Properties

Label 2448.2.c.f.577.2
Level $2448$
Weight $2$
Character 2448.577
Analytic conductor $19.547$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2448,2,Mod(577,2448)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2448, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2448.577"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2448.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,0,0,0,0,-2,0,0,0,-8,0,-10,0,0,0,0,0,-8,0,0,0, 0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(35)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.5473784148\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 2448.577
Dual form 2448.2.c.f.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{5} +2.00000i q^{7} +5.00000i q^{11} -1.00000 q^{13} +(-4.00000 + 1.00000i) q^{17} -5.00000 q^{19} +1.00000i q^{23} -4.00000 q^{25} +6.00000i q^{29} -10.0000i q^{31} -6.00000 q^{35} -2.00000i q^{37} -5.00000i q^{41} +1.00000 q^{43} -2.00000 q^{47} +3.00000 q^{49} +6.00000 q^{53} -15.0000 q^{55} -10.0000i q^{61} -3.00000i q^{65} +12.0000 q^{67} +6.00000i q^{73} -10.0000 q^{77} -4.00000i q^{79} -6.00000 q^{83} +(-3.00000 - 12.0000i) q^{85} +10.0000 q^{89} -2.00000i q^{91} -15.0000i q^{95} +8.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{13} - 8 q^{17} - 10 q^{19} - 8 q^{25} - 12 q^{35} + 2 q^{43} - 4 q^{47} + 6 q^{49} + 12 q^{53} - 30 q^{55} + 24 q^{67} - 20 q^{77} - 12 q^{83} - 6 q^{85} + 20 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2448\mathbb{Z}\right)^\times\).

\(n\) \(613\) \(1361\) \(1873\) \(2143\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.00000i 1.34164i 0.741620 + 0.670820i \(0.234058\pi\)
−0.741620 + 0.670820i \(0.765942\pi\)
\(6\) 0 0
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.00000i 1.50756i 0.657129 + 0.753778i \(0.271771\pi\)
−0.657129 + 0.753778i \(0.728229\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350 −0.138675 0.990338i \(-0.544284\pi\)
−0.138675 + 0.990338i \(0.544284\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.00000 + 1.00000i −0.970143 + 0.242536i
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000i 0.208514i 0.994550 + 0.104257i \(0.0332465\pi\)
−0.994550 + 0.104257i \(0.966753\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 10.0000i 1.79605i −0.439941 0.898027i \(-0.645001\pi\)
0.439941 0.898027i \(-0.354999\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −6.00000 −1.01419
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00000i 0.780869i −0.920631 0.390434i \(-0.872325\pi\)
0.920631 0.390434i \(-0.127675\pi\)
\(42\) 0 0
\(43\) 1.00000 0.152499 0.0762493 0.997089i \(-0.475706\pi\)
0.0762493 + 0.997089i \(0.475706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) −15.0000 −2.02260
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i −0.768221 0.640184i \(-0.778858\pi\)
0.768221 0.640184i \(-0.221142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.00000i 0.372104i
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i 0.936329 + 0.351123i \(0.114200\pi\)
−0.936329 + 0.351123i \(0.885800\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.0000 −1.13961
\(78\) 0 0
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) −3.00000 12.0000i −0.325396 1.30158i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 2.00000i 0.209657i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 15.0000i 1.53897i
\(96\) 0 0
\(97\) 8.00000i 0.812277i 0.913812 + 0.406138i \(0.133125\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.0000 −1.19404 −0.597022 0.802225i \(-0.703650\pi\)
