Properties

Label 2432.2.c.j.1217.1
Level $2432$
Weight $2$
Character 2432.1217
Analytic conductor $19.420$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2432,2,Mod(1217,2432)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2432, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2432.1217"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2432 = 2^{7} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2432.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.4196177716\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 170x^{16} + 6593x^{12} + 64168x^{8} + 95760x^{4} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{19} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1217.1
Root \(2.33603 - 2.33603i\) of defining polynomial
Character \(\chi\) \(=\) 2432.1217
Dual form 2432.2.c.j.1217.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.30364i q^{3} -2.55295i q^{5} +1.32515 q^{7} -7.91406 q^{9} +2.51756i q^{11} -1.22781i q^{13} -8.43404 q^{15} +0.210784 q^{17} -1.00000i q^{19} -4.37781i q^{21} -8.11631 q^{23} -1.51756 q^{25} +16.2343i q^{27} +5.97458i q^{29} -6.01598 q^{31} +8.31712 q^{33} -3.38303i q^{35} +11.2625i q^{37} -4.05623 q^{39} -0.996870 q^{41} -7.83781i q^{43} +20.2042i q^{45} +0.910938 q^{47} -5.24399 q^{49} -0.696356i q^{51} +3.32429i q^{53} +6.42720 q^{55} -3.30364 q^{57} -2.04859i q^{59} -10.0769i q^{61} -10.4873 q^{63} -3.13453 q^{65} -11.7584i q^{67} +26.8134i q^{69} -11.9944 q^{71} -13.0038 q^{73} +5.01347i q^{75} +3.33613i q^{77} -12.0761 q^{79} +29.8902 q^{81} +4.50788i q^{83} -0.538122i q^{85} +19.7379 q^{87} +6.64553 q^{89} -1.62702i q^{91} +19.8746i q^{93} -2.55295 q^{95} +9.92753 q^{97} -19.9241i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 28 q^{9} + 8 q^{17} - 20 q^{25} - 16 q^{33} + 24 q^{41} + 52 q^{49} - 8 q^{57} - 48 q^{65} - 24 q^{73} + 68 q^{81} + 40 q^{89} - 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2432\mathbb{Z}\right)^\times\).

\(n\) \(1407\) \(1921\) \(2053\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.30364i − 1.90736i −0.300824 0.953680i \(-0.597262\pi\)
0.300824 0.953680i \(-0.402738\pi\)
\(4\) 0 0
\(5\) − 2.55295i − 1.14171i −0.821049 0.570857i \(-0.806611\pi\)
0.821049 0.570857i \(-0.193389\pi\)
\(6\) 0 0
\(7\) 1.32515 0.500858 0.250429 0.968135i \(-0.419428\pi\)
0.250429 + 0.968135i \(0.419428\pi\)
\(8\) 0 0
\(9\) −7.91406 −2.63802
\(10\) 0 0
\(11\) 2.51756i 0.759072i 0.925177 + 0.379536i \(0.123916\pi\)
−0.925177 + 0.379536i \(0.876084\pi\)
\(12\) 0 0
\(13\) − 1.22781i − 0.340532i −0.985398 0.170266i \(-0.945537\pi\)
0.985398 0.170266i \(-0.0544627\pi\)
\(14\) 0 0
\(15\) −8.43404 −2.17766
\(16\) 0 0
\(17\) 0.210784 0.0511227 0.0255614 0.999673i \(-0.491863\pi\)
0.0255614 + 0.999673i \(0.491863\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i
\(20\) 0 0
\(21\) − 4.37781i − 0.955316i
\(22\) 0 0
\(23\) −8.11631 −1.69237 −0.846184 0.532891i \(-0.821105\pi\)
−0.846184 + 0.532891i \(0.821105\pi\)
\(24\) 0 0
\(25\) −1.51756 −0.303512
\(26\) 0 0
\(27\) 16.2343i 3.12429i
\(28\) 0 0
\(29\) 5.97458i 1.10945i 0.832033 + 0.554726i \(0.187177\pi\)
−0.832033 + 0.554726i \(0.812823\pi\)
\(30\) 0 0
\(31\) −6.01598 −1.08050 −0.540251 0.841504i \(-0.681671\pi\)
−0.540251 + 0.841504i \(0.681671\pi\)
\(32\) 0 0
\(33\) 8.31712 1.44782
\(34\) 0 0
\(35\) − 3.38303i − 0.571837i
\(36\) 0 0
\(37\) 11.2625i 1.85154i 0.378089 + 0.925769i \(0.376581\pi\)
−0.378089 + 0.925769i \(0.623419\pi\)
\(38\) 0 0
\(39\) −4.05623 −0.649517
\(40\) 0 0
\(41\) −0.996870 −0.155685 −0.0778424 0.996966i \(-0.524803\pi\)
−0.0778424 + 0.996966i \(0.524803\pi\)
\(42\) 0 0
\(43\) − 7.83781i − 1.19525i −0.801774 0.597627i \(-0.796110\pi\)
0.801774 0.597627i \(-0.203890\pi\)
\(44\) 0 0
\(45\) 20.2042i 3.01187i
\(46\) 0 0
\(47\) 0.910938 0.132874 0.0664369 0.997791i \(-0.478837\pi\)
0.0664369 + 0.997791i \(0.478837\pi\)
\(48\) 0 0
\(49\) −5.24399 −0.749141
\(50\) 0 0
\(51\) − 0.696356i − 0.0975094i
\(52\) 0 0
\(53\) 3.32429i 0.456627i 0.973588 + 0.228313i \(0.0733211\pi\)
−0.973588 + 0.228313i \(0.926679\pi\)
\(54\) 0 0
\(55\) 6.42720 0.866644
\(56\) 0 0
\(57\) −3.30364 −0.437578
\(58\) 0 0
\(59\) − 2.04859i − 0.266704i −0.991069 0.133352i \(-0.957426\pi\)
0.991069 0.133352i \(-0.0425740\pi\)
\(60\) 0 0
\(61\) − 10.0769i − 1.29022i −0.764091 0.645108i \(-0.776812\pi\)
