Properties

Label 1275.2.d.a.424.1
Level $1275$
Weight $2$
Character 1275.424
Analytic conductor $10.181$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1275,2,Mod(424,1275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1275.424"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.1809262577\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 424.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1275.424
Dual form 1275.2.d.a.424.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -1.00000 q^{3} -2.00000 q^{4} +2.00000i q^{6} +2.00000 q^{7} +1.00000 q^{9} +5.00000i q^{11} +2.00000 q^{12} +1.00000i q^{13} -4.00000i q^{14} -4.00000 q^{16} +(1.00000 + 4.00000i) q^{17} -2.00000i q^{18} -5.00000 q^{19} -2.00000 q^{21} +10.0000 q^{22} +1.00000 q^{23} +2.00000 q^{26} -1.00000 q^{27} -4.00000 q^{28} +6.00000i q^{29} +10.0000i q^{31} +8.00000i q^{32} -5.00000i q^{33} +(8.00000 - 2.00000i) q^{34} -2.00000 q^{36} +2.00000 q^{37} +10.0000i q^{38} -1.00000i q^{39} +5.00000i q^{41} +4.00000i q^{42} +1.00000i q^{43} -10.0000i q^{44} -2.00000i q^{46} -2.00000i q^{47} +4.00000 q^{48} -3.00000 q^{49} +(-1.00000 - 4.00000i) q^{51} -2.00000i q^{52} +6.00000i q^{53} +2.00000i q^{54} +5.00000 q^{57} +12.0000 q^{58} -10.0000i q^{61} +20.0000 q^{62} +2.00000 q^{63} +8.00000 q^{64} -10.0000 q^{66} -12.0000i q^{67} +(-2.00000 - 8.00000i) q^{68} -1.00000 q^{69} +6.00000 q^{73} -4.00000i q^{74} +10.0000 q^{76} +10.0000i q^{77} -2.00000 q^{78} -4.00000i q^{79} +1.00000 q^{81} +10.0000 q^{82} +6.00000i q^{83} +4.00000 q^{84} +2.00000 q^{86} -6.00000i q^{87} +10.0000 q^{89} +2.00000i q^{91} -2.00000 q^{92} -10.0000i q^{93} -4.00000 q^{94} -8.00000i q^{96} -8.00000 q^{97} +6.00000i q^{98} +5.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 4 q^{4} + 4 q^{7} + 2 q^{9} + 4 q^{12} - 8 q^{16} + 2 q^{17} - 10 q^{19} - 4 q^{21} + 20 q^{22} + 2 q^{23} + 4 q^{26} - 2 q^{27} - 8 q^{28} + 16 q^{34} - 4 q^{36} + 4 q^{37} + 8 q^{48} - 6 q^{49}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1275\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(751\) \(851\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(3\) −1.00000 −0.577350
\(4\) −2.00000 −1.00000
\(5\) 0 0
\(6\) 2.00000i 0.816497i
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.00000i 1.50756i 0.657129 + 0.753778i \(0.271771\pi\)
−0.657129 + 0.753778i \(0.728229\pi\)
\(12\) 2.00000 0.577350
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) 4.00000i 1.06904i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 1.00000 + 4.00000i 0.242536 + 0.970143i
\(18\) 2.00000i 0.471405i
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 10.0000 2.13201
\(23\) 1.00000 0.208514 0.104257 0.994550i \(-0.466753\pi\)
0.104257 + 0.994550i \(0.466753\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) −1.00000 −0.192450
\(28\) −4.00000 −0.755929
\(29\) 6.00000i 1.11417i 0.830455 + 0.557086i \(0.188081\pi\)
−0.830455 + 0.557086i \(0.811919\pi\)
\(30\) 0 0
\(31\) 10.0000i 1.79605i 0.439941 + 0.898027i \(0.354999\pi\)
−0.439941 + 0.898027i \(0.645001\pi\)
\(32\) 8.00000i 1.41421i
\(33\) 5.00000i 0.870388i
\(34\) 8.00000 2.00000i 1.37199 0.342997i
\(35\) 0 0
\(36\) −2.00000 −0.333333
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 10.0000i 1.62221i
\(39\) 1.00000i 0.160128i
\(40\) 0 0
\(41\) 5.00000i 0.780869i 0.920631 + 0.390434i \(0.127675\pi\)
−0.920631 + 0.390434i \(0.872325\pi\)
\(42\) 4.00000i 0.617213i
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) 10.0000i 1.50756i
\(45\) 0 0
\(46\) 2.00000i 0.294884i
\(47\) 2.00000i 0.291730i −0.989305 0.145865i \(-0.953403\pi\)
0.989305 0.145865i \(-0.0465965\pi\)
\(48\) 4.00000 0.577350
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −1.00000 4.00000i −0.140028 0.560112i
\(52\) 2.00000i 0.277350i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 2.00000i 0.272166i
\(55\) 0 0
\(56\) 0 0
\(57\) 5.00000 0.662266
\(58\) 12.0000 1.57568
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 10.0000i 1.28037i −0.768221 0.640184i \(-0.778858\pi\)
0.768221 0.640184i \(-0.221142\pi\)
\(62\) 20.0000 2.54000
\(63\) 2.00000 0.251976
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) −10.0000 −1.23091
\(67\) 12.0000i 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) −2.00000 8.00000i −0.242536 0.970143i
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 4.00000i 0.464991i
\(75\) 0 0
\(76\) 10.0000 1.14708
\(77\) 10.0000i 1.13961i
\(78\) −2.00000 −0.226455
\(79\) 4.00000i 0.450035i −0.974355 0.225018i \(-0.927756\pi\)
0.974355 0.225018i \(-0.0722440\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 10.0000 1.10432
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 6.00000i 0.643268i
