920037 + 0.391831i \(0.871842\pi\)
\(978\) 10.3923i 0.332309i
\(979\) 84.8528 2.71191
\(980\) 0 0
\(981\) 0 0
\(982\) 56.3383i 1.79783i
\(983\) 25.9808i 0.828658i 0.910127 + 0.414329i \(0.135984\pi\)
−0.910127 + 0.414329i \(0.864016\pi\)
\(984\) 84.0000 2.67782
\(985\) −29.6985 24.2487i −0.946272 0.772628i
\(986\) 21.2132 0.675566
\(987\) 0 0
\(988\) 19.5959i 0.623429i
\(989\) 0 0
\(990\) 0 0
\(991\) −30.0000 −0.952981 −0.476491 0.879180i \(-0.658091\pi\)
−0.476491 + 0.879180i \(0.658091\pi\)
\(992\) 0 0
\(993\) 31.1769i 0.989369i
\(994\) 0 0
\(995\) 26.0000 31.8434i 0.824255 1.00950i
\(996\) −96.0000 −3.04188
\(997\) 46.7654i 1.48107i −0.672015 0.740537i \(-0.734571\pi\)
0.672015 0.740537i \(-0.265429\pi\)
\(998\) 41.6413i 1.31813i
\(999\) −12.7279 −0.402694
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 245.2.b.e.99.4 yes 4
3.2 odd 2 2205.2.d.i.1324.2 4
5.2 odd 4 1225.2.a.bb.1.2 4
5.3 odd 4 1225.2.a.bb.1.3 4
5.4 even 2 inner 245.2.b.e.99.1 4
7.2 even 3 245.2.j.a.214.2 4
7.3 odd 6 245.2.j.a.79.1 4
7.4 even 3 245.2.j.f.79.1 4
7.5 odd 6 245.2.j.f.214.2 4
7.6 odd 2 inner 245.2.b.e.99.3 yes 4
15.14 odd 2 2205.2.d.i.1324.4 4
21.20 even 2 2205.2.d.i.1324.1 4
35.4 even 6 245.2.j.a.79.2 4
35.9 even 6 245.2.j.f.214.1 4
35.13 even 4 1225.2.a.bb.1.4 4
35.19 odd 6 245.2.j.a.214.1 4
35.24 odd 6 245.2.j.f.79.2 4
35.27 even 4 1225.2.a.bb.1.1 4
35.34 odd 2 inner 245.2.b.e.99.2 yes 4
105.104 even 2 2205.2.d.i.1324.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
245.2.b.e.99.1 4 5.4 even 2 inner
245.2.b.e.99.2 yes 4 35.34 odd 2 inner
245.2.b.e.99.3 yes 4 7.6 odd 2 inner
245.2.b.e.99.4 yes 4 1.1 even 1 trivial
245.2.j.a.79.1 4 7.3 odd 6
245.2.j.a.79.2 4 35.4 even 6
245.2.j.a.214.1 4 35.19 odd 6
245.2.j.a.214.2 4 7.2 even 3
245.2.j.f.79.1 4 7.4 even 3
245.2.j.f.79.2 4 35.24 odd 6
245.2.j.f.214.1 4 35.9 even 6
245.2.j.f.214.2 4 7.5 odd 6
1225.2.a.bb.1.1 4 35.27 even 4
1225.2.a.bb.1.2 4 5.2 odd 4
1225.2.a.bb.1.3 4 5.3 odd 4
1225.2.a.bb.1.4 4 35.13 even 4
2205.2.d.i.1324.1 4 21.20 even 2
2205.2.d.i.1324.2 4 3.2 odd 2
2205.2.d.i.1324.3 4 105.104 even 2
2205.2.d.i.1324.4 4 15.14 odd 2