−0.597022 + 0.802225i \(0.703650\pi\)
\(102\) 0 0
\(103\) −9.00000 −0.886796 −0.443398 0.896325i \(-0.646227\pi\)
−0.443398 + 0.896325i \(0.646227\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 0 0
\(109\) 4.00000i 0.383131i 0.981480 + 0.191565i \(0.0613564\pi\)
−0.981480 + 0.191565i \(0.938644\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.0000i 1.03479i −0.855746 0.517396i \(-0.826901\pi\)
0.855746 0.517396i \(-0.173099\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.00000 8.00000i −0.183340 0.733359i
\(120\) 0 0
\(121\) −14.0000 −1.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.00000i 0.268328i
\(126\) 0 0
\(127\) 7.00000 0.621150 0.310575 0.950549i \(-0.399478\pi\)
0.310575 + 0.950549i \(0.399478\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.00000i 0.436852i 0.975854 + 0.218426i \(0.0700922\pi\)
−0.975854 + 0.218426i \(0.929908\pi\)
\(132\) 0 0
\(133\) 10.0000i 0.867110i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.00000 −0.683486 −0.341743 0.939793i \(-0.611017\pi\)
−0.341743 + 0.939793i \(0.611017\pi\)
\(138\) 0 0
\(139\) 16.0000i 1.35710i 0.734553 + 0.678551i \(0.237392\pi\)
−0.734553 + 0.678551i \(0.762608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 5.00000i 0.418121i
\(144\) 0 0
\(145\) −18.0000 −1.49482
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −12.0000 −0.976546 −0.488273 0.872691i \(-0.662373\pi\)
−0.488273 + 0.872691i \(0.662373\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 30.0000 2.40966
\(156\) 0 0
\(157\) −17.0000 −1.35675 −0.678374 0.734717i \(-0.737315\pi\)
−0.678374 + 0.734717i \(0.737315\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00000 −0.157622
\(162\) 0 0
\(163\) 14.0000i 1.09656i 0.836293 + 0.548282i \(0.184718\pi\)
−0.836293 + 0.548282i \(0.815282\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.00000i 0.232147i 0.993241 + 0.116073i \(0.0370308\pi\)
−0.993241 + 0.116073i \(0.962969\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.00000i 0.0760286i −0.999277 0.0380143i \(-0.987897\pi\)
0.999277 0.0380143i \(-0.0121032\pi\)
\(174\) 0 0
\(175\) 8.00000i 0.604743i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 0 0
\(181\) 20.0000i 1.48659i 0.668965 + 0.743294i \(0.266738\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) −5.00000 20.0000i −0.365636 1.46254i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) 0 0
\(193\) 6.00000i 0.431889i 0.976406 + 0.215945i \(0.0692831\pi\)
−0.976406 + 0.215945i \(0.930717\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.0000i 1.63868i −0.573306 0.819341i \(-0.694340\pi\)
0.573306 0.819341i \(-0.305660\pi\)
\(198\) 0 0
\(199\) 16.0000i 1.13421i 0.823646 + 0.567105i \(0.191937\pi\)
−0.823646 + 0.567105i \(0.808063\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −12.0000 −0.842235
\(204\) 0 0
\(205\) 15.0000 1.04765
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 25.0000i 1.72929i
\(210\) 0 0
\(211\) 10.0000i 0.688428i 0.938891 + 0.344214i \(0.111855\pi\)
−0.938891 + 0.344214i \(0.888145\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.00000i 0.204598i
\(216\) 0 0
\(217\) 20.0000 1.35769
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.00000 1.00000i 0.269069 0.0672673i
\(222\) 0 0
\(223\) 11.0000 0.736614 0.368307 0.929704i \(-0.379937\pi\)
0.368307 + 0.929704i \(0.379937\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.00000i 0.199117i 0.995032 + 0.0995585i \(0.0317430\pi\)
−0.995032 + 0.0995585i \(0.968257\pi\)
\(228\) 0 0
\(229\) 10.0000 0.660819 0.330409 0.943838i \(-0.392813\pi\)