0.764091 0.645108i \(-0.223188\pi\)
\(62\) 0 0
\(63\) −10.4873 −1.32127
\(64\) 0 0
\(65\) −3.13453 −0.388790
\(66\) 0 0
\(67\) − 11.7584i − 1.43652i −0.695775 0.718260i \(-0.744939\pi\)
0.695775 0.718260i \(-0.255061\pi\)
\(68\) 0 0
\(69\) 26.8134i 3.22795i
\(70\) 0 0
\(71\) −11.9944 −1.42347 −0.711737 0.702446i \(-0.752091\pi\)
−0.711737 + 0.702446i \(0.752091\pi\)
\(72\) 0 0
\(73\) −13.0038 −1.52198 −0.760989 0.648764i \(-0.775286\pi\)
−0.760989 + 0.648764i \(0.775286\pi\)
\(74\) 0 0
\(75\) 5.01347i 0.578906i
\(76\) 0 0
\(77\) 3.33613i 0.380187i
\(78\) 0 0
\(79\) −12.0761 −1.35866 −0.679332 0.733831i \(-0.737730\pi\)
−0.679332 + 0.733831i \(0.737730\pi\)
\(80\) 0 0
\(81\) 29.8902 3.32113
\(82\) 0 0
\(83\) 4.50788i 0.494804i 0.968913 + 0.247402i \(0.0795768\pi\)
−0.968913 + 0.247402i \(0.920423\pi\)
\(84\) 0 0
\(85\) − 0.538122i − 0.0583675i
\(86\) 0 0
\(87\) 19.7379 2.11612
\(88\) 0 0
\(89\) 6.64553 0.704425 0.352213 0.935920i \(-0.385429\pi\)
0.352213 + 0.935920i \(0.385429\pi\)
\(90\) 0 0
\(91\) − 1.62702i − 0.170558i
\(92\) 0 0
\(93\) 19.8746i 2.06090i
\(94\) 0 0
\(95\) −2.55295 −0.261927
\(96\) 0 0
\(97\) 9.92753 1.00799 0.503994 0.863707i \(-0.331863\pi\)
0.503994 + 0.863707i \(0.331863\pi\)
\(98\) 0 0
\(99\) − 19.9241i − 2.00245i
\(100\) 0 0
\(101\) − 1.26920i − 0.126290i −0.998004 0.0631450i \(-0.979887\pi\)
0.998004 0.0631450i \(-0.0201130\pi\)
\(102\) 0 0
\(103\) −14.4500 −1.42380 −0.711901 0.702280i \(-0.752166\pi\)
−0.711901 + 0.702280i \(0.752166\pi\)
\(104\) 0 0
\(105\) −11.1763 −1.09070
\(106\) 0 0
\(107\) − 10.3868i − 1.00413i −0.864829 0.502066i \(-0.832573\pi\)
0.864829 0.502066i \(-0.167427\pi\)
\(108\) 0 0
\(109\) − 15.3639i − 1.47160i −0.677200 0.735799i \(-0.736807\pi\)
0.677200 0.735799i \(-0.263193\pi\)
\(110\) 0 0
\(111\) 37.2072 3.53155
\(112\) 0 0
\(113\) 16.2509 1.52876 0.764379 0.644768i \(-0.223046\pi\)
0.764379 + 0.644768i \(0.223046\pi\)
\(114\) 0 0
\(115\) 20.7205i 1.93220i
\(116\) 0 0
\(117\) 9.71693i 0.898331i
\(118\) 0 0
\(119\) 0.279320 0.0256052
\(120\) 0 0
\(121\) 4.66190 0.423809
\(122\) 0 0
\(123\) 3.29330i 0.296947i
\(124\) 0 0
\(125\) − 8.89050i − 0.795191i
\(126\) 0 0
\(127\) 6.56693 0.582721 0.291360 0.956613i \(-0.405892\pi\)
0.291360 + 0.956613i \(0.405892\pi\)
\(128\) 0 0
\(129\) −25.8933 −2.27978
\(130\) 0 0
\(131\) 10.0235i 0.875759i 0.899034 + 0.437880i \(0.144270\pi\)
−0.899034 + 0.437880i \(0.855730\pi\)
\(132\) 0 0
\(133\) − 1.32515i − 0.114905i
\(134\) 0 0
\(135\) 41.4454 3.56705
\(136\) 0 0
\(137\) 7.01005 0.598909 0.299455 0.954111i \(-0.403195\pi\)
0.299455 + 0.954111i \(0.403195\pi\)
\(138\) 0 0
\(139\) − 3.13111i − 0.265577i −0.991144 0.132789i \(-0.957607\pi\)
0.991144 0.132789i \(-0.0423931\pi\)
\(140\) 0 0
\(141\) − 3.00941i − 0.253438i
\(142\) 0 0
\(143\) 3.09107 0.258489
\(144\) 0 0
\(145\) 15.2528 1.26668
\(146\) 0 0
\(147\) 17.3243i 1.42888i
\(148\) 0 0
\(149\) − 7.47186i − 0.612119i −0.952012 0.306059i \(-0.900989\pi\)
0.952012 0.306059i \(-0.0990106\pi\)
\(150\) 0 0
\(151\) 18.1373 1.47599 0.737995 0.674806i \(-0.235773\pi\)
0.737995 + 0.674806i \(0.235773\pi\)
\(152\) 0 0
\(153\) −1.66816 −0.134863
\(154\) 0 0
\(155\) 15.3585i 1.23362i
\(156\) 0 0
\(157\) 6.69383i 0.534225i 0.963665 + 0.267113i \(0.0860696\pi\)
−0.963665 + 0.267113i \(0.913930\pi\)
\(158\) 0 0
\(159\) 10.9823 0.870952
\(160\) 0 0
\(161\) −10.7553 −0.847635
\(162\) 0 0
\(163\) − 15.6424i − 1.22521i −0.790390 0.612604i \(-0.790122\pi\)
0.790390 0.612604i \(-0.209878\pi\)
\(164\) 0 0
\(165\) − 21.2332i − 1.65300i
\(166\) 0 0
\(167\) −4.23338 −0.327588 −0.163794 0.986495i \(-0.552373\pi\)
−0.163794 + 0.986495i \(0.552373\pi\)
\(168\) 0 0
\(169\) 11.4925 0.884038
\(170\) 0 0
\(171\) 7.91406i 0.605203i
\(172\) 0 0
\(173\) 4.25476i 0.323483i 0.986833 + 0.161742i \(0.0517111\pi\)
−0.986833 + 0.161742i \(0.948289\pi\)
\(174\) 0 0
\(175\) −2.01099 −0.152016
\(176\) 0 0
\(177\) −6.76781 −0.508700
\(178\) 0 0
\(179\) − 20.3171i − 1.51857i −0.650757 0.759286i \(-0.725548\pi\)
0.650757 0.759286i \(-0.274452\pi\)
\(180\) 0 0
\(181\) − 16.6430i − 1.23706i −0.785760 0.618532i \(-0.787728\pi\)
0.785760 0.618532i \(-0.212272\pi\)
\(182\) 0 0
\(183\) −33.2905 −2.46091
\(184\) 0 0
\(185\) 28.7525 2.11393
\(186\) 0 0
\(187\) 0.530662i 0.0388058i
\(188\) 0 0
\(189\) 21.5128i 1.56483i
\(190\) 0 0
\(191\) −15.9246 −1.15226 −0.576132 0.817357i \(-0.695439\pi\)
