Properties

Label 1275.2.d
Level $1275$
Weight $2$
Character orbit 1275.d
Rep. character $\chi_{1275}(424,\cdot)$
Character field $\Q$
Dimension $56$
Newform subspaces $10$
Sturm bound $360$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1275 = 3 \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1275.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(360\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1275, [\chi])\).

Total New Old
Modular forms 192 56 136
Cusp forms 168 56 112
Eisenstein series 24 0 24

Trace form

\( 56 q - 68 q^{4} + 56 q^{9} + 108 q^{16} + 36 q^{19} + 8 q^{21} - 8 q^{26} + 52 q^{34} - 68 q^{36} + 64 q^{49} + 16 q^{51} - 32 q^{59} - 148 q^{64} - 8 q^{66} - 4 q^{69} - 48 q^{76} + 56 q^{81} + 32 q^{84}+ \cdots - 72 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1275, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1275.2.d.a 1275.d 85.c $2$ $10.181$ \(\Q(\sqrt{-1}) \) None 51.2.d.a \(0\) \(-2\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}-q^{3}-2 q^{4}-2 i q^{6}+2 q^{7}+\cdots\)
1275.2.d.b 1275.d 85.c $2$ $10.181$ \(\Q(\sqrt{-1}) \) None 51.2.d.b \(0\) \(-2\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}-q^{3}+q^{4}-i q^{6}-4 q^{7}+\cdots\)
1275.2.d.c 1275.d 85.c $2$ $10.181$ \(\Q(\sqrt{-1}) \) None 51.2.d.a \(0\) \(2\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{2}+q^{3}-2 q^{4}+2 i q^{6}-2 q^{7}+\cdots\)
1275.2.d.d 1275.d 85.c $2$ $10.181$ \(\Q(\sqrt{-1}) \) None 51.2.d.b \(0\) \(2\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{2}+q^{3}+q^{4}+i q^{6}+4 q^{7}+\cdots\)
1275.2.d.e 1275.d 85.c $4$ $10.181$ \(\Q(i, \sqrt{13})\) None 255.2.g.a \(0\) \(-4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-q^{3}+(-2+\beta _{3})q^{4}-\beta _{1}q^{6}+\cdots\)
1275.2.d.f 1275.d 85.c $4$ $10.181$ \(\Q(i, \sqrt{13})\) None 255.2.g.a \(0\) \(4\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+q^{3}+(-2+\beta _{3})q^{4}+\beta _{1}q^{6}+\cdots\)
1275.2.d.g 1275.d 85.c $8$ $10.181$ 8.0.\(\cdots\).1 None 255.2.g.b \(0\) \(-8\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-q^{3}+(-1+\beta _{2})q^{4}-\beta _{1}q^{6}+\cdots\)
1275.2.d.h 1275.d 85.c $8$ $10.181$ 8.0.\(\cdots\).1 None 255.2.g.b \(0\) \(8\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+q^{3}+(-1+\beta _{2})q^{4}+\beta _{1}q^{6}+\cdots\)
1275.2.d.i 1275.d 85.c $12$ $10.181$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1275.2.g.e \(0\) \(-12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-q^{3}+(-1+\beta _{2})q^{4}-\beta _{1}q^{6}+\cdots\)
1275.2.d.j 1275.d 85.c $12$ $10.181$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1275.2.g.e \(0\) \(12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+q^{3}+(-1+\beta _{2})q^{4}+\beta _{1}q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1275, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1275, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(425, [\chi])\)\(^{\oplus 2}\)