0.330409 + 0.943838i \(0.392813\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 29.0000i 1.89985i 0.312473 + 0.949927i \(0.398843\pi\)
−0.312473 + 0.949927i \(0.601157\pi\)
\(234\) 0 0
\(235\) 6.00000i 0.391397i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) 10.0000i 0.644157i 0.946713 + 0.322078i \(0.104381\pi\)
−0.946713 + 0.322078i \(0.895619\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.00000i 0.574989i
\(246\) 0 0
\(247\) 5.00000 0.318142
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) −5.00000 −0.314347
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.00000 −0.369976 −0.184988 0.982741i \(-0.559225\pi\)
−0.184988 + 0.982741i \(0.559225\pi\)
\(264\) 0 0
\(265\) 18.0000i 1.10573i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.0000i 1.28039i 0.768211 + 0.640196i \(0.221147\pi\)
−0.768211 + 0.640196i \(0.778853\pi\)
\(270\) 0 0
\(271\) −27.0000 −1.64013 −0.820067 0.572268i \(-0.806064\pi\)
−0.820067 + 0.572268i \(0.806064\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.0000i 1.20605i
\(276\) 0 0
\(277\) 22.0000i 1.32185i −0.750451 0.660926i \(-0.770164\pi\)
0.750451 0.660926i \(-0.229836\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −22.0000 −1.31241 −0.656205 0.754583i \(-0.727839\pi\)
−0.656205 + 0.754583i \(0.727839\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.0000 0.590281
\(288\) 0 0
\(289\) 15.0000 8.00000i 0.882353 0.470588i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.00000i 0.0578315i
\(300\) 0 0
\(301\) 2.00000i 0.115278i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 30.0000 1.71780
\(306\) 0 0
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 16.0000i 0.904373i 0.891923 + 0.452187i \(0.149356\pi\)
−0.891923 + 0.452187i \(0.850644\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 22.0000i 1.23564i 0.786318 + 0.617822i \(0.211985\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) −30.0000 −1.67968
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.0000 5.00000i 1.11283 0.278207i
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.00000i 0.220527i
\(330\) 0 0
\(331\) 23.0000 1.26419 0.632097 0.774889i \(-0.282194\pi\)
0.632097 + 0.774889i \(0.282194\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 36.0000i 1.96689i
\(336\) 0 0
\(337\) 32.0000i 1.74315i −0.490261 0.871576i \(-0.663099\pi\)
0.490261 0.871576i \(-0.336901\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 50.0000 2.70765
\(342\) 0 0
\(343\) 20.0000i 1.07990i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.00000i 0.429463i 0.976673 + 0.214731i \(0.0688876\pi\)
−0.976673 + 0.214731i \(0.931112\pi\)
\(348\) 0 0
\(349\) −5.00000 −0.267644 −0.133822 0.991005i \(-0.542725\pi\)
−0.133822 + 0.991005i \(0.542725\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.0000 −0.527780 −0.263890 0.964553i \(-0.585006\pi\)
−0.263890 + 0.964553i \(0.585006\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −18.0000 −0.942163
\(366\) 0 0
\(367\) 18.0000i 0.939592i −0.882775 0.469796i \(-0.844327\pi\)
0.882775 0.469796i \(-0.155673\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.0000i 0.623009i
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000i 0.309016i
\(378\) 0 0
\(379\) 34.0000i 1.74646i −0.487306 0.873231i \(-0.662020\pi\)
0.487306 0.873231i \(-0.337980\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 30.0000i 1.52894i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −1.00000 4.00000i −0.0505722 0.202289i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.0000 0.603786
\(396\) 0 0