\(88\) 0 0
\(89\) 10.0000 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 0 0
\(91\) 2.00000i 0.209657i
\(92\) −2.00000 −0.208514
\(93\) 10.0000i 1.03695i
\(94\) −4.00000 −0.412568
\(95\) 0 0
\(96\) 8.00000i 0.816497i
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 6.00000i 0.606092i
\(99\) 5.00000i 0.502519i
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) −8.00000 + 2.00000i −0.792118 + 0.198030i
\(103\) 9.00000i 0.886796i −0.896325 0.443398i \(-0.853773\pi\)
0.896325 0.443398i \(-0.146227\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 12.0000 1.16554
\(107\) −3.00000 −0.290021 −0.145010 0.989430i \(-0.546322\pi\)
−0.145010 + 0.989430i \(0.546322\pi\)
\(108\) 2.00000 0.192450
\(109\) 4.00000i 0.383131i −0.981480 0.191565i \(-0.938644\pi\)
0.981480 0.191565i \(-0.0613564\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) −8.00000 −0.755929
\(113\) 11.0000 1.03479 0.517396 0.855746i \(-0.326901\pi\)
0.517396 + 0.855746i \(0.326901\pi\)
\(114\) 10.0000i 0.936586i
\(115\) 0 0
\(116\) 12.0000i 1.11417i
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) 2.00000 + 8.00000i 0.183340 + 0.733359i
\(120\) 0 0
\(121\) −14.0000 −1.27273
\(122\) −20.0000 −1.81071
\(123\) 5.00000i 0.450835i
\(124\) 20.0000i 1.79605i
\(125\) 0 0
\(126\) 4.00000i 0.356348i
\(127\) 7.00000i 0.621150i −0.950549 0.310575i \(-0.899478\pi\)
0.950549 0.310575i \(-0.100522\pi\)
\(128\) 0 0
\(129\) 1.00000i 0.0880451i
\(130\) 0 0
\(131\) 5.00000i 0.436852i 0.975854 + 0.218426i \(0.0700922\pi\)
−0.975854 + 0.218426i \(0.929908\pi\)
\(132\) 10.0000i 0.870388i
\(133\) −10.0000 −0.867110
\(134\) −24.0000 −2.07328
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000i 0.683486i 0.939793 + 0.341743i \(0.111017\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 2.00000i 0.170251i
\(139\) 16.0000i 1.35710i 0.734553 + 0.678551i \(0.237392\pi\)
−0.734553 + 0.678551i \(0.762608\pi\)
\(140\) 0 0
\(141\) 2.00000i 0.168430i
\(142\) 0 0
\(143\) −5.00000 −0.418121
\(144\) −4.00000 −0.333333
\(145\) 0 0
\(146\) 12.0000i 0.993127i
\(147\) 3.00000 0.247436
\(148\) −4.00000 −0.328798
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) 1.00000 + 4.00000i 0.0808452 + 0.323381i
\(154\) 20.0000 1.61165
\(155\) 0 0
\(156\) 2.00000i 0.160128i
\(157\) 17.0000i 1.35675i −0.734717 0.678374i \(-0.762685\pi\)
0.734717 0.678374i \(-0.237315\pi\)
\(158\) −8.00000 −0.636446
\(159\) 6.00000i 0.475831i
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 2.00000i 0.157135i
\(163\) −14.0000 −1.09656 −0.548282 0.836293i \(-0.684718\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(164\) 10.0000i 0.780869i
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −5.00000 −0.382360
\(172\) 2.00000i 0.152499i
\(173\) 1.00000 0.0760286 0.0380143 0.999277i \(-0.487897\pi\)
0.0380143 + 0.999277i \(0.487897\pi\)
\(174\) −12.0000 −0.909718
\(175\) 0 0
\(176\) 20.0000i 1.50756i
\(177\) 0 0
\(178\) 20.0000i 1.49906i
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) 20.0000i 1.48659i 0.668965 + 0.743294i \(0.266738\pi\)
−0.668965 + 0.743294i \(0.733262\pi\)
\(182\) 4.00000 0.296500
\(183\) 10.0000i 0.739221i
\(184\) 0 0
\(185\) 0 0
\(186\) −20.0000 −1.46647
\(187\) −20.0000 + 5.00000i −1.46254 + 0.365636i
\(188\) 4.00000i 0.291730i
\(189\) −2.00000 −0.145479
\(190\) 0 0
\(191\) −8.00000 −0.578860 −0.289430 0.957199i \(-0.593466\pi\)
−0.289430 + 0.957199i \(0.593466\pi\)
\(192\) −8.00000 −0.577350
\(193\) 6.00000 0.431889 0.215945 0.976406i \(-0.430717\pi\)
0.215945 + 0.976406i \(0.430717\pi\)
\(194\) 16.0000i 1.14873i
\(195\) 0 0
\(196\) 6.00000 0.428571
\(197\) −23.0000 −1.63868 −0.819341 0.573306i \(-0.805660\pi\)
−0.819341 + 0.573306i \(0.805660\pi\)
\(198\) 10.0000 0.710669
\(199\) 16.0000i 1.13421i 0.823646 + 0.567105i \(0.191937\pi\)
−0.823646 + 0.567105i \(0.808063\pi\)
\(200\) 0 0
\(201\) 12.0000i 0.846415i
\(202\) 24.0000i 1.68863i
\(203\) 12.0000i 0.842235i
\(204\) 2.00000 + 8.00000i 0.140028 + 0.560112i
\(205\) 0 0
\(206\) −18.0000 −1.25412
\(207\) 1.00000 0.0695048
\(208\) 4.00000i 0.277350i
\(209\) 25.0000i 1.72929i
\(210\) 0 0
\(211\) 10.0000i 0.688428i −0.938891 0.344214i \(-0.888145\pi\)
0.938891 0.344214i \(-0.111855\pi\)
\(212\) 12.0000i 0.824163i
\(213\) 0 0
\(214\) 6.00000i 0.410152i
\(215\) 0 0
\(216\) 0 0
\(217\) 20.0000i 1.35769i
\(218\) −8.00000 −0.541828
\(219\) −6.00000 −0.405442
\(220\) 0 0
\(221\) −4.00000 + 1.00000i −0.269069 + 0.0672673i
\(222\) 4.00000i 0.268462i
\(223\) 11.0000i 0.736614i 0.929704 + 0.368307i \(0.120063\pi\)
−0.929704 + 0.368307i \(0.879937\pi\)
\(224\) 16.0000i 1.06904i
\(225\) 0 0
\(226\) 22.0000i 1.46342i
\(227\) −3.00000 −0.199117 −0.0995585 0.995032i \(-0.531743\pi\)
