Properties

Label 2432.2.c
Level $2432$
Weight $2$
Character orbit 2432.c
Rep. character $\chi_{2432}(1217,\cdot)$
Character field $\Q$
Dimension $72$
Newform subspaces $10$
Sturm bound $640$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2432 = 2^{7} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2432.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(640\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2432, [\chi])\).

Total New Old
Modular forms 336 72 264
Cusp forms 304 72 232
Eisenstein series 32 0 32

Trace form

\( 72 q - 72 q^{9} - 16 q^{17} - 56 q^{25} + 16 q^{41} + 72 q^{49} - 64 q^{65} + 48 q^{73} + 8 q^{81} + 112 q^{89} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2432, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2432.2.c.a 2432.c 8.b $2$ $19.420$ \(\Q(\sqrt{-1}) \) None 2432.2.c.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 i q^{5}-q^{7}+2 q^{9}-4 i q^{11}+\cdots\)
2432.2.c.b 2432.c 8.b $2$ $19.420$ \(\Q(\sqrt{-1}) \) None 2432.2.c.a \(0\) \(0\) \(0\) \(2\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-2 i q^{5}+q^{7}+2 q^{9}-4 i q^{11}+\cdots\)
2432.2.c.c 2432.c 8.b $4$ $19.420$ \(\Q(\zeta_{12})\) None 2432.2.c.c \(0\) \(0\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_1 q^{3}+2\beta_1 q^{5}+(-\beta_{3}-1)q^{7}+\cdots\)
2432.2.c.d 2432.c 8.b $4$ $19.420$ \(\Q(\zeta_{12})\) None 2432.2.c.c \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta_1 q^{3}-2\beta_1 q^{5}+(-\beta_{3}+1)q^{7}+\cdots\)
2432.2.c.e 2432.c 8.b $6$ $19.420$ 6.0.399424.1 None 2432.2.c.e \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{2}+\beta _{4}+\beta _{5})q^{3}+(-\beta _{2}-\beta _{5})q^{5}+\cdots\)
2432.2.c.f 2432.c 8.b $6$ $19.420$ 6.0.3182656.1 None 2432.2.c.f \(0\) \(0\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{3}+(\beta _{4}+\beta _{5})q^{5}+(-1+\beta _{2}+\cdots)q^{7}+\cdots\)
2432.2.c.g 2432.c 8.b $6$ $19.420$ 6.0.3182656.1 None 2432.2.c.f \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{3}+(-\beta _{4}-\beta _{5})q^{5}+(1-\beta _{2}+\cdots)q^{7}+\cdots\)
2432.2.c.h 2432.c 8.b $6$ $19.420$ 6.0.399424.1 None 2432.2.c.e \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{2}+\beta _{4}+\beta _{5})q^{3}+(\beta _{2}+\beta _{5})q^{5}+\cdots\)
2432.2.c.i 2432.c 8.b $16$ $19.420$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 2432.2.c.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{8}q^{3}+\beta _{7}q^{5}+\beta _{10}q^{7}+(\beta _{12}-\beta _{13}+\cdots)q^{9}+\cdots\)
2432.2.c.j 2432.c 8.b $20$ $19.420$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 2432.2.c.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}-\beta _{15}q^{5}+(-\beta _{17}-\beta _{19})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2432, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2432, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(608, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1216, [\chi])\)\(^{\oplus 2}\)