\(397\) 8.00000i 0.401508i 0.979642 + 0.200754i \(0.0643393\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 15.0000i 0.749064i 0.927214 + 0.374532i \(0.122197\pi\)
−0.927214 + 0.374532i \(0.877803\pi\)
\(402\) 0 0
\(403\) 10.0000i 0.498135i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.0000 0.495682
\(408\) 0 0
\(409\) 25.0000 1.23617 0.618085 0.786111i \(-0.287909\pi\)
0.618085 + 0.786111i \(0.287909\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 18.0000i 0.883585i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.0000i 0.781651i −0.920465 0.390826i \(-0.872190\pi\)
0.920465 0.390826i \(-0.127810\pi\)
\(420\) 0 0
\(421\) −13.0000 −0.633581 −0.316791 0.948495i \(-0.602605\pi\)
−0.316791 + 0.948495i \(0.602605\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 16.0000 4.00000i 0.776114 0.194029i
\(426\) 0 0
\(427\) 20.0000 0.967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 20.0000i 0.963366i 0.876346 + 0.481683i \(0.159974\pi\)
−0.876346 + 0.481683i \(0.840026\pi\)
\(432\) 0 0
\(433\) −11.0000 −0.528626 −0.264313 0.964437i \(-0.585145\pi\)
−0.264313 + 0.964437i \(0.585145\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.00000i 0.239182i
\(438\) 0 0
\(439\) 24.0000i 1.14546i −0.819745 0.572729i \(-0.805885\pi\)
0.819745 0.572729i \(-0.194115\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 34.0000 1.61539 0.807694 0.589601i \(-0.200715\pi\)
0.807694 + 0.589601i \(0.200715\pi\)
\(444\) 0 0
\(445\) 30.0000i 1.42214i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.0000i 1.60456i −0.596948 0.802280i \(-0.703620\pi\)
0.596948 0.802280i \(-0.296380\pi\)
\(450\) 0 0
\(451\) 25.0000 1.17720
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6.00000 0.281284
\(456\) 0 0
\(457\) 23.0000 1.07589 0.537947 0.842978i \(-0.319200\pi\)
0.537947 + 0.842978i \(0.319200\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −32.0000 −1.49039 −0.745194 0.666847i \(-0.767643\pi\)
−0.745194 + 0.666847i \(0.767643\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 28.0000 1.29569 0.647843 0.761774i \(-0.275671\pi\)
0.647843 + 0.761774i \(0.275671\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.00000i 0.229900i
\(474\) 0 0
\(475\) 20.0000 0.917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 21.0000i 0.959514i −0.877401 0.479757i \(-0.840725\pi\)
0.877401 0.479757i \(-0.159275\pi\)
\(480\) 0 0
\(481\) 2.00000i 0.0911922i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.0000 −1.08978
\(486\) 0 0
\(487\) 32.0000i 1.45006i 0.688718 + 0.725029i \(0.258174\pi\)
−0.688718 + 0.725029i \(0.741826\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −38.0000 −1.71492 −0.857458 0.514554i \(-0.827958\pi\)
−0.857458 + 0.514554i \(0.827958\pi\)
\(492\) 0 0
\(493\) −6.00000 24.0000i −0.270226 1.08091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6.00000i 0.268597i 0.990941 + 0.134298i \(0.0428781\pi\)
−0.990941 + 0.134298i \(0.957122\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.00000i 0.401290i −0.979664 0.200645i \(-0.935696\pi\)
0.979664 0.200645i \(-0.0643038\pi\)
\(504\) 0 0
\(505\) 36.0000i 1.60198i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) −12.0000 −0.530849
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 27.0000i 1.18976i
\(516\) 0 0
\(517\) 10.0000i 0.439799i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.0000i 0.657162i 0.944476 + 0.328581i \(0.106570\pi\)
−0.944476 + 0.328581i \(0.893430\pi\)
\(522\) 0 0
\(523\) 36.0000 1.57417 0.787085 0.616844i \(-0.211589\pi\)
0.787085 + 0.616844i \(0.211589\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10.0000 + 40.0000i 0.435607 + 1.74243i