−0.0995585 + 0.995032i \(0.531743\pi\)
\(228\) −10.0000 −0.662266
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) 0 0
\(231\) 10.0000i 0.657952i
\(232\) 0 0
\(233\) −29.0000 −1.89985 −0.949927 0.312473i \(-0.898843\pi\)
−0.949927 + 0.312473i \(0.898843\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) 0 0
\(237\) 4.00000i 0.259828i
\(238\) 16.0000 4.00000i 1.03713 0.259281i
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 10.0000i 0.644157i 0.946713 + 0.322078i \(0.104381\pi\)
−0.946713 + 0.322078i \(0.895619\pi\)
\(242\) 28.0000i 1.79991i
\(243\) −1.00000 −0.0641500
\(244\) 20.0000i 1.28037i
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) 5.00000i 0.318142i
\(248\) 0 0
\(249\) 6.00000i 0.380235i
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) −4.00000 −0.251976
\(253\) 5.00000i 0.314347i
\(254\) −14.0000 −0.878438
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) 2.00000i 0.124757i −0.998053 0.0623783i \(-0.980131\pi\)
0.998053 0.0623783i \(-0.0198685\pi\)
\(258\) −2.00000 −0.124515
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 6.00000i 0.371391i
\(262\) 10.0000 0.617802
\(263\) 6.00000i 0.369976i 0.982741 + 0.184988i \(0.0592246\pi\)
−0.982741 + 0.184988i \(0.940775\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 20.0000i 1.22628i
\(267\) −10.0000 −0.611990
\(268\) 24.0000i 1.46603i
\(269\) 21.0000i 1.28039i 0.768211 + 0.640196i \(0.221147\pi\)
−0.768211 + 0.640196i \(0.778853\pi\)
\(270\) 0 0
\(271\) 27.0000 1.64013 0.820067 0.572268i \(-0.193936\pi\)
0.820067 + 0.572268i \(0.193936\pi\)
\(272\) −4.00000 16.0000i −0.242536 0.970143i
\(273\) 2.00000i 0.121046i
\(274\) 16.0000 0.966595
\(275\) 0 0
\(276\) 2.00000 0.120386
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 32.0000 1.91923
\(279\) 10.0000i 0.598684i
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 4.00000 0.238197
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 10.0000i 0.591312i
\(287\) 10.0000i 0.590281i
\(288\) 8.00000i 0.471405i
\(289\) −15.0000 + 8.00000i −0.882353 + 0.470588i
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) −12.0000 −0.702247
\(293\) 14.0000i 0.817889i −0.912559 0.408944i \(-0.865897\pi\)
0.912559 0.408944i \(-0.134103\pi\)
\(294\) 6.00000i 0.349927i
\(295\) 0 0
\(296\) 0 0
\(297\) 5.00000i 0.290129i
\(298\) 0 0
\(299\) 1.00000i 0.0578315i
\(300\) 0 0
\(301\) 2.00000i 0.115278i
\(302\) 24.0000i 1.38104i
\(303\) −12.0000 −0.689382
\(304\) 20.0000 1.14708
\(305\) 0 0
\(306\) 8.00000 2.00000i 0.457330 0.114332i
\(307\) 12.0000i 0.684876i −0.939540 0.342438i \(-0.888747\pi\)
0.939540 0.342438i \(-0.111253\pi\)
\(308\) 20.0000i 1.13961i
\(309\) 9.00000i 0.511992i
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 16.0000 0.904373 0.452187 0.891923i \(-0.350644\pi\)
0.452187 + 0.891923i \(0.350644\pi\)
\(314\) −34.0000 −1.91873
\(315\) 0 0
\(316\) 8.00000i 0.450035i
\(317\) 22.0000 1.23564 0.617822 0.786318i \(-0.288015\pi\)
0.617822 + 0.786318i \(0.288015\pi\)
\(318\) −12.0000 −0.672927
\(319\) −30.0000 −1.67968
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 4.00000i 0.222911i
\(323\) −5.00000 20.0000i −0.278207 1.11283i
\(324\) −2.00000 −0.111111
\(325\) 0 0
\(326\) 28.0000i 1.55078i
\(327\) 4.00000i 0.221201i
\(328\) 0 0
\(329\) 4.00000i 0.220527i
\(330\) 0 0
\(331\) −23.0000 −1.26419 −0.632097 0.774889i \(-0.717806\pi\)
−0.632097 + 0.774889i \(0.717806\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 2.00000 0.109599
\(334\) 6.00000i 0.328305i
\(335\) 0 0
\(336\) 8.00000 0.436436
\(337\) 32.0000 1.74315 0.871576 0.490261i \(-0.163099\pi\)
0.871576 + 0.490261i \(0.163099\pi\)
\(338\) 24.0000i 1.30543i
\(339\) −11.0000 −0.597438
\(340\) 0 0
\(341\) −50.0000 −2.70765
\(342\) 10.0000i 0.540738i
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 0 0
\(346\) 2.00000i 0.107521i
\(347\) −8.00000 −0.429463 −0.214731 0.976673i \(-0.568888\pi\)
−0.214731 + 0.976673i \(0.568888\pi\)
\(348\) 12.0000i 0.643268i
\(349\) 5.00000 0.267644 0.133822 0.991005i \(-0.457275\pi\)
0.133822 + 0.991005i \(0.457275\pi\)
\(350\) 0 0
\(351\) 1.00000i 0.0533761i
\(352\) −40.0000 −2.13201
\(353\) 24.0000i 1.27739i −0.769460 0.638696i \(-0.779474\pi\)
0.769460 0.638696i \(-0.220526\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −20.0000 −1.06000
\(357\) −2.00000 8.00000i −0.105851 0.423405i
\(358\) 20.0000i 1.05703i
\(359\) 10.0000 0.527780 0.263890 0.964553i \(-0.414994\pi\)
0.263890 + 0.964553i \(0.414994\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 40.0000 2.10235
\(363\) 14.0000 0.734809
\(364\) 4.00000i 0.209657i
\(365\) 0 0
\(366\) 20.0000 1.04542
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) −4.00000 −0.208514