−0.576132 + 0.817357i \(0.695439\pi\)
\(192\) 0 0
\(193\) −25.8762 −1.86261 −0.931304 0.364242i \(-0.881328\pi\)
−0.931304 + 0.364242i \(0.881328\pi\)
\(194\) 0 0
\(195\) 10.3554i 0.741563i
\(196\) 0 0
\(197\) 18.2850i 1.30275i 0.758755 + 0.651376i \(0.225808\pi\)
−0.758755 + 0.651376i \(0.774192\pi\)
\(198\) 0 0
\(199\) −10.0808 −0.714606 −0.357303 0.933989i \(-0.616304\pi\)
−0.357303 + 0.933989i \(0.616304\pi\)
\(200\) 0 0
\(201\) −38.8456 −2.73996
\(202\) 0 0
\(203\) 7.91719i 0.555678i
\(204\) 0 0
\(205\) 2.54496i 0.177748i
\(206\) 0 0
\(207\) 64.2330 4.46450
\(208\) 0 0
\(209\) 2.51756 0.174143
\(210\) 0 0
\(211\) − 15.8127i − 1.08859i −0.838893 0.544297i \(-0.816796\pi\)
0.838893 0.544297i \(-0.183204\pi\)
\(212\) 0 0
\(213\) 39.6252i 2.71508i
\(214\) 0 0
\(215\) −20.0095 −1.36464
\(216\) 0 0
\(217\) −7.97204 −0.541178
\(218\) 0 0
\(219\) 42.9599i 2.90296i
\(220\) 0 0
\(221\) − 0.258802i − 0.0174089i
\(222\) 0 0
\(223\) 4.15828 0.278459 0.139229 0.990260i \(-0.455537\pi\)
0.139229 + 0.990260i \(0.455537\pi\)
\(224\) 0 0
\(225\) 12.0101 0.800670
\(226\) 0 0
\(227\) − 16.7714i − 1.11315i −0.830796 0.556577i \(-0.812114\pi\)
0.830796 0.556577i \(-0.187886\pi\)
\(228\) 0 0
\(229\) 1.32899i 0.0878220i 0.999035 + 0.0439110i \(0.0139818\pi\)
−0.999035 + 0.0439110i \(0.986018\pi\)
\(230\) 0 0
\(231\) 11.0214 0.725154
\(232\) 0 0
\(233\) −15.4631 −1.01302 −0.506510 0.862234i \(-0.669065\pi\)
−0.506510 + 0.862234i \(0.669065\pi\)
\(234\) 0 0
\(235\) − 2.32558i − 0.151704i
\(236\) 0 0
\(237\) 39.8950i 2.59146i
\(238\) 0 0
\(239\) 15.4564 0.999794 0.499897 0.866085i \(-0.333371\pi\)
0.499897 + 0.866085i \(0.333371\pi\)
\(240\) 0 0
\(241\) −14.0126 −0.902632 −0.451316 0.892364i \(-0.649045\pi\)
−0.451316 + 0.892364i \(0.649045\pi\)
\(242\) 0 0
\(243\) − 50.0436i − 3.21030i
\(244\) 0 0
\(245\) 13.3877i 0.855306i
\(246\) 0 0
\(247\) −1.22781 −0.0781234
\(248\) 0 0
\(249\) 14.8924 0.943769
\(250\) 0 0
\(251\) 4.36102i 0.275265i 0.990483 + 0.137632i \(0.0439493\pi\)
−0.990483 + 0.137632i \(0.956051\pi\)
\(252\) 0 0
\(253\) − 20.4333i − 1.28463i
\(254\) 0 0
\(255\) −1.77776 −0.111328
\(256\) 0 0
\(257\) 21.4237 1.33637 0.668186 0.743994i \(-0.267071\pi\)
0.668186 + 0.743994i \(0.267071\pi\)
\(258\) 0 0
\(259\) 14.9244i 0.927357i
\(260\) 0 0
\(261\) − 47.2832i − 2.92676i
\(262\) 0 0
\(263\) 5.37369 0.331356 0.165678 0.986180i \(-0.447019\pi\)
0.165678 + 0.986180i \(0.447019\pi\)
\(264\) 0 0
\(265\) 8.48676 0.521338
\(266\) 0 0
\(267\) − 21.9545i − 1.34359i
\(268\) 0 0
\(269\) 10.0684i 0.613879i 0.951729 + 0.306940i \(0.0993049\pi\)
−0.951729 + 0.306940i \(0.900695\pi\)
\(270\) 0 0
\(271\) −27.6347 −1.67869 −0.839344 0.543601i \(-0.817060\pi\)
−0.839344 + 0.543601i \(0.817060\pi\)
\(272\) 0 0
\(273\) −5.37510 −0.325316
\(274\) 0 0
\(275\) − 3.82054i − 0.230387i
\(276\) 0 0
\(277\) 9.52596i 0.572360i 0.958176 + 0.286180i \(0.0923855\pi\)
−0.958176 + 0.286180i \(0.907615\pi\)
\(278\) 0 0
\(279\) 47.6108 2.85038
\(280\) 0 0
\(281\) 27.6168 1.64748 0.823739 0.566969i \(-0.191884\pi\)
0.823739 + 0.566969i \(0.191884\pi\)
\(282\) 0 0
\(283\) 17.0192i 1.01168i 0.862626 + 0.505842i \(0.168818\pi\)
−0.862626 + 0.505842i \(0.831182\pi\)
\(284\) 0 0
\(285\) 8.43404i 0.499589i
\(286\) 0 0
\(287\) −1.32100 −0.0779760
\(288\) 0 0
\(289\) −16.9556 −0.997386
\(290\) 0 0
\(291\) − 32.7970i − 1.92260i
\(292\) 0 0
\(293\) 13.8952i 0.811767i 0.913925 + 0.405884i \(0.133036\pi\)
−0.913925 + 0.405884i \(0.866964\pi\)
\(294\) 0 0
\(295\) −5.22995 −0.304499
\(296\) 0 0
\(297\) −40.8708 −2.37157
\(298\) 0 0
\(299\) 9.96525i 0.576305i
\(300\) 0 0
\(301\) − 10.3862i − 0.598652i
\(302\) 0 0
\(303\) −4.19298 −0.240880
\(304\) 0 0
\(305\) −25.7259 −1.47306
\(306\) 0 0
\(307\) 8.57307i 0.489291i 0.969613 + 0.244645i \(0.0786716\pi\)
−0.969613 + 0.244645i \(0.921328\pi\)
\(308\) 0 0
\(309\) 47.7377i 2.71570i
\(310\) 0 0
\(311\) 18.7442 1.06288 0.531442 0.847094i \(-0.321650\pi\)
0.531442 + 0.847094i \(0.321650\pi\)
\(312\) 0 0
\(313\) 0.267307 0.0151091 0.00755454 0.999971i \(-0.497595\pi\)
0.00755454 + 0.999971i \(0.497595\pi\)
\(314\) 0 0
\(315\) 26.7735i 1.50852i
\(316\) 0 0
\(317\) − 24.3865i − 1.36968i −0.728693 0.684841i \(-0.759872\pi\)
0.728693 0.684841i \(-0.240128\pi\)
\(318\) 0 0
\(319\) −15.0414 −0.842155
\(320\) 0 0
\(321\) −34.3144 −1.91524