\(528\) 0 0
\(529\) 22.0000 0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.00000i 0.216574i
\(534\) 0 0
\(535\) −9.00000 −0.389104
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 15.0000i 0.646096i
\(540\) 0 0
\(541\) 10.0000i 0.429934i −0.976621 0.214967i \(-0.931036\pi\)
0.976621 0.214967i \(-0.0689643\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) 18.0000i 0.769624i −0.922995 0.384812i \(-0.874266\pi\)
0.922995 0.384812i \(-0.125734\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 30.0000i 1.27804i
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12.0000 0.508456 0.254228 0.967144i \(-0.418179\pi\)
0.254228 + 0.967144i \(0.418179\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.0000 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(564\) 0 0
\(565\) 33.0000 1.38832
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 40.0000 1.67689 0.838444 0.544988i \(-0.183466\pi\)
0.838444 + 0.544988i \(0.183466\pi\)
\(570\) 0 0
\(571\) 20.0000i 0.836974i 0.908223 + 0.418487i \(0.137439\pi\)
−0.908223 + 0.418487i \(0.862561\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.00000i 0.166812i
\(576\) 0 0
\(577\) −27.0000 −1.12402 −0.562012 0.827129i \(-0.689973\pi\)
−0.562012 + 0.827129i \(0.689973\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 12.0000i 0.497844i
\(582\) 0 0
\(583\) 30.0000i 1.24247i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 50.0000i 2.06021i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.0000 −0.574911 −0.287456 0.957794i \(-0.592809\pi\)
−0.287456 + 0.957794i \(0.592809\pi\)
\(594\) 0 0
\(595\) 24.0000 6.00000i 0.983904 0.245976i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) 10.0000i 0.407909i −0.978980 0.203954i \(-0.934621\pi\)
0.978980 0.203954i \(-0.0653794\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 42.0000i 1.70754i
\(606\) 0 0
\(607\) 28.0000i 1.13648i −0.822861 0.568242i \(-0.807624\pi\)
0.822861 0.568242i \(-0.192376\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.00000 0.0809113
\(612\) 0 0
\(613\) −21.0000 −0.848182 −0.424091 0.905620i \(-0.639406\pi\)
−0.424091 + 0.905620i \(0.639406\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 42.0000i 1.69086i 0.534089 + 0.845428i \(0.320655\pi\)
−0.534089 + 0.845428i \(0.679345\pi\)
\(618\) 0 0
\(619\) 36.0000i 1.44696i 0.690344 + 0.723481i \(0.257459\pi\)
−0.690344 + 0.723481i \(0.742541\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 20.0000i 0.801283i
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 2.00000 + 8.00000i 0.0797452 + 0.318981i
\(630\) 0 0
\(631\) 23.0000 0.915616 0.457808 0.889051i \(-0.348635\pi\)
0.457808 + 0.889051i \(0.348635\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 21.0000i 0.833360i
\(636\) 0 0
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 35.0000i 1.38242i 0.722655 + 0.691208i \(0.242921\pi\)
−0.722655 + 0.691208i \(0.757079\pi\)
\(642\) 0 0
\(643\) 4.00000i 0.157745i 0.996885 + 0.0788723i \(0.0251319\pi\)
−0.996885 + 0.0788723i \(0.974868\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.00000 0.314512 0.157256 0.987558i \(-0.449735\pi\)
0.157256 + 0.987558i \(0.449735\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 11.0000i 0.430463i −0.976563 0.215232i \(-0.930949\pi\)
0.976563 0.215232i \(-0.0690506\pi\)
\(654\) 0 0
\(655\) −15.0000 −0.586098
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 27.0000 1.05018 0.525089 0.851047i \(-0.324032\pi\)
0.525089 + 0.851047i \(0.324032\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 30.0000 1.16335