\(369\) 5.00000i 0.260290i
\(370\) 0 0
\(371\) 12.0000i 0.623009i
\(372\) 20.0000i 1.03695i
\(373\) 14.0000i 0.724893i −0.932005 0.362446i \(-0.881942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 10.0000 + 40.0000i 0.517088 + 2.06835i
\(375\) 0 0
\(376\) 0 0
\(377\) −6.00000 −0.309016
\(378\) 4.00000i 0.205738i
\(379\) 34.0000i 1.74646i −0.487306 0.873231i \(-0.662020\pi\)
0.487306 0.873231i \(-0.337980\pi\)
\(380\) 0 0
\(381\) 7.00000i 0.358621i
\(382\) 16.0000i 0.818631i
\(383\) 16.0000i 0.817562i 0.912633 + 0.408781i \(0.134046\pi\)
−0.912633 + 0.408781i \(0.865954\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12.0000i 0.610784i
\(387\) 1.00000i 0.0508329i
\(388\) 16.0000 0.812277
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 1.00000 + 4.00000i 0.0505722 + 0.202289i
\(392\) 0 0
\(393\) 5.00000i 0.252217i
\(394\) 46.0000i 2.31745i
\(395\) 0 0
\(396\) 10.0000i 0.502519i
\(397\) −8.00000 −0.401508 −0.200754 0.979642i \(-0.564339\pi\)
−0.200754 + 0.979642i \(0.564339\pi\)
\(398\) 32.0000 1.60402
\(399\) 10.0000 0.500626
\(400\) 0 0
\(401\) 15.0000i 0.749064i −0.927214 0.374532i \(-0.877803\pi\)
0.927214 0.374532i \(-0.122197\pi\)
\(402\) 24.0000 1.19701
\(403\) −10.0000 −0.498135
\(404\) −24.0000 −1.19404
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) 10.0000i 0.495682i
\(408\) 0 0
\(409\) −25.0000 −1.23617 −0.618085 0.786111i \(-0.712091\pi\)
−0.618085 + 0.786111i \(0.712091\pi\)
\(410\) 0 0
\(411\) 8.00000i 0.394611i
\(412\) 18.0000i 0.886796i
\(413\) 0 0
\(414\) 2.00000i 0.0982946i
\(415\) 0 0
\(416\) −8.00000 −0.392232
\(417\) 16.0000i 0.783523i
\(418\) −50.0000 −2.44558
\(419\) 16.0000i 0.781651i 0.920465 + 0.390826i \(0.127810\pi\)
−0.920465 + 0.390826i \(0.872190\pi\)
\(420\) 0 0
\(421\) −13.0000 −0.633581 −0.316791 0.948495i \(-0.602605\pi\)
−0.316791 + 0.948495i \(0.602605\pi\)
\(422\) −20.0000 −0.973585
\(423\) 2.00000i 0.0972433i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 20.0000i 0.967868i
\(428\) 6.00000 0.290021
\(429\) 5.00000 0.241402
\(430\) 0 0
\(431\) 20.0000i 0.963366i 0.876346 + 0.481683i \(0.159974\pi\)
−0.876346 + 0.481683i \(0.840026\pi\)
\(432\) 4.00000 0.192450
\(433\) 11.0000i 0.528626i 0.964437 + 0.264313i \(0.0851452\pi\)
−0.964437 + 0.264313i \(0.914855\pi\)
\(434\) 40.0000 1.92006
\(435\) 0 0
\(436\) 8.00000i 0.383131i
\(437\) −5.00000 −0.239182
\(438\) 12.0000i 0.573382i
\(439\) 24.0000i 1.14546i −0.819745 0.572729i \(-0.805885\pi\)
0.819745 0.572729i \(-0.194115\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 2.00000 + 8.00000i 0.0951303 + 0.380521i
\(443\) 34.0000i 1.61539i −0.589601 0.807694i \(-0.700715\pi\)
0.589601 0.807694i \(-0.299285\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) 22.0000 1.04173
\(447\) 0 0
\(448\) 16.0000 0.755929
\(449\) 34.0000i 1.60456i −0.596948 0.802280i \(-0.703620\pi\)
0.596948 0.802280i \(-0.296380\pi\)
\(450\) 0 0
\(451\) −25.0000 −1.17720
\(452\) −22.0000 −1.03479
\(453\) −12.0000 −0.563809
\(454\) 6.00000i 0.281594i
\(455\) 0 0
\(456\) 0 0
\(457\) 23.0000i 1.07589i 0.842978 + 0.537947i \(0.180800\pi\)
−0.842978 + 0.537947i \(0.819200\pi\)
\(458\) 20.0000i 0.934539i
\(459\) −1.00000 4.00000i −0.0466760 0.186704i
\(460\) 0 0
\(461\) 32.0000 1.49039 0.745194 0.666847i \(-0.232357\pi\)
0.745194 + 0.666847i \(0.232357\pi\)
\(462\) −20.0000 −0.930484
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 24.0000i 1.11417i
\(465\) 0 0
\(466\) 58.0000i 2.68680i
\(467\) 28.0000i 1.29569i 0.761774 + 0.647843i \(0.224329\pi\)
−0.761774 + 0.647843i \(0.775671\pi\)
\(468\) 2.00000i 0.0924500i
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) 17.0000i 0.783319i
\(472\) 0 0
\(473\) −5.00000 −0.229900
\(474\) 8.00000 0.367452
\(475\) 0 0
\(476\) −4.00000 16.0000i −0.183340 0.733359i
\(477\) 6.00000i 0.274721i
\(478\) 40.0000i 1.82956i
\(479\) 21.0000i 0.959514i 0.877401 + 0.479757i \(0.159275\pi\)
−0.877401 + 0.479757i \(0.840725\pi\)
\(480\) 0 0
\(481\) 2.00000i 0.0911922i
\(482\) 20.0000 0.910975
\(483\) −2.00000 −0.0910032
\(484\) 28.0000 1.27273
\(485\) 0 0
\(486\) 2.00000i 0.0907218i
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) 0 0
\(489\) 14.0000 0.633102
\(490\) 0 0
\(491\) −38.0000 −1.71492 −0.857458 0.514554i \(-0.827958\pi\)
−0.857458 + 0.514554i \(0.827958\pi\)
\(492\) 10.0000i 0.450835i
\(493\) −24.0000 + 6.00000i −1.08091 + 0.270226i
\(494\) −10.0000 −0.449921
\(495\) 0 0
\(496\) 40.0000i 1.79605i
\(497\) 0 0
\(498\) −12.0000 −0.537733
\(499\) 6.00000i 0.268597i 0.990941 + 0.134298i \(0.0428781\pi\)
−0.990941 + 0.134298i \(0.957122\pi\)
\(500\) 0 0
\(501\) 3.00000 0.134030
\(502\) 36.0000i 1.60676i
\(503\) −9.00000 −0.401290 −0.200645 0.979664i \(-0.564304\pi\)