\(322\) 0 0
\(323\) − 0.210784i − 0.0117284i
\(324\) 0 0
\(325\) 1.86327i 0.103355i
\(326\) 0 0
\(327\) −50.7570 −2.80687
\(328\) 0 0
\(329\) 1.20712 0.0665509
\(330\) 0 0
\(331\) 15.8978i 0.873824i 0.899504 + 0.436912i \(0.143928\pi\)
−0.899504 + 0.436912i \(0.856072\pi\)
\(332\) 0 0
\(333\) − 89.1319i − 4.88440i
\(334\) 0 0
\(335\) −30.0187 −1.64009
\(336\) 0 0
\(337\) −23.4174 −1.27563 −0.637814 0.770190i \(-0.720161\pi\)
−0.637814 + 0.770190i \(0.720161\pi\)
\(338\) 0 0
\(339\) − 53.6872i − 2.91589i
\(340\) 0 0
\(341\) − 15.1456i − 0.820179i
\(342\) 0 0
\(343\) −16.2251 −0.876071
\(344\) 0 0
\(345\) 68.4533 3.68540
\(346\) 0 0
\(347\) − 0.166224i − 0.00892336i −0.999990 0.00446168i \(-0.998580\pi\)
0.999990 0.00446168i \(-0.00142020\pi\)
\(348\) 0 0
\(349\) − 3.92636i − 0.210173i −0.994463 0.105087i \(-0.966488\pi\)
0.994463 0.105087i \(-0.0335119\pi\)
\(350\) 0 0
\(351\) 19.9326 1.06392
\(352\) 0 0
\(353\) 9.45111 0.503032 0.251516 0.967853i \(-0.419071\pi\)
0.251516 + 0.967853i \(0.419071\pi\)
\(354\) 0 0
\(355\) 30.6211i 1.62520i
\(356\) 0 0
\(357\) − 0.922773i − 0.0488383i
\(358\) 0 0
\(359\) 7.81041 0.412218 0.206109 0.978529i \(-0.433920\pi\)
0.206109 + 0.978529i \(0.433920\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 0 0
\(363\) − 15.4013i − 0.808356i
\(364\) 0 0
\(365\) 33.1980i 1.73766i
\(366\) 0 0
\(367\) −34.3412 −1.79260 −0.896298 0.443452i \(-0.853754\pi\)
−0.896298 + 0.443452i \(0.853754\pi\)
\(368\) 0 0
\(369\) 7.88929 0.410700
\(370\) 0 0
\(371\) 4.40517i 0.228705i
\(372\) 0 0
\(373\) − 33.9919i − 1.76004i −0.474941 0.880018i \(-0.657531\pi\)
0.474941 0.880018i \(-0.342469\pi\)
\(374\) 0 0
\(375\) −29.3711 −1.51671
\(376\) 0 0
\(377\) 7.33563 0.377804
\(378\) 0 0
\(379\) − 4.11882i − 0.211570i −0.994389 0.105785i \(-0.966265\pi\)
0.994389 0.105785i \(-0.0337355\pi\)
\(380\) 0 0
\(381\) − 21.6948i − 1.11146i
\(382\) 0 0
\(383\) −17.5442 −0.896467 −0.448233 0.893917i \(-0.647947\pi\)
−0.448233 + 0.893917i \(0.647947\pi\)
\(384\) 0 0
\(385\) 8.51698 0.434065
\(386\) 0 0
\(387\) 62.0289i 3.15310i
\(388\) 0 0
\(389\) − 2.23423i − 0.113280i −0.998395 0.0566399i \(-0.981961\pi\)
0.998395 0.0566399i \(-0.0180387\pi\)
\(390\) 0 0
\(391\) −1.71079 −0.0865184
\(392\) 0 0
\(393\) 33.1142 1.67039
\(394\) 0 0
\(395\) 30.8296i 1.55121i
\(396\) 0 0
\(397\) 15.4349i 0.774655i 0.921942 + 0.387327i \(0.126602\pi\)
−0.921942 + 0.387327i \(0.873398\pi\)
\(398\) 0 0
\(399\) −4.37781 −0.219164
\(400\) 0 0
\(401\) −22.3503 −1.11612 −0.558061 0.829800i \(-0.688454\pi\)
−0.558061 + 0.829800i \(0.688454\pi\)
\(402\) 0 0
\(403\) 7.38645i 0.367945i
\(404\) 0 0
\(405\) − 76.3082i − 3.79178i
\(406\) 0 0
\(407\) −28.3539 −1.40545
\(408\) 0 0
\(409\) 8.58617 0.424559 0.212279 0.977209i \(-0.431911\pi\)
0.212279 + 0.977209i \(0.431911\pi\)
\(410\) 0 0
\(411\) − 23.1587i − 1.14234i
\(412\) 0 0
\(413\) − 2.71468i − 0.133581i
\(414\) 0 0
\(415\) 11.5084 0.564925
\(416\) 0 0
\(417\) −10.3441 −0.506551
\(418\) 0 0
\(419\) − 21.9670i − 1.07316i −0.843850 0.536579i \(-0.819716\pi\)
0.843850 0.536579i \(-0.180284\pi\)
\(420\) 0 0
\(421\) − 22.3942i − 1.09143i −0.837972 0.545713i \(-0.816259\pi\)
0.837972 0.545713i \(-0.183741\pi\)
\(422\) 0 0
\(423\) −7.20922 −0.350524
\(424\) 0 0
\(425\) −0.319878 −0.0155163
\(426\) 0 0
\(427\) − 13.3534i − 0.646215i
\(428\) 0 0
\(429\) − 10.2118i − 0.493031i
\(430\) 0 0
\(431\) 7.39422 0.356167 0.178084 0.984015i \(-0.443010\pi\)
0.178084 + 0.984015i \(0.443010\pi\)
\(432\) 0 0
\(433\) −30.0766 −1.44539 −0.722694 0.691168i \(-0.757097\pi\)
−0.722694 + 0.691168i \(0.757097\pi\)
\(434\) 0 0
\(435\) − 50.3899i − 2.41601i
\(436\) 0 0
\(437\) 8.11631i 0.388256i
\(438\) 0 0
\(439\) 16.3397 0.779850 0.389925 0.920847i \(-0.372501\pi\)
0.389925 + 0.920847i \(0.372501\pi\)
\(440\) 0 0
\(441\) 41.5013 1.97625
\(442\) 0 0
\(443\) 4.07589i 0.193651i 0.995301 + 0.0968256i \(0.0308689\pi\)
−0.995301 + 0.0968256i \(0.969131\pi\)
\(444\) 0 0
\(445\) − 16.9657i − 0.804252i
\(446\) 0 0
\(447\) −24.6844 −1.16753
\(448\) 0 0
\(449\) 4.21892 0.199103 0.0995517 0.995032i \(-0.468259\pi\)
0.0995517 + 0.995032i \(0.468259\pi\)
\(450\) 0 0
\(451\) − 2.50968i − 0.118176i
\(452\) 0 0
\(453\) − 59.9191i − 2.81525i
\(454\) 0 0
\(455\) −4.15370 −0.194729
\(456\) 0 0
\(457\) 28.8382 1.34899 0.674496 0.738278i \(-0.264361\pi\)