\(666\) 0 0
\(667\) −6.00000 −0.232321
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 50.0000 1.93023
\(672\) 0 0
\(673\) 46.0000i 1.77317i 0.462566 + 0.886585i \(0.346929\pi\)
−0.462566 + 0.886585i \(0.653071\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.00000i 0.115299i −0.998337 0.0576497i \(-0.981639\pi\)
0.998337 0.0576497i \(-0.0183606\pi\)
\(678\) 0 0
\(679\) −16.0000 −0.614024
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 21.0000i 0.803543i 0.915740 + 0.401771i \(0.131605\pi\)
−0.915740 + 0.401771i \(0.868395\pi\)
\(684\) 0 0
\(685\) 24.0000i 0.916993i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) 20.0000i 0.760836i 0.924815 + 0.380418i \(0.124220\pi\)
−0.924815 + 0.380418i \(0.875780\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −48.0000 −1.82074
\(696\) 0 0
\(697\) 5.00000 + 20.0000i 0.189389 + 0.757554i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.00000 0.302156 0.151078 0.988522i \(-0.451726\pi\)
0.151078 + 0.988522i \(0.451726\pi\)
\(702\) 0 0
\(703\) 10.0000i 0.377157i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 24.0000i 0.902613i
\(708\) 0 0
\(709\) 34.0000i 1.27690i 0.769665 + 0.638448i \(0.220423\pi\)
−0.769665 + 0.638448i \(0.779577\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.0000 0.374503
\(714\) 0 0
\(715\) 15.0000 0.560968
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.00000i 0.335643i 0.985817 + 0.167822i \(0.0536733\pi\)
−0.985817 + 0.167822i \(0.946327\pi\)
\(720\) 0 0
\(721\) 18.0000i 0.670355i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 24.0000i 0.891338i
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.00000 + 1.00000i −0.147945 + 0.0369863i
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 60.0000i 2.21013i
\(738\) 0 0
\(739\) −5.00000 −0.183928 −0.0919640 0.995762i \(-0.529314\pi\)
−0.0919640 + 0.995762i \(0.529314\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000i 0.880475i −0.897881 0.440237i \(-0.854894\pi\)
0.897881 0.440237i \(-0.145106\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 10.0000i 0.364905i 0.983215 + 0.182453i \(0.0584036\pi\)
−0.983215 + 0.182453i \(0.941596\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 36.0000i 1.31017i
\(756\) 0 0
\(757\) 43.0000 1.56286 0.781431 0.623992i \(-0.214490\pi\)
0.781431 + 0.623992i \(0.214490\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −42.0000 −1.52250 −0.761249 0.648459i \(-0.775414\pi\)
−0.761249 + 0.648459i \(0.775414\pi\)
\(762\) 0 0
\(763\) −8.00000 −0.289619
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 5.00000 0.180305 0.0901523 0.995928i \(-0.471265\pi\)
0.0901523 + 0.995928i \(0.471265\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 36.0000 1.29483 0.647415 0.762138i \(-0.275850\pi\)
0.647415 + 0.762138i \(0.275850\pi\)
\(774\) 0 0
\(775\) 40.0000i 1.43684i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 25.0000i 0.895718i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 51.0000i 1.82027i
\(786\) 0 0
\(787\) 12.0000i 0.427754i 0.976861 + 0.213877i \(0.0686091\pi\)
−0.976861 + 0.213877i \(0.931391\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 22.0000 0.782230
\(792\) 0 0
\(793\) 10.0000i 0.355110i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 8.00000 2.00000i 0.283020 0.0707549i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.0000 −1.05868
\(804\) 0 0
\(805\) 6.00000i 0.211472i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 11.0000i 0.386739i 0.981126 + 0.193370i \(0.0619417\pi\)
−0.981126 + 0.193370i \(0.938058\pi\)