−0.200645 + 0.979664i \(0.564304\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 10.0000 0.444554
\(507\) −12.0000 −0.532939
\(508\) 14.0000i 0.621150i
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 12.0000 0.530849
\(512\) 32.0000i 1.41421i
\(513\) 5.00000 0.220755
\(514\) −4.00000 −0.176432
\(515\) 0 0
\(516\) 2.00000i 0.0880451i
\(517\) 10.0000 0.439799
\(518\) 8.00000i 0.351500i
\(519\) −1.00000 −0.0438951
\(520\) 0 0
\(521\) 15.0000i 0.657162i −0.944476 0.328581i \(-0.893430\pi\)
0.944476 0.328581i \(-0.106570\pi\)
\(522\) 12.0000 0.525226
\(523\) 36.0000i 1.57417i 0.616844 + 0.787085i \(0.288411\pi\)
−0.616844 + 0.787085i \(0.711589\pi\)
\(524\) 10.0000i 0.436852i
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) −40.0000 + 10.0000i −1.74243 + 0.435607i
\(528\) 20.0000i 0.870388i
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) 0 0
\(532\) 20.0000 0.867110
\(533\) −5.00000 −0.216574
\(534\) 20.0000i 0.865485i
\(535\) 0 0
\(536\) 0 0
\(537\) 10.0000 0.431532
\(538\) 42.0000 1.81075
\(539\) 15.0000i 0.646096i
\(540\) 0 0
\(541\) 10.0000i 0.429934i −0.976621 0.214967i \(-0.931036\pi\)
0.976621 0.214967i \(-0.0689643\pi\)
\(542\) 54.0000i 2.31950i
\(543\) 20.0000i 0.858282i
\(544\) −32.0000 + 8.00000i −1.37199 + 0.342997i
\(545\) 0 0
\(546\) −4.00000 −0.171184
\(547\) −18.0000 −0.769624 −0.384812 0.922995i \(-0.625734\pi\)
−0.384812 + 0.922995i \(0.625734\pi\)
\(548\) 16.0000i 0.683486i
\(549\) 10.0000i 0.426790i
\(550\) 0 0
\(551\) 30.0000i 1.27804i
\(552\) 0 0
\(553\) 8.00000i 0.340195i
\(554\) 44.0000i 1.86938i
\(555\) 0 0
\(556\) 32.0000i 1.35710i
\(557\) 12.0000i 0.508456i −0.967144 0.254228i \(-0.918179\pi\)
0.967144 0.254228i \(-0.0818214\pi\)
\(558\) 20.0000 0.846668
\(559\) −1.00000 −0.0422955
\(560\) 0 0
\(561\) 20.0000 5.00000i 0.844401 0.211100i
\(562\) 44.0000i 1.85603i
\(563\) 14.0000i 0.590030i −0.955493 0.295015i \(-0.904675\pi\)
0.955493 0.295015i \(-0.0953246\pi\)
\(564\) 4.00000i 0.168430i
\(565\) 0 0
\(566\) 8.00000i 0.336265i
\(567\) 2.00000 0.0839921
\(568\) 0 0
\(569\) 40.0000 1.67689 0.838444 0.544988i \(-0.183466\pi\)
0.838444 + 0.544988i \(0.183466\pi\)
\(570\) 0 0
\(571\) 20.0000i 0.836974i −0.908223 0.418487i \(-0.862561\pi\)
0.908223 0.418487i \(-0.137439\pi\)
\(572\) 10.0000 0.418121
\(573\) 8.00000 0.334205
\(574\) 20.0000 0.834784
\(575\) 0 0
\(576\) 8.00000 0.333333
\(577\) 27.0000i 1.12402i −0.827129 0.562012i \(-0.810027\pi\)
0.827129 0.562012i \(-0.189973\pi\)
\(578\) 16.0000 + 30.0000i 0.665512 + 1.24784i
\(579\) −6.00000 −0.249351
\(580\) 0 0
\(581\) 12.0000i 0.497844i
\(582\) 16.0000i 0.663221i
\(583\) −30.0000 −1.24247
\(584\) 0 0
\(585\) 0 0
\(586\) −28.0000 −1.15667
\(587\) 12.0000i 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) −6.00000 −0.247436
\(589\) 50.0000i 2.06021i
\(590\) 0 0
\(591\) 23.0000 0.946094
\(592\) −8.00000 −0.328798
\(593\) 14.0000i 0.574911i −0.957794 0.287456i \(-0.907191\pi\)
0.957794 0.287456i \(-0.0928094\pi\)
\(594\) −10.0000 −0.410305
\(595\) 0 0
\(596\) 0 0
\(597\) 16.0000i 0.654836i
\(598\) 2.00000 0.0817861
\(599\) 20.0000 0.817178 0.408589 0.912719i \(-0.366021\pi\)
0.408589 + 0.912719i \(0.366021\pi\)
\(600\) 0 0
\(601\) 10.0000i 0.407909i −0.978980 0.203954i \(-0.934621\pi\)
0.978980 0.203954i \(-0.0653794\pi\)
\(602\) 4.00000 0.163028
\(603\) 12.0000i 0.488678i
\(604\) −24.0000 −0.976546
\(605\) 0 0
\(606\) 24.0000i 0.974933i
\(607\) −28.0000 −1.13648 −0.568242 0.822861i \(-0.692376\pi\)
−0.568242 + 0.822861i \(0.692376\pi\)
\(608\) 40.0000i 1.62221i
\(609\) 12.0000i 0.486265i
\(610\) 0 0
\(611\) 2.00000 0.0809113
\(612\) −2.00000 8.00000i −0.0808452 0.323381i
\(613\) 21.0000i 0.848182i 0.905620 + 0.424091i \(0.139406\pi\)
−0.905620 + 0.424091i \(0.860594\pi\)
\(614\) −24.0000 −0.968561
\(615\) 0 0
\(616\) 0 0
\(617\) 42.0000 1.69086 0.845428 0.534089i \(-0.179345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 18.0000 0.724066
\(619\) 36.0000i 1.44696i 0.690344 + 0.723481i \(0.257459\pi\)
−0.690344 + 0.723481i \(0.742541\pi\)
\(620\) 0 0
\(621\) −1.00000 −0.0401286
\(622\) 0 0
\(623\) 20.0000 0.801283
\(624\) 4.00000i 0.160128i
\(625\) 0 0
\(626\) 32.0000i 1.27898i
\(627\) 25.0000i 0.998404i
\(628\) 34.0000i 1.35675i
\(629\) 2.00000 + 8.00000i 0.0797452 + 0.318981i
\(630\) 0 0
\(631\) −23.0000 −0.915616 −0.457808 0.889051i \(-0.651365\pi\)
−0.457808 + 0.889051i \(0.651365\pi\)
\(632\) 0 0
\(633\) 10.0000i 0.397464i
\(634\) 44.0000i 1.74746i
\(635\) 0 0
\(636\) 12.0000i 0.475831i
\(637\) 3.00000i 0.118864i
\(638\) 60.0000i 2.37542i
\(639\) 0 0
\(640\) 0 0
\(641\) 35.0000i 1.38242i −0.722655 0.691208i \(-0.757079\pi\)
0.722655 0.691208i \(-0.242921\pi\)