0.674496 + 0.738278i \(0.264361\pi\)
\(458\) 0 0
\(459\) 3.42194i 0.159722i
\(460\) 0 0
\(461\) 31.0261i 1.44503i 0.691356 + 0.722514i \(0.257014\pi\)
−0.691356 + 0.722514i \(0.742986\pi\)
\(462\) 0 0
\(463\) −12.5849 −0.584870 −0.292435 0.956285i \(-0.594465\pi\)
−0.292435 + 0.956285i \(0.594465\pi\)
\(464\) 0 0
\(465\) 50.7390 2.35296
\(466\) 0 0
\(467\) 27.8849i 1.29036i 0.764032 + 0.645179i \(0.223217\pi\)
−0.764032 + 0.645179i \(0.776783\pi\)
\(468\) 0 0
\(469\) − 15.5816i − 0.719492i
\(470\) 0 0
\(471\) 22.1140 1.01896
\(472\) 0 0
\(473\) 19.7321 0.907284
\(474\) 0 0
\(475\) 1.51756i 0.0696304i
\(476\) 0 0
\(477\) − 26.3087i − 1.20459i
\(478\) 0 0
\(479\) 11.7138 0.535217 0.267608 0.963528i \(-0.413767\pi\)
0.267608 + 0.963528i \(0.413767\pi\)
\(480\) 0 0
\(481\) 13.8281 0.630508
\(482\) 0 0
\(483\) 35.5316i 1.61675i
\(484\) 0 0
\(485\) − 25.3445i − 1.15083i
\(486\) 0 0
\(487\) 8.07492 0.365909 0.182955 0.983121i \(-0.441434\pi\)
0.182955 + 0.983121i \(0.441434\pi\)
\(488\) 0 0
\(489\) −51.6769 −2.33691
\(490\) 0 0
\(491\) − 15.0953i − 0.681240i −0.940201 0.340620i \(-0.889363\pi\)
0.940201 0.340620i \(-0.110637\pi\)
\(492\) 0 0
\(493\) 1.25935i 0.0567182i
\(494\) 0 0
\(495\) −50.8653 −2.28622
\(496\) 0 0
\(497\) −15.8943 −0.712958
\(498\) 0 0
\(499\) − 31.2381i − 1.39841i −0.714922 0.699205i \(-0.753538\pi\)
0.714922 0.699205i \(-0.246462\pi\)
\(500\) 0 0
\(501\) 13.9856i 0.624829i
\(502\) 0 0
\(503\) −21.7755 −0.970920 −0.485460 0.874259i \(-0.661348\pi\)
−0.485460 + 0.874259i \(0.661348\pi\)
\(504\) 0 0
\(505\) −3.24020 −0.144187
\(506\) 0 0
\(507\) − 37.9671i − 1.68618i
\(508\) 0 0
\(509\) 4.88080i 0.216338i 0.994133 + 0.108169i \(0.0344987\pi\)
−0.994133 + 0.108169i \(0.965501\pi\)
\(510\) 0 0
\(511\) −17.2319 −0.762295
\(512\) 0 0
\(513\) 16.2343 0.716762
\(514\) 0 0
\(515\) 36.8902i 1.62558i
\(516\) 0 0
\(517\) 2.29334i 0.100861i
\(518\) 0 0
\(519\) 14.0562 0.616998
\(520\) 0 0
\(521\) 10.8112 0.473645 0.236823 0.971553i \(-0.423894\pi\)
0.236823 + 0.971553i \(0.423894\pi\)
\(522\) 0 0
\(523\) − 21.1722i − 0.925798i −0.886411 0.462899i \(-0.846809\pi\)
0.886411 0.462899i \(-0.153191\pi\)
\(524\) 0 0
\(525\) 6.64358i 0.289950i
\(526\) 0 0
\(527\) −1.26807 −0.0552382
\(528\) 0 0
\(529\) 42.8745 1.86411
\(530\) 0 0
\(531\) 16.2127i 0.703570i
\(532\) 0 0
\(533\) 1.22396i 0.0530157i
\(534\) 0 0
\(535\) −26.5170 −1.14643
\(536\) 0 0
\(537\) −67.1205 −2.89646
\(538\) 0 0
\(539\) − 13.2021i − 0.568653i
\(540\) 0 0
\(541\) 15.1179i 0.649969i 0.945719 + 0.324984i \(0.105359\pi\)
−0.945719 + 0.324984i \(0.894641\pi\)
\(542\) 0 0
\(543\) −54.9825 −2.35952
\(544\) 0 0
\(545\) −39.2234 −1.68014
\(546\) 0 0
\(547\) − 5.51960i − 0.236001i −0.993014 0.118001i \(-0.962352\pi\)
0.993014 0.118001i \(-0.0376485\pi\)
\(548\) 0 0
\(549\) 79.7493i 3.40362i
\(550\) 0 0
\(551\) 5.97458 0.254526
\(552\) 0 0
\(553\) −16.0025 −0.680497
\(554\) 0 0
\(555\) − 94.9881i − 4.03202i
\(556\) 0 0
\(557\) − 18.9708i − 0.803820i −0.915679 0.401910i \(-0.868346\pi\)
0.915679 0.401910i \(-0.131654\pi\)
\(558\) 0 0
\(559\) −9.62330 −0.407022
\(560\) 0 0
\(561\) 1.75312 0.0740167
\(562\) 0 0
\(563\) − 15.5505i − 0.655374i −0.944786 0.327687i \(-0.893731\pi\)
0.944786 0.327687i \(-0.106269\pi\)
\(564\) 0 0
\(565\) − 41.4878i − 1.74540i
\(566\) 0 0
\(567\) 39.6088 1.66341
\(568\) 0 0
\(569\) −3.32025 −0.139192 −0.0695960 0.997575i \(-0.522171\pi\)
−0.0695960 + 0.997575i \(0.522171\pi\)
\(570\) 0 0
\(571\) 8.41420i 0.352123i 0.984379 + 0.176062i \(0.0563358\pi\)
−0.984379 + 0.176062i \(0.943664\pi\)
\(572\) 0 0
\(573\) 52.6092i 2.19778i
\(574\) 0 0
\(575\) 12.3170 0.513653
\(576\) 0 0
\(577\) 5.94857 0.247642 0.123821 0.992305i \(-0.460485\pi\)
0.123821 + 0.992305i \(0.460485\pi\)
\(578\) 0 0
\(579\) 85.4857i 3.55266i
\(580\) 0 0
\(581\) 5.97359i 0.247826i
\(582\) 0 0
\(583\) −8.36911 −0.346613
\(584\) 0 0
\(585\) 24.8068 1.02564
\(586\) 0 0
\(587\) 27.1449i 1.12039i 0.828360 + 0.560196i \(0.189274\pi\)
−0.828360 + 0.560196i \(0.810726\pi\)
\(588\) 0 0
\(589\) 6.01598i 0.247884i
\(590\) 0 0
\(591\) 60.4071 2.48482
\(592\) 0 0
\(593\) −24.3801 −1.00117 −0.500585 0.865687i \(-0.666882\pi\)
−0.500585 + 0.865687i \(0.666882\pi\)
\(594\) 0 0
\(595\) − 0.713090i − 0.0292338i
\(596\) 0 0
\(597\) 33.3032i 1.36301i
\(598\) 0 0
\(599\) −18.7108 −0.764502 −0.382251 0.924059i \(-0.624851\pi\)