\(810\) 0 0
\(811\) 50.0000i 1.75574i −0.478901 0.877869i \(-0.658965\pi\)
0.478901 0.877869i \(-0.341035\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −42.0000 −1.47120
\(816\) 0 0
\(817\) −5.00000 −0.174928
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.0000i 0.872506i −0.899824 0.436253i \(-0.856305\pi\)
0.899824 0.436253i \(-0.143695\pi\)
\(822\) 0 0
\(823\) 46.0000i 1.60346i −0.597687 0.801730i \(-0.703913\pi\)
0.597687 0.801730i \(-0.296087\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.00000i 0.104320i 0.998639 + 0.0521601i \(0.0166106\pi\)
−0.998639 + 0.0521601i \(0.983389\pi\)
\(828\) 0 0
\(829\) −50.0000 −1.73657 −0.868286 0.496064i \(-0.834778\pi\)
−0.868286 + 0.496064i \(0.834778\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12.0000 + 3.00000i −0.415775 + 0.103944i
\(834\) 0 0
\(835\) −9.00000 −0.311458
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 41.0000i 1.41548i −0.706474 0.707739i \(-0.749715\pi\)
0.706474 0.707739i \(-0.250285\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 36.0000i 1.23844i
\(846\) 0 0
\(847\) 28.0000i 0.962091i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) 36.0000i 1.23262i 0.787505 + 0.616308i \(0.211372\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.00000i 0.0683187i 0.999416 + 0.0341593i \(0.0108754\pi\)
−0.999416 + 0.0341593i \(0.989125\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 0 0
\(865\) 3.00000 0.102003
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 20.0000 0.678454
\(870\) 0 0
\(871\) −12.0000 −0.406604
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −6.00000 −0.202837
\(876\) 0 0
\(877\) 32.0000i 1.08056i −0.841484 0.540282i \(-0.818318\pi\)
0.841484 0.540282i \(-0.181682\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000i 1.01073i −0.862907 0.505363i \(-0.831359\pi\)
0.862907 0.505363i \(-0.168641\pi\)
\(882\) 0 0
\(883\) −19.0000 −0.639401 −0.319700 0.947519i \(-0.603582\pi\)
−0.319700 + 0.947519i \(0.603582\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 13.0000i 0.436497i 0.975893 + 0.218249i \(0.0700344\pi\)
−0.975893 + 0.218249i \(0.929966\pi\)
\(888\) 0 0
\(889\) 14.0000i 0.469545i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 10.0000 0.334637
\(894\) 0 0
\(895\) 30.0000i 1.00279i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 60.0000 2.00111
\(900\) 0 0
\(901\) −24.0000 + 6.00000i −0.799556 + 0.199889i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −60.0000 −1.99447
\(906\) 0 0
\(907\) 32.0000i 1.06254i 0.847202 + 0.531271i \(0.178286\pi\)
−0.847202 + 0.531271i \(0.821714\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.00000i 0.165657i 0.996564 + 0.0828287i \(0.0263954\pi\)
−0.996564 + 0.0828287i \(0.973605\pi\)
\(912\) 0 0
\(913\) 30.0000i 0.992855i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.0000 −0.330229
\(918\) 0 0
\(919\) −15.0000 −0.494804 −0.247402 0.968913i \(-0.579577\pi\)
−0.247402 + 0.968913i \(0.579577\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.00000i 0.263038i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.0000i 0.688988i 0.938789 + 0.344494i \(0.111949\pi\)
−0.938789 + 0.344494i \(0.888051\pi\)
\(930\) 0 0
\(931\) −15.0000 −0.491605
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 60.0000 15.0000i 1.96221 0.490552i
\(936\) 0 0
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 30.0000i 0.977972i −0.872292 0.488986i \(-0.837367\pi\)
0.872292 0.488986i \(-0.162633\pi\)
\(942\) 0 0
\(943\) 5.00000 0.162822