\(642\) 6.00000i 0.236801i
\(643\) −4.00000 −0.157745 −0.0788723 0.996885i \(-0.525132\pi\)
−0.0788723 + 0.996885i \(0.525132\pi\)
\(644\) −4.00000 −0.157622
\(645\) 0 0
\(646\) −40.0000 + 10.0000i −1.57378 + 0.393445i
\(647\) 8.00000i 0.314512i 0.987558 + 0.157256i \(0.0502649\pi\)
−0.987558 + 0.157256i \(0.949735\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 20.0000i 0.783862i
\(652\) 28.0000 1.09656
\(653\) 11.0000 0.430463 0.215232 0.976563i \(-0.430949\pi\)
0.215232 + 0.976563i \(0.430949\pi\)
\(654\) 8.00000 0.312825
\(655\) 0 0
\(656\) 20.0000i 0.780869i
\(657\) 6.00000 0.234082
\(658\) −8.00000 −0.311872
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 0 0
\(661\) 27.0000 1.05018 0.525089 0.851047i \(-0.324032\pi\)
0.525089 + 0.851047i \(0.324032\pi\)
\(662\) 46.0000i 1.78784i
\(663\) 4.00000 1.00000i 0.155347 0.0388368i
\(664\) 0 0
\(665\) 0 0
\(666\) 4.00000i 0.154997i
\(667\) 6.00000i 0.232321i
\(668\) 6.00000 0.232147
\(669\) 11.0000i 0.425285i
\(670\) 0 0
\(671\) 50.0000 1.93023
\(672\) 16.0000i 0.617213i
\(673\) 46.0000 1.77317 0.886585 0.462566i \(-0.153071\pi\)
0.886585 + 0.462566i \(0.153071\pi\)
\(674\) 64.0000i 2.46519i
\(675\) 0 0
\(676\) −24.0000 −0.923077
\(677\) −3.00000 −0.115299 −0.0576497 0.998337i \(-0.518361\pi\)
−0.0576497 + 0.998337i \(0.518361\pi\)
\(678\) 22.0000i 0.844905i
\(679\) −16.0000 −0.614024
\(680\) 0 0
\(681\) 3.00000 0.114960
\(682\) 100.000i 3.82920i
\(683\) 21.0000 0.803543 0.401771 0.915740i \(-0.368395\pi\)
0.401771 + 0.915740i \(0.368395\pi\)
\(684\) 10.0000 0.382360
\(685\) 0 0
\(686\) 40.0000i 1.52721i
\(687\) 10.0000 0.381524
\(688\) 4.00000i 0.152499i
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) 20.0000i 0.760836i −0.924815 0.380418i \(-0.875780\pi\)
0.924815 0.380418i \(-0.124220\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 10.0000i 0.379869i
\(694\) 16.0000i 0.607352i
\(695\) 0 0
\(696\) 0 0
\(697\) −20.0000 + 5.00000i −0.757554 + 0.189389i
\(698\) 10.0000i 0.378506i
\(699\) 29.0000 1.09688
\(700\) 0 0
\(701\) −8.00000 −0.302156 −0.151078 0.988522i \(-0.548274\pi\)
−0.151078 + 0.988522i \(0.548274\pi\)
\(702\) −2.00000 −0.0754851
\(703\) −10.0000 −0.377157
\(704\) 40.0000i 1.50756i
\(705\) 0 0
\(706\) −48.0000 −1.80650
\(707\) 24.0000 0.902613
\(708\) 0 0
\(709\) 34.0000i 1.27690i −0.769665 0.638448i \(-0.779577\pi\)
0.769665 0.638448i \(-0.220423\pi\)
\(710\) 0 0
\(711\) 4.00000i 0.150012i
\(712\) 0 0
\(713\) 10.0000i 0.374503i
\(714\) −16.0000 + 4.00000i −0.598785 + 0.149696i
\(715\) 0 0
\(716\) 20.0000 0.747435
\(717\) −20.0000 −0.746914
\(718\) 20.0000i 0.746393i
\(719\) 9.00000i 0.335643i −0.985817 0.167822i \(-0.946327\pi\)
0.985817 0.167822i \(-0.0536733\pi\)
\(720\) 0 0
\(721\) 18.0000i 0.670355i
\(722\) 12.0000i 0.446594i
\(723\) 10.0000i 0.371904i
\(724\) 40.0000i 1.48659i
\(725\) 0 0
\(726\) 28.0000i 1.03918i
\(727\) 8.00000i 0.296704i 0.988935 + 0.148352i \(0.0473968\pi\)
−0.988935 + 0.148352i \(0.952603\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −4.00000 + 1.00000i −0.147945 + 0.0369863i
\(732\) 20.0000i 0.739221i
\(733\) 14.0000i 0.517102i −0.965998 0.258551i \(-0.916755\pi\)
0.965998 0.258551i \(-0.0832450\pi\)
\(734\) 36.0000i 1.32878i
\(735\) 0 0
\(736\) 8.00000i 0.294884i
\(737\) 60.0000 2.21013
\(738\) 10.0000 0.368105
\(739\) −5.00000 −0.183928 −0.0919640 0.995762i \(-0.529314\pi\)
−0.0919640 + 0.995762i \(0.529314\pi\)
\(740\) 0 0
\(741\) 5.00000i 0.183680i
\(742\) 24.0000 0.881068
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −28.0000 −1.02515
\(747\) 6.00000i 0.219529i
\(748\) 40.0000 10.0000i 1.46254 0.365636i
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 10.0000i 0.364905i −0.983215 0.182453i \(-0.941596\pi\)
0.983215 0.182453i \(-0.0584036\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 18.0000 0.655956
\(754\) 12.0000i 0.437014i
\(755\) 0 0
\(756\) 4.00000 0.145479
\(757\) 43.0000i 1.56286i 0.623992 + 0.781431i \(0.285510\pi\)
−0.623992 + 0.781431i \(0.714490\pi\)
\(758\) −68.0000 −2.46987
\(759\) 5.00000i 0.181489i
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 14.0000 0.507166
\(763\) 8.00000i 0.289619i
\(764\) 16.0000 0.578860
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) 0 0
\(768\) −16.0000 −0.577350
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) 0 0
\(771\) 2.00000i 0.0720282i
\(772\) −12.0000 −0.431889
\(773\) 36.0000i 1.29483i 0.762138 + 0.647415i \(0.224150\pi\)
−0.762138 + 0.647415i \(0.775850\pi\)
\(774\) 2.00000 0.0718885
\(775\) 0 0
\(776\) 0 0
\(777\) −4.00000 −0.143499
\(778\) 60.0000i 2.15110i
\(779\) 25.0000i 0.895718i
\(780\) 0 0
\(781\) 0 0
\(782\) 8.00000 2.00000i 0.286079 0.0715199i
