Properties

Label 245.2.b.e
Level $245$
Weight $2$
Character orbit 245.b
Analytic conductor $1.956$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [245,2,Mod(99,245)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("245.99"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(245, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 245 = 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 245.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-16,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.95633484952\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{3} q^{2} + \beta_{2} q^{3} - 4 q^{4} + (\beta_{2} - \beta_1) q^{5} - 3 \beta_1 q^{6} + 2 \beta_{3} q^{8} + ( - 2 \beta_{2} - 3 \beta_1) q^{10} + 5 q^{11} - 4 \beta_{2} q^{12} - \beta_{2} q^{13}+ \cdots - \beta_{2} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{4} + 20 q^{11} - 12 q^{15} + 16 q^{16} - 4 q^{25} - 20 q^{29} + 24 q^{30} + 12 q^{39} - 80 q^{44} - 24 q^{46} + 48 q^{50} - 12 q^{51} + 48 q^{60} + 32 q^{64} + 12 q^{65} + 8 q^{71} - 24 q^{74}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} + 4\nu ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/245\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(197\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
−0.707107 + 1.22474i
0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
2.44949i 1.73205i −4.00000 −1.41421 1.73205i −4.24264 0 4.89898i 0 −4.24264 + 3.46410i
99.2 2.44949i 1.73205i −4.00000 1.41421 + 1.73205i 4.24264 0 4.89898i 0 4.24264 3.46410i
99.3 2.44949i 1.73205i −4.00000 1.41421 1.73205i 4.24264 0 4.89898i 0 4.24264 + 3.46410i
99.4 2.44949i 1.73205i −4.00000 −1.41421 + 1.73205i −4.24264 0 4.89898i 0 −4.24264 3.46410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
7.b odd 2 1 inner
35.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 245.2.b.e 4
3.b odd 2 1 2205.2.d.i 4
5.b even 2 1 inner 245.2.b.e 4
5.c odd 4 2 1225.2.a.bb 4
7.b odd 2 1 inner 245.2.b.e 4
7.c even 3 1 245.2.j.a 4
7.c even 3 1 245.2.j.f 4
7.d odd 6 1 245.2.j.a 4
7.d odd 6 1 245.2.j.f 4
15.d odd 2 1 2205.2.d.i 4
21.c even 2 1 2205.2.d.i 4
35.c odd 2 1 inner 245.2.b.e 4
35.f even 4 2 1225.2.a.bb 4
35.i odd 6 1 245.2.j.a 4
35.i odd 6 1 245.2.j.f 4
35.j even 6 1 245.2.j.a 4
35.j even 6 1 245.2.j.f 4
105.g even 2 1 2205.2.d.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
245.2.b.e 4 1.a even 1 1 trivial
245.2.b.e 4 5.b even 2 1 inner
245.2.b.e 4 7.b odd 2 1 inner
245.2.b.e 4 35.c odd 2 1 inner
245.2.j.a 4 7.c even 3 1
245.2.j.a 4 7.d odd 6 1
245.2.j.a 4 35.i odd 6 1
245.2.j.a 4 35.j even 6 1
245.2.j.f 4 7.c even 3 1
245.2.j.f 4 7.d odd 6 1
245.2.j.f 4 35.i odd 6 1
245.2.j.f 4 35.j even 6 1
1225.2.a.bb 4 5.c odd 4 2
1225.2.a.bb 4 35.f even 4 2
2205.2.d.i 4 3.b odd 2 1
2205.2.d.i 4 15.d odd 2 1
2205.2.d.i 4 21.c even 2 1
2205.2.d.i 4 105.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(245, [\chi])\):

\( T_{2}^{2} + 6 \) Copy content Toggle raw display
\( T_{3}^{2} + 3 \) Copy content Toggle raw display
\( T_{19}^{2} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 2T^{2} + 25 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T - 5)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$29$ \( (T + 5)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 6)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 98)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 75)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 54)^{2} \) Copy content Toggle raw display
$71$ \( (T - 2)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 192)^{2} \) Copy content Toggle raw display
$79$ \( (T - 3)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 192)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 288)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
show more
show less