−0.382251 + 0.924059i \(0.624851\pi\)
\(600\) 0 0
\(601\) 44.2967 1.80690 0.903451 0.428692i \(-0.141025\pi\)
0.903451 + 0.428692i \(0.141025\pi\)
\(602\) 0 0
\(603\) 93.0568i 3.78957i
\(604\) 0 0
\(605\) − 11.9016i − 0.483869i
\(606\) 0 0
\(607\) −30.5153 −1.23858 −0.619290 0.785163i \(-0.712579\pi\)
−0.619290 + 0.785163i \(0.712579\pi\)
\(608\) 0 0
\(609\) 26.1556 1.05988
\(610\) 0 0
\(611\) − 1.11845i − 0.0452478i
\(612\) 0 0
\(613\) − 21.3377i − 0.861822i −0.902395 0.430911i \(-0.858192\pi\)
0.902395 0.430911i \(-0.141808\pi\)
\(614\) 0 0
\(615\) 8.40764 0.339029
\(616\) 0 0
\(617\) −23.5271 −0.947163 −0.473582 0.880750i \(-0.657039\pi\)
−0.473582 + 0.880750i \(0.657039\pi\)
\(618\) 0 0
\(619\) 18.0716i 0.726357i 0.931720 + 0.363179i \(0.118308\pi\)
−0.931720 + 0.363179i \(0.881692\pi\)
\(620\) 0 0
\(621\) − 131.763i − 5.28745i
\(622\) 0 0
\(623\) 8.80630 0.352817
\(624\) 0 0
\(625\) −30.2848 −1.21139
\(626\) 0 0
\(627\) − 8.31712i − 0.332154i
\(628\) 0 0
\(629\) 2.37395i 0.0946557i
\(630\) 0 0
\(631\) 13.2280 0.526600 0.263300 0.964714i \(-0.415189\pi\)
0.263300 + 0.964714i \(0.415189\pi\)
\(632\) 0 0
\(633\) −52.2397 −2.07634
\(634\) 0 0
\(635\) − 16.7650i − 0.665301i
\(636\) 0 0
\(637\) 6.43860i 0.255107i
\(638\) 0 0
\(639\) 94.9245 3.75515
\(640\) 0 0
\(641\) −30.1208 −1.18970 −0.594851 0.803836i \(-0.702789\pi\)
−0.594851 + 0.803836i \(0.702789\pi\)
\(642\) 0 0
\(643\) 24.7964i 0.977876i 0.872319 + 0.488938i \(0.162616\pi\)
−0.872319 + 0.488938i \(0.837384\pi\)
\(644\) 0 0
\(645\) 66.1044i 2.60286i
\(646\) 0 0
\(647\) 22.8386 0.897880 0.448940 0.893562i \(-0.351802\pi\)
0.448940 + 0.893562i \(0.351802\pi\)
\(648\) 0 0
\(649\) 5.15744 0.202447
\(650\) 0 0
\(651\) 26.3368i 1.03222i
\(652\) 0 0
\(653\) 32.4823i 1.27113i 0.772048 + 0.635565i \(0.219233\pi\)
−0.772048 + 0.635565i \(0.780767\pi\)
\(654\) 0 0
\(655\) 25.5896 0.999867
\(656\) 0 0
\(657\) 102.913 4.01501
\(658\) 0 0
\(659\) − 17.2055i − 0.670229i −0.942177 0.335115i \(-0.891225\pi\)
0.942177 0.335115i \(-0.108775\pi\)
\(660\) 0 0
\(661\) − 13.0942i − 0.509305i −0.967033 0.254653i \(-0.918039\pi\)
0.967033 0.254653i \(-0.0819611\pi\)
\(662\) 0 0
\(663\) −0.854990 −0.0332051
\(664\) 0 0
\(665\) −3.38303 −0.131188
\(666\) 0 0
\(667\) − 48.4916i − 1.87760i
\(668\) 0 0
\(669\) − 13.7375i − 0.531121i
\(670\) 0 0
\(671\) 25.3692 0.979368
\(672\) 0 0
\(673\) −11.3396 −0.437110 −0.218555 0.975825i \(-0.570134\pi\)
−0.218555 + 0.975825i \(0.570134\pi\)
\(674\) 0 0
\(675\) − 24.6365i − 0.948260i
\(676\) 0 0
\(677\) 43.2663i 1.66286i 0.555631 + 0.831429i \(0.312477\pi\)
−0.555631 + 0.831429i \(0.687523\pi\)
\(678\) 0 0
\(679\) 13.1554 0.504859
\(680\) 0 0
\(681\) −55.4066 −2.12319
\(682\) 0 0
\(683\) − 7.63100i − 0.291992i −0.989285 0.145996i \(-0.953361\pi\)
0.989285 0.145996i \(-0.0466387\pi\)
\(684\) 0 0
\(685\) − 17.8963i − 0.683783i
\(686\) 0 0
\(687\) 4.39051 0.167508
\(688\) 0 0
\(689\) 4.08159 0.155496
\(690\) 0 0
\(691\) 20.2177i 0.769117i 0.923101 + 0.384558i \(0.125646\pi\)
−0.923101 + 0.384558i \(0.874354\pi\)
\(692\) 0 0
\(693\) − 26.4023i − 1.00294i
\(694\) 0 0
\(695\) −7.99356 −0.303213
\(696\) 0 0
\(697\) −0.210124 −0.00795903
\(698\) 0 0
\(699\) 51.0845i 1.93219i
\(700\) 0 0
\(701\) 13.3108i 0.502743i 0.967891 + 0.251372i \(0.0808816\pi\)
−0.967891 + 0.251372i \(0.919118\pi\)
\(702\) 0 0
\(703\) 11.2625 0.424772
\(704\) 0 0
\(705\) −7.68288 −0.289354
\(706\) 0 0
\(707\) − 1.68187i − 0.0632533i
\(708\) 0 0
\(709\) − 23.7864i − 0.893319i −0.894704 0.446659i \(-0.852614\pi\)
0.894704 0.446659i \(-0.147386\pi\)
\(710\) 0 0
\(711\) 95.5707 3.58418
\(712\) 0 0
\(713\) 48.8275 1.82861
\(714\) 0 0
\(715\) − 7.89136i − 0.295120i
\(716\) 0 0
\(717\) − 51.0626i − 1.90697i
\(718\) 0 0
\(719\) −8.77476 −0.327243 −0.163622 0.986523i \(-0.552318\pi\)
−0.163622 + 0.986523i \(0.552318\pi\)
\(720\) 0 0
\(721\) −19.1484 −0.713123
\(722\) 0 0
\(723\) 46.2927i 1.72164i
\(724\) 0 0
\(725\) − 9.06678i − 0.336732i
\(726\) 0 0
\(727\) 41.1826 1.52738 0.763689 0.645584i \(-0.223386\pi\)
0.763689 + 0.645584i \(0.223386\pi\)
\(728\) 0 0
\(729\) −75.6557 −2.80206
\(730\) 0 0
\(731\) − 1.65209i − 0.0611046i
\(732\) 0 0
\(733\) − 48.2810i − 1.78330i −0.452727 0.891649i \(-0.649549\pi\)
0.452727 0.891649i \(-0.350451\pi\)
\(734\) 0 0
\(735\) 44.2280 1.63138
\(736\) 0 0
\(737\) 29.6025 1.09042