\(783\) 6.00000i 0.214423i
\(784\) 12.0000 0.428571
\(785\) 0 0
\(786\) −10.0000 −0.356688
\(787\) 12.0000 0.427754 0.213877 0.976861i \(-0.431391\pi\)
0.213877 + 0.976861i \(0.431391\pi\)
\(788\) 46.0000 1.63868
\(789\) 6.00000i 0.213606i
\(790\) 0 0
\(791\) 22.0000 0.782230
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) 16.0000i 0.567819i
\(795\) 0 0
\(796\) 32.0000i 1.13421i
\(797\) 12.0000i 0.425062i −0.977154 0.212531i \(-0.931829\pi\)
0.977154 0.212531i \(-0.0681706\pi\)
\(798\) 20.0000i 0.707992i
\(799\) 8.00000 2.00000i 0.283020 0.0707549i
\(800\) 0 0
\(801\) 10.0000 0.353333
\(802\) −30.0000 −1.05934
\(803\) 30.0000i 1.05868i
\(804\) 24.0000i 0.846415i
\(805\) 0 0
\(806\) 20.0000i 0.704470i
\(807\) 21.0000i 0.739235i
\(808\) 0 0
\(809\) 11.0000i 0.386739i 0.981126 + 0.193370i \(0.0619417\pi\)
−0.981126 + 0.193370i \(0.938058\pi\)
\(810\) 0 0
\(811\) 50.0000i 1.75574i 0.478901 + 0.877869i \(0.341035\pi\)
−0.478901 + 0.877869i \(0.658965\pi\)
\(812\) 24.0000i 0.842235i
\(813\) −27.0000 −0.946931
\(814\) 20.0000 0.701000
\(815\) 0 0
\(816\) 4.00000 + 16.0000i 0.140028 + 0.560112i
\(817\) 5.00000i 0.174928i
\(818\) 50.0000i 1.74821i
\(819\) 2.00000i 0.0698857i
\(820\) 0 0
\(821\) 25.0000i 0.872506i 0.899824 + 0.436253i \(0.143695\pi\)
−0.899824 + 0.436253i \(0.856305\pi\)
\(822\) −16.0000 −0.558064
\(823\) 46.0000 1.60346 0.801730 0.597687i \(-0.203913\pi\)
0.801730 + 0.597687i \(0.203913\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3.00000 −0.104320 −0.0521601 0.998639i \(-0.516611\pi\)
−0.0521601 + 0.998639i \(0.516611\pi\)
\(828\) −2.00000 −0.0695048
\(829\) 50.0000 1.73657 0.868286 0.496064i \(-0.165222\pi\)
0.868286 + 0.496064i \(0.165222\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) 8.00000i 0.277350i
\(833\) −3.00000 12.0000i −0.103944 0.415775i
\(834\) −32.0000 −1.10807
\(835\) 0 0
\(836\) 50.0000i 1.72929i
\(837\) 10.0000i 0.345651i
\(838\) 32.0000 1.10542
\(839\) 41.0000i 1.41548i 0.706474 + 0.707739i \(0.250285\pi\)
−0.706474 + 0.707739i \(0.749715\pi\)
\(840\) 0 0
\(841\) −7.00000 −0.241379
\(842\) 26.0000i 0.896019i
\(843\) −22.0000 −0.757720
\(844\) 20.0000i 0.688428i
\(845\) 0 0
\(846\) −4.00000 −0.137523
\(847\) −28.0000 −0.962091
\(848\) 24.0000i 0.824163i
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) 36.0000 1.23262 0.616308 0.787505i \(-0.288628\pi\)
0.616308 + 0.787505i \(0.288628\pi\)
\(854\) −40.0000 −1.36877
\(855\) 0 0
\(856\) 0 0
\(857\) 2.00000 0.0683187 0.0341593 0.999416i \(-0.489125\pi\)
0.0341593 + 0.999416i \(0.489125\pi\)
\(858\) 10.0000i 0.341394i
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 10.0000i 0.340799i
\(862\) 40.0000 1.36241
\(863\) 6.00000i 0.204242i 0.994772 + 0.102121i \(0.0325630\pi\)
−0.994772 + 0.102121i \(0.967437\pi\)
\(864\) 8.00000i 0.272166i
\(865\) 0 0
\(866\) 22.0000 0.747590
\(867\) 15.0000 8.00000i 0.509427 0.271694i
\(868\) 40.0000i 1.35769i
\(869\) 20.0000 0.678454
\(870\) 0 0
\(871\) 12.0000 0.406604
\(872\) 0 0
\(873\) −8.00000 −0.270759
\(874\) 10.0000i 0.338255i
\(875\) 0 0
\(876\) 12.0000 0.405442
\(877\) 32.0000 1.08056 0.540282 0.841484i \(-0.318318\pi\)
0.540282 + 0.841484i \(0.318318\pi\)
\(878\) −48.0000 −1.61992
\(879\) 14.0000i 0.472208i
\(880\) 0 0
\(881\) 30.0000i 1.01073i 0.862907 + 0.505363i \(0.168641\pi\)
−0.862907 + 0.505363i \(0.831359\pi\)
\(882\) 6.00000i 0.202031i
\(883\) 19.0000i 0.639401i −0.947519 0.319700i \(-0.896418\pi\)
0.947519 0.319700i \(-0.103582\pi\)
\(884\) 8.00000 2.00000i 0.269069 0.0672673i
\(885\) 0 0
\(886\) −68.0000 −2.28450
\(887\) −13.0000 −0.436497 −0.218249 0.975893i \(-0.570034\pi\)
−0.218249 + 0.975893i \(0.570034\pi\)
\(888\) 0 0
\(889\) 14.0000i 0.469545i
\(890\) 0 0
\(891\) 5.00000i 0.167506i
\(892\) 22.0000i 0.736614i
\(893\) 10.0000i 0.334637i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.00000i 0.0333890i
\(898\) −68.0000 −2.26919
\(899\) −60.0000 −2.00111
\(900\) 0 0
\(901\) −24.0000 + 6.00000i −0.799556 + 0.199889i
\(902\) 50.0000i 1.66482i
\(903\) 2.00000i 0.0665558i
\(904\) 0 0
\(905\) 0 0
\(906\) 24.0000i 0.797347i
\(907\) 32.0000 1.06254 0.531271 0.847202i \(-0.321714\pi\)
0.531271 + 0.847202i \(0.321714\pi\)
\(908\) 6.00000 0.199117
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) 5.00000i 0.165657i 0.996564 + 0.0828287i \(0.0263954\pi\)
−0.996564 + 0.0828287i \(0.973605\pi\)
\(912\) −20.0000 −0.662266
\(913\) −30.0000 −0.992855
\(914\) 46.0000 1.52154
\(915\) 0 0
\(916\) 20.0000 0.660819
\(917\) 10.0000i 0.330229i
\(918\) −8.00000 + 2.00000i −0.264039 + 0.0660098i
\(919\) −15.0000 −0.494804 −0.247402 0.968913i \(-0.579577\pi\)
−0.247402 + 0.968913i \(0.579577\pi\)
\(920\) 0 0
\(921\) 12.0000i 0.395413i