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 48.0000i 1.55979i 0.625910 + 0.779895i \(0.284728\pi\)
−0.625910 + 0.779895i \(0.715272\pi\)
\(948\) 0 0
\(949\) 6.00000i 0.194768i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36.0000 1.16615 0.583077 0.812417i \(-0.301849\pi\)
0.583077 + 0.812417i \(0.301849\pi\)
\(954\) 0 0
\(955\) 24.0000i 0.776622i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 16.0000i 0.516667i
\(960\) 0 0
\(961\) −69.0000 −2.22581
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −18.0000 −0.579441
\(966\) 0 0
\(967\) 57.0000 1.83300 0.916498 0.400039i \(-0.131003\pi\)
0.916498 + 0.400039i \(0.131003\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) −32.0000 −1.02587
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.00000 −0.255943 −0.127971 0.991778i \(-0.540847\pi\)
−0.127971 + 0.991778i \(0.540847\pi\)
\(978\) 0 0
\(979\) 50.0000i 1.59801i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 19.0000i 0.606006i −0.952990 0.303003i \(-0.902011\pi\)
0.952990 0.303003i \(-0.0979892\pi\)
\(984\) 0 0
\(985\) 69.0000 2.19852
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.00000i 0.0317982i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −48.0000 −1.52170
\(996\) 0 0
\(997\) 28.0000i 0.886769i 0.896332 + 0.443384i \(0.146222\pi\)
−0.896332 + 0.443384i \(0.853778\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2448.2.c.f.577.2 2
3.2 odd 2 816.2.c.b.577.2 2
4.3 odd 2 153.2.d.c.118.2 2
12.11 even 2 51.2.d.a.16.1 2
17.16 even 2 inner 2448.2.c.f.577.1 2
24.5 odd 2 3264.2.c.h.577.1 2
24.11 even 2 3264.2.c.g.577.2 2
51.50 odd 2 816.2.c.b.577.1 2
60.23 odd 4 1275.2.d.c.424.2 2
60.47 odd 4 1275.2.d.a.424.1 2
60.59 even 2 1275.2.g.b.526.2 2
68.47 odd 4 2601.2.a.a.1.1 1
68.55 odd 4 2601.2.a.c.1.1 1
68.67 odd 2 153.2.d.c.118.1 2
204.11 odd 16 867.2.h.e.712.2 8
204.23 odd 16 867.2.h.e.712.1 8
204.47 even 4 867.2.a.e.1.1 1
204.59 even 8 867.2.e.a.616.1 4
204.71 odd 16 867.2.h.e.688.2 8
204.83 even 8 867.2.e.a.829.2 4
204.95 odd 16 867.2.h.e.733.2 8
204.107 odd 16 867.2.h.e.757.2 8
204.131 odd 16 867.2.h.e.757.1 8
204.143 odd 16 867.2.h.e.733.1 8
204.155 even 8 867.2.e.a.829.1 4
204.167 odd 16 867.2.h.e.688.1 8
204.179 even 8 867.2.e.a.616.2 4
204.191 even 4 867.2.a.d.1.1 1
204.203 even 2 51.2.d.a.16.2 yes 2
408.101 odd 2 3264.2.c.h.577.2 2
408.203 even 2 3264.2.c.g.577.1 2
1020.203 odd 4 1275.2.d.a.424.2 2
1020.407 odd 4 1275.2.d.c.424.1 2
1020.1019 even 2 1275.2.g.b.526.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.d.a.16.1 2 12.11 even 2
51.2.d.a.16.2 yes 2 204.203 even 2
153.2.d.c.118.1 2 68.67 odd 2
153.2.d.c.118.2 2 4.3 odd 2
816.2.c.b.577.1 2 51.50 odd 2
816.2.c.b.577.2 2 3.2 odd 2
867.2.a.d.1.1 1 204.191 even 4
867.2.a.e.1.1 1 204.47 even 4
867.2.e.a.616.1 4 204.59 even 8
867.2.e.a.616.2 4 204.179 even 8
867.2.e.a.829.1 4 204.155 even 8
867.2.e.a.829.2 4 204.83 even 8
867.2.h.e.688.1 8 204.167 odd 16
867.2.h.e.688.2 8 204.71 odd 16
867.2.h.e.712.1 8 204.23 odd 16
867.2.h.e.712.2 8 204.11 odd 16
867.2.h.e.733.1 8 204.143 odd 16
867.2.h.e.733.2 8 204.95 odd 16
867.2.h.e.757.1 8 204.131 odd 16
867.2.h.e.757.2 8 204.107 odd 16
1275.2.d.a.424.1 2 60.47 odd 4
1275.2.d.a.424.2 2 1020.203 odd 4
1275.2.d.c.424.1 2 1020.407 odd 4
1275.2.d.c.424.2 2 60.23 odd 4
1275.2.g.b.526.1 2 1020.1019 even 2
1275.2.g.b.526.2 2 60.59 even 2
2448.2.c.f.577.1 2 17.16 even 2 inner
2448.2.c.f.577.2 2 1.1 even 1 trivial
2601.2.a.a.1.1 1 68.47 odd 4
2601.2.a.c.1.1 1 68.55 odd 4
3264.2.c.g.577.1 2 408.203 even 2
3264.2.c.g.577.2 2 24.11 even 2
3264.2.c.h.577.1 2 24.5 odd 2
3264.2.c.h.577.2 2 408.101 odd 2