\(738\) 0 0
\(739\) − 24.7479i − 0.910366i −0.890398 0.455183i \(-0.849574\pi\)
0.890398 0.455183i \(-0.150426\pi\)
\(740\) 0 0
\(741\) 4.05623i 0.149009i
\(742\) 0 0
\(743\) −40.1141 −1.47164 −0.735822 0.677175i \(-0.763204\pi\)
−0.735822 + 0.677175i \(0.763204\pi\)
\(744\) 0 0
\(745\) −19.0753 −0.698865
\(746\) 0 0
\(747\) − 35.6756i − 1.30530i
\(748\) 0 0
\(749\) − 13.7640i − 0.502927i
\(750\) 0 0
\(751\) 31.9595 1.16622 0.583110 0.812393i \(-0.301836\pi\)
0.583110 + 0.812393i \(0.301836\pi\)
\(752\) 0 0
\(753\) 14.4072 0.525029
\(754\) 0 0
\(755\) − 46.3036i − 1.68516i
\(756\) 0 0
\(757\) − 25.7492i − 0.935870i −0.883763 0.467935i \(-0.844998\pi\)
0.883763 0.467935i \(-0.155002\pi\)
\(758\) 0 0
\(759\) −67.5043 −2.45025
\(760\) 0 0
\(761\) −21.4825 −0.778740 −0.389370 0.921082i \(-0.627307\pi\)
−0.389370 + 0.921082i \(0.627307\pi\)
\(762\) 0 0
\(763\) − 20.3594i − 0.737061i
\(764\) 0 0
\(765\) 4.25873i 0.153975i
\(766\) 0 0
\(767\) −2.51527 −0.0908211
\(768\) 0 0
\(769\) 13.9749 0.503949 0.251975 0.967734i \(-0.418920\pi\)
0.251975 + 0.967734i \(0.418920\pi\)
\(770\) 0 0
\(771\) − 70.7762i − 2.54894i
\(772\) 0 0
\(773\) − 15.8238i − 0.569143i −0.958655 0.284572i \(-0.908149\pi\)
0.958655 0.284572i \(-0.0918513\pi\)
\(774\) 0 0
\(775\) 9.12960 0.327945
\(776\) 0 0
\(777\) 49.3049 1.76880
\(778\) 0 0
\(779\) 0.996870i 0.0357166i
\(780\) 0 0
\(781\) − 30.1966i − 1.08052i
\(782\) 0 0
\(783\) −96.9933 −3.46626
\(784\) 0 0
\(785\) 17.0890 0.609933
\(786\) 0 0
\(787\) 24.5418i 0.874820i 0.899262 + 0.437410i \(0.144104\pi\)
−0.899262 + 0.437410i \(0.855896\pi\)
\(788\) 0 0
\(789\) − 17.7528i − 0.632015i
\(790\) 0 0
\(791\) 21.5348 0.765690
\(792\) 0 0
\(793\) −12.3725 −0.439360
\(794\) 0 0
\(795\) − 28.0372i − 0.994378i
\(796\) 0 0
\(797\) 48.3819i 1.71377i 0.515505 + 0.856887i \(0.327604\pi\)
−0.515505 + 0.856887i \(0.672396\pi\)
\(798\) 0 0
\(799\) 0.192011 0.00679287
\(800\) 0 0
\(801\) −52.5932 −1.85829
\(802\) 0 0
\(803\) − 32.7378i − 1.15529i
\(804\) 0 0
\(805\) 27.4577i 0.967758i
\(806\) 0 0
\(807\) 33.2623 1.17089
\(808\) 0 0
\(809\) −13.1294 −0.461604 −0.230802 0.973001i \(-0.574135\pi\)
−0.230802 + 0.973001i \(0.574135\pi\)
\(810\) 0 0
\(811\) − 3.76569i − 0.132231i −0.997812 0.0661157i \(-0.978939\pi\)
0.997812 0.0661157i \(-0.0210606\pi\)
\(812\) 0 0
\(813\) 91.2951i 3.20186i
\(814\) 0 0
\(815\) −39.9343 −1.39884
\(816\) 0 0
\(817\) −7.83781 −0.274210
\(818\) 0 0
\(819\) 12.8763i 0.449936i
\(820\) 0 0
\(821\) − 40.5291i − 1.41447i −0.706977 0.707237i \(-0.749941\pi\)
0.706977 0.707237i \(-0.250059\pi\)
\(822\) 0 0
\(823\) 13.7979 0.480964 0.240482 0.970654i \(-0.422695\pi\)
0.240482 + 0.970654i \(0.422695\pi\)
\(824\) 0 0
\(825\) −12.6217 −0.439432
\(826\) 0 0
\(827\) 47.3483i 1.64646i 0.567708 + 0.823230i \(0.307830\pi\)
−0.567708 + 0.823230i \(0.692170\pi\)
\(828\) 0 0
\(829\) 2.49303i 0.0865865i 0.999062 + 0.0432933i \(0.0137850\pi\)
−0.999062 + 0.0432933i \(0.986215\pi\)
\(830\) 0 0
\(831\) 31.4704 1.09170
\(832\) 0 0
\(833\) −1.10535 −0.0382981
\(834\) 0 0
\(835\) 10.8076i 0.374012i
\(836\) 0 0
\(837\) − 97.6652i − 3.37580i
\(838\) 0 0
\(839\) 3.94935 0.136347 0.0681733 0.997673i \(-0.478283\pi\)
0.0681733 + 0.997673i \(0.478283\pi\)
\(840\) 0 0
\(841\) −6.69567 −0.230885
\(842\) 0 0
\(843\) − 91.2360i − 3.14233i
\(844\) 0 0
\(845\) − 29.3398i − 1.00932i
\(846\) 0 0
\(847\) 6.17769 0.212268
\(848\) 0 0
\(849\) 56.2253 1.92965
\(850\) 0 0
\(851\) − 91.4097i − 3.13348i
\(852\) 0 0
\(853\) 47.6335i 1.63094i 0.578799 + 0.815470i \(0.303521\pi\)
−0.578799 + 0.815470i \(0.696479\pi\)
\(854\) 0 0
\(855\) 20.2042 0.690969
\(856\) 0 0
\(857\) −50.1888 −1.71442 −0.857209 0.514969i \(-0.827804\pi\)
−0.857209 + 0.514969i \(0.827804\pi\)
\(858\) 0 0
\(859\) 11.0894i 0.378366i 0.981942 + 0.189183i \(0.0605839\pi\)
−0.981942 + 0.189183i \(0.939416\pi\)
\(860\) 0 0
\(861\) 4.36410i 0.148728i
\(862\) 0 0
\(863\) 37.7550 1.28520 0.642598 0.766204i \(-0.277857\pi\)
0.642598 + 0.766204i \(0.277857\pi\)
\(864\) 0 0
\(865\) 10.8622 0.369325
\(866\) 0 0
\(867\) 56.0152i 1.90237i
\(868\) 0 0
\(869\) − 30.4022i − 1.03132i
\(870\) 0 0
\(871\) −14.4371 −0.489181
\(872\) 0 0
\(873\) −78.5671 −2.65909
\(874\) 0 0
\(875\) − 11.7812i − 0.398277i
\(876\) 0 0
\(877\) − 43.6274i − 1.47319i −0.676333 0.736596i \(-0.736432\pi\)