\(922\) 64.0000i 2.10773i
\(923\) 0 0
\(924\) 20.0000i 0.657952i
\(925\) 0 0
\(926\) 32.0000 1.05159
\(927\) 9.00000i 0.295599i
\(928\) −48.0000 −1.57568
\(929\) 21.0000i 0.688988i 0.938789 + 0.344494i \(0.111949\pi\)
−0.938789 + 0.344494i \(0.888051\pi\)
\(930\) 0 0
\(931\) 15.0000 0.491605
\(932\) 58.0000 1.89985
\(933\) 0 0
\(934\) 56.0000 1.83238
\(935\) 0 0
\(936\) 0 0
\(937\) 38.0000i 1.24141i 0.784046 + 0.620703i \(0.213153\pi\)
−0.784046 + 0.620703i \(0.786847\pi\)
\(938\) −48.0000 −1.56726
\(939\) −16.0000 −0.522140
\(940\) 0 0
\(941\) 30.0000i 0.977972i 0.872292 + 0.488986i \(0.162633\pi\)
−0.872292 + 0.488986i \(0.837367\pi\)
\(942\) 34.0000 1.10778
\(943\) 5.00000i 0.162822i
\(944\) 0 0
\(945\) 0 0
\(946\) 10.0000i 0.325128i
\(947\) −48.0000 −1.55979 −0.779895 0.625910i \(-0.784728\pi\)
−0.779895 + 0.625910i \(0.784728\pi\)
\(948\) 8.00000i 0.259828i
\(949\) 6.00000i 0.194768i
\(950\) 0 0
\(951\) −22.0000 −0.713399
\(952\) 0 0
\(953\) 36.0000i 1.16615i 0.812417 + 0.583077i \(0.198151\pi\)
−0.812417 + 0.583077i \(0.801849\pi\)
\(954\) 12.0000 0.388514
\(955\) 0 0
\(956\) −40.0000 −1.29369
\(957\) 30.0000 0.969762
\(958\) 42.0000 1.35696
\(959\) 16.0000i 0.516667i
\(960\) 0 0
\(961\) −69.0000 −2.22581
\(962\) 4.00000 0.128965
\(963\) −3.00000 −0.0966736
\(964\) 20.0000i 0.644157i
\(965\) 0 0
\(966\) 4.00000i 0.128698i
\(967\) 57.0000i 1.83300i −0.400039 0.916498i \(-0.631003\pi\)
0.400039 0.916498i \(-0.368997\pi\)
\(968\) 0 0
\(969\) 5.00000 + 20.0000i 0.160623 + 0.642493i
\(970\) 0 0
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 2.00000 0.0641500
\(973\) 32.0000i 1.02587i
\(974\) 64.0000i 2.05069i
\(975\) 0 0
\(976\) 40.0000i 1.28037i
\(977\) 8.00000i 0.255943i 0.991778 + 0.127971i \(0.0408466\pi\)
−0.991778 + 0.127971i \(0.959153\pi\)
\(978\) 28.0000i 0.895341i
\(979\) 50.0000i 1.59801i
\(980\) 0 0
\(981\) 4.00000i 0.127710i
\(982\) 76.0000i 2.42526i
\(983\) −19.0000 −0.606006 −0.303003 0.952990i \(-0.597989\pi\)
−0.303003 + 0.952990i \(0.597989\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 12.0000 + 48.0000i 0.382158 + 1.52863i
\(987\) 4.00000i 0.127321i
\(988\) 10.0000i 0.318142i
\(989\) 1.00000i 0.0317982i
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) −80.0000 −2.54000
\(993\) 23.0000 0.729883
\(994\) 0 0
\(995\) 0 0
\(996\) 12.0000i 0.380235i
\(997\) −28.0000 −0.886769 −0.443384 0.896332i \(-0.646222\pi\)
−0.443384 + 0.896332i \(0.646222\pi\)
\(998\) 12.0000 0.379853
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1275.2.d.a.424.1 2
5.2 odd 4 1275.2.g.b.526.2 2
5.3 odd 4 51.2.d.a.16.1 2
5.4 even 2 1275.2.d.c.424.2 2
15.8 even 4 153.2.d.c.118.2 2
17.16 even 2 1275.2.d.c.424.1 2
20.3 even 4 816.2.c.b.577.2 2
40.3 even 4 3264.2.c.h.577.1 2
40.13 odd 4 3264.2.c.g.577.2 2
60.23 odd 4 2448.2.c.f.577.2 2
85.3 even 16 867.2.h.e.688.2 8
85.8 odd 8 867.2.e.a.616.1 4
85.13 odd 4 867.2.a.e.1.1 1
85.23 even 16 867.2.h.e.712.1 8
85.28 even 16 867.2.h.e.712.2 8
85.33 odd 4 51.2.d.a.16.2 yes 2
85.38 odd 4 867.2.a.d.1.1 1
85.43 odd 8 867.2.e.a.616.2 4
85.48 even 16 867.2.h.e.688.1 8
85.53 odd 8 867.2.e.a.829.1 4
85.58 even 16 867.2.h.e.733.1 8
85.63 even 16 867.2.h.e.757.1 8
85.67 odd 4 1275.2.g.b.526.1 2
85.73 even 16 867.2.h.e.757.2 8
85.78 even 16 867.2.h.e.733.2 8
85.83 odd 8 867.2.e.a.829.2 4
85.84 even 2 inner 1275.2.d.a.424.2 2
255.38 even 4 2601.2.a.c.1.1 1
255.98 even 4 2601.2.a.a.1.1 1
255.203 even 4 153.2.d.c.118.1 2
340.203 even 4 816.2.c.b.577.1 2
680.203 even 4 3264.2.c.h.577.2 2
680.373 odd 4 3264.2.c.g.577.1 2
1020.203 odd 4 2448.2.c.f.577.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.d.a.16.1 2 5.3 odd 4
51.2.d.a.16.2 yes 2 85.33 odd 4
153.2.d.c.118.1 2 255.203 even 4
153.2.d.c.118.2 2 15.8 even 4
816.2.c.b.577.1 2 340.203 even 4
816.2.c.b.577.2 2 20.3 even 4
867.2.a.d.1.1 1 85.38 odd 4
867.2.a.e.1.1 1 85.13 odd 4
867.2.e.a.616.1 4 85.8 odd 8
867.2.e.a.616.2 4 85.43 odd 8
867.2.e.a.829.1 4 85.53 odd 8
867.2.e.a.829.2 4 85.83 odd 8
867.2.h.e.688.1 8 85.48 even 16
867.2.h.e.688.2 8 85.3 even 16
867.2.h.e.712.1 8 85.23 even 16
867.2.h.e.712.2 8 85.28 even 16
867.2.h.e.733.1 8 85.58 even 16
867.2.h.e.733.2 8 85.78 even 16
867.2.h.e.757.1 8 85.63 even 16
867.2.h.e.757.2 8 85.73 even 16
1275.2.d.a.424.1 2 1.1 even 1 trivial
1275.2.d.a.424.2 2 85.84 even 2 inner
1275.2.d.c.424.1 2 17.16 even 2
1275.2.d.c.424.2 2 5.4 even 2
1275.2.g.b.526.1 2 85.67 odd 4
1275.2.g.b.526.2 2 5.2 odd 4
2448.2.c.f.577.1 2 1020.203 odd 4
2448.2.c.f.577.2 2 60.23 odd 4
2601.2.a.a.1.1 1 255.98 even 4
2601.2.a.c.1.1 1 255.38 even 4
3264.2.c.g.577.1 2 680.373 odd 4
3264.2.c.g.577.2 2 40.13 odd 4
3264.2.c.h.577.1 2 40.3 even 4
3264.2.c.h.577.2 2 680.203 even 4