0.676333 0.736596i \(-0.263568\pi\)
\(878\) 0 0
\(879\) 45.9049 1.54833
\(880\) 0 0
\(881\) −15.5145 −0.522698 −0.261349 0.965244i \(-0.584167\pi\)
−0.261349 + 0.965244i \(0.584167\pi\)
\(882\) 0 0
\(883\) − 0.166224i − 0.00559388i −0.999996 0.00279694i \(-0.999110\pi\)
0.999996 0.00279694i \(-0.000890295\pi\)
\(884\) 0 0
\(885\) 17.2779i 0.580790i
\(886\) 0 0
\(887\) 9.04708 0.303771 0.151886 0.988398i \(-0.451465\pi\)
0.151886 + 0.988398i \(0.451465\pi\)
\(888\) 0 0
\(889\) 8.70213 0.291860
\(890\) 0 0
\(891\) 75.2503i 2.52098i
\(892\) 0 0
\(893\) − 0.910938i − 0.0304834i
\(894\) 0 0
\(895\) −51.8686 −1.73378
\(896\) 0 0
\(897\) 32.9216 1.09922
\(898\) 0 0
\(899\) − 35.9430i − 1.19877i
\(900\) 0 0
\(901\) 0.700709i 0.0233440i
\(902\) 0 0
\(903\) −34.3124 −1.14185
\(904\) 0 0
\(905\) −42.4887 −1.41237
\(906\) 0 0
\(907\) − 16.2748i − 0.540395i −0.962805 0.270198i \(-0.912911\pi\)
0.962805 0.270198i \(-0.0870891\pi\)
\(908\) 0 0
\(909\) 10.0445i 0.333155i
\(910\) 0 0
\(911\) 11.6990 0.387604 0.193802 0.981041i \(-0.437918\pi\)
0.193802 + 0.981041i \(0.437918\pi\)
\(912\) 0 0
\(913\) −11.3488 −0.375592
\(914\) 0 0
\(915\) 84.9891i 2.80965i
\(916\) 0 0
\(917\) 13.2826i 0.438631i
\(918\) 0 0
\(919\) 24.0697 0.793987 0.396994 0.917821i \(-0.370053\pi\)
0.396994 + 0.917821i \(0.370053\pi\)
\(920\) 0 0
\(921\) 28.3224 0.933254
\(922\) 0 0
\(923\) 14.7268i 0.484739i
\(924\) 0 0
\(925\) − 17.0915i − 0.561964i
\(926\) 0 0
\(927\) 114.358 3.75602
\(928\) 0 0
\(929\) 44.5910 1.46298 0.731491 0.681851i \(-0.238825\pi\)
0.731491 + 0.681851i \(0.238825\pi\)
\(930\) 0 0
\(931\) 5.24399i 0.171865i
\(932\) 0 0
\(933\) − 61.9241i − 2.02730i
\(934\) 0 0
\(935\) 1.35475 0.0443052
\(936\) 0 0
\(937\) 46.6674 1.52456 0.762278 0.647250i \(-0.224081\pi\)
0.762278 + 0.647250i \(0.224081\pi\)
\(938\) 0 0
\(939\) − 0.883087i − 0.0288185i
\(940\) 0 0
\(941\) 38.4624i 1.25384i 0.779085 + 0.626919i \(0.215684\pi\)
−0.779085 + 0.626919i \(0.784316\pi\)
\(942\) 0 0
\(943\) 8.09090 0.263476
\(944\) 0 0
\(945\) 54.9212 1.78659
\(946\) 0 0
\(947\) 28.6521i 0.931068i 0.885030 + 0.465534i \(0.154138\pi\)
−0.885030 + 0.465534i \(0.845862\pi\)
\(948\) 0 0
\(949\) 15.9661i 0.518282i
\(950\) 0 0
\(951\) −80.5642 −2.61247
\(952\) 0 0
\(953\) 55.7585 1.80619 0.903097 0.429437i \(-0.141288\pi\)
0.903097 + 0.429437i \(0.141288\pi\)
\(954\) 0 0
\(955\) 40.6547i 1.31556i
\(956\) 0 0
\(957\) 49.6913i 1.60629i
\(958\) 0 0
\(959\) 9.28934 0.299968
\(960\) 0 0
\(961\) 5.19198 0.167483
\(962\) 0 0
\(963\) 82.2019i 2.64892i
\(964\) 0 0
\(965\) 66.0606i 2.12657i
\(966\) 0 0
\(967\) −1.84686 −0.0593909 −0.0296954 0.999559i \(-0.509454\pi\)
−0.0296954 + 0.999559i \(0.509454\pi\)
\(968\) 0 0
\(969\) −0.696356 −0.0223702
\(970\) 0 0
\(971\) 6.95804i 0.223294i 0.993748 + 0.111647i \(0.0356126\pi\)
−0.993748 + 0.111647i \(0.964387\pi\)
\(972\) 0 0
\(973\) − 4.14917i − 0.133016i
\(974\) 0 0
\(975\) 6.15557 0.197136
\(976\) 0 0
\(977\) −2.75699 −0.0882039 −0.0441020 0.999027i \(-0.514043\pi\)
−0.0441020 + 0.999027i \(0.514043\pi\)
\(978\) 0 0
\(979\) 16.7305i 0.534710i
\(980\) 0 0
\(981\) 121.591i 3.88211i
\(982\) 0 0
\(983\) 42.9562 1.37009 0.685045 0.728500i \(-0.259782\pi\)
0.685045 + 0.728500i \(0.259782\pi\)
\(984\) 0 0
\(985\) 46.6807 1.48737
\(986\) 0 0
\(987\) − 3.98791i − 0.126937i
\(988\) 0 0
\(989\) 63.6141i 2.02281i
\(990\) 0 0
\(991\) 45.1884 1.43546 0.717729 0.696323i \(-0.245182\pi\)
0.717729 + 0.696323i \(0.245182\pi\)
\(992\) 0 0
\(993\) 52.5208 1.66670
\(994\) 0 0
\(995\) 25.7357i 0.815876i
\(996\) 0 0
\(997\) − 33.7095i − 1.06759i −0.845614 0.533795i \(-0.820766\pi\)
0.845614 0.533795i \(-0.179234\pi\)
\(998\) 0 0
\(999\) −182.838 −5.78475
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2432.2.c.j.1217.1 20
4.3 odd 2 inner 2432.2.c.j.1217.19 yes 20
8.3 odd 2 inner 2432.2.c.j.1217.2 yes 20
8.5 even 2 inner 2432.2.c.j.1217.20 yes 20
16.3 odd 4 4864.2.a.bs.1.1 10
16.5 even 4 4864.2.a.bs.1.2 10
16.11 odd 4 4864.2.a.bt.1.10 10
16.13 even 4 4864.2.a.bt.1.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2432.2.c.j.1217.1 20 1.1 even 1 trivial
2432.2.c.j.1217.2 yes 20 8.3 odd 2 inner
2432.2.c.j.1217.19 yes 20 4.3 odd 2 inner
2432.2.c.j.1217.20 yes 20 8.5 even 2 inner
4864.2.a.bs.1.1 10 16.3 odd 4
4864.2.a.bs.1.2 10 16.5 even 4
4864.2.a.bt.1.9 10 16.13 even 4
4864.2.a.bt.1.10 10 16.11 odd 4