Properties

Label 4864.2.a.bt.1.9
Level $4864$
Weight $2$
Character 4864.1
Self dual yes
Analytic conductor $38.839$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4864,2,Mod(1,4864)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4864, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4864.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4864 = 2^{8} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4864.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,4,0,0,0,0,0,14,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.8392355432\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 23x^{8} + 44x^{7} + 167x^{6} - 266x^{5} - 491x^{4} + 460x^{3} + 546x^{2} + 56x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 2432)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(3.22490\) of defining polynomial
Character \(\chi\) \(=\) 4864.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.30364 q^{3} -2.55295 q^{5} -1.32515 q^{7} +7.91406 q^{9} +2.51756 q^{11} +1.22781 q^{13} -8.43404 q^{15} +0.210784 q^{17} +1.00000 q^{19} -4.37781 q^{21} +8.11631 q^{23} +1.51756 q^{25} +16.2343 q^{27} -5.97458 q^{29} -6.01598 q^{31} +8.31712 q^{33} +3.38303 q^{35} +11.2625 q^{37} +4.05623 q^{39} +0.996870 q^{41} -7.83781 q^{43} -20.2042 q^{45} +0.910938 q^{47} -5.24399 q^{49} +0.696356 q^{51} +3.32429 q^{53} -6.42720 q^{55} +3.30364 q^{57} -2.04859 q^{59} +10.0769 q^{61} -10.4873 q^{63} -3.13453 q^{65} +11.7584 q^{67} +26.8134 q^{69} +11.9944 q^{71} +13.0038 q^{73} +5.01347 q^{75} -3.33613 q^{77} -12.0761 q^{79} +29.8902 q^{81} -4.50788 q^{83} -0.538122 q^{85} -19.7379 q^{87} -6.64553 q^{89} -1.62702 q^{91} -19.8746 q^{93} -2.55295 q^{95} +9.92753 q^{97} +19.9241 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{3} + 14 q^{9} + 20 q^{11} + 4 q^{17} + 10 q^{19} + 10 q^{25} + 28 q^{27} - 8 q^{33} + 36 q^{35} - 12 q^{41} - 4 q^{43} + 26 q^{49} + 36 q^{51} + 4 q^{57} + 52 q^{59} - 24 q^{65} + 12 q^{67}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.30364 1.90736 0.953680 0.300824i \(-0.0972616\pi\)
0.953680 + 0.300824i \(0.0972616\pi\)
\(4\) 0 0
\(5\) −2.55295 −1.14171 −0.570857 0.821049i \(-0.693389\pi\)
−0.570857 + 0.821049i \(0.693389\pi\)
\(6\) 0 0
\(7\) −1.32515 −0.500858 −0.250429 0.968135i \(-0.580572\pi\)
−0.250429 + 0.968135i \(0.580572\pi\)
\(8\) 0 0
\(9\) 7.91406 2.63802
\(10\) 0 0
\(11\) 2.51756 0.759072 0.379536 0.925177i \(-0.376084\pi\)
0.379536 + 0.925177i \(0.376084\pi\)
\(12\) 0 0
\(13\) 1.22781 0.340532 0.170266 0.985398i \(-0.445537\pi\)
0.170266 + 0.985398i \(0.445537\pi\)
\(14\) 0 0
\(15\) −8.43404 −2.17766
\(16\) 0 0
\(17\) 0.210784 0.0511227 0.0255614 0.999673i \(-0.491863\pi\)
0.0255614 + 0.999673i \(0.491863\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −4.37781 −0.955316
\(22\) 0 0
\(23\) 8.11631 1.69237 0.846184 0.532891i \(-0.178895\pi\)
0.846184 + 0.532891i \(0.178895\pi\)
\(24\) 0 0
\(25\) 1.51756 0.303512
\(26\) 0 0
\(27\) 16.2343 3.12429
\(28\) 0 0
\(29\) −5.97458 −1.10945 −0.554726 0.832033i \(-0.687177\pi\)
−0.554726 + 0.832033i \(0.687177\pi\)
\(30\) 0 0
\(31\) −6.01598 −1.08050 −0.540251 0.841504i \(-0.681671\pi\)
−0.540251 + 0.841504i \(0.681671\pi\)
\(32\) 0 0
\(33\) 8.31712 1.44782
\(34\) 0 0
\(35\) 3.38303 0.571837
\(36\) 0 0
\(37\) 11.2625 1.85154 0.925769 0.378089i \(-0.123419\pi\)
0.925769 + 0.378089i \(0.123419\pi\)
\(38\) 0 0
\(39\) 4.05623 0.649517
\(40\) 0 0
\(41\) 0.996870 0.155685 0.0778424 0.996966i \(-0.475197\pi\)
0.0778424 + 0.996966i \(0.475197\pi\)
\(42\) 0 0
\(43\) −7.83781 −1.19525 −0.597627 0.801774i \(-0.703890\pi\)
−0.597627 + 0.801774i \(0.703890\pi\)
\(44\) 0 0
\(45\) −20.2042 −3.01187
\(46\) 0 0
\(47\) 0.910938 0.132874 0.0664369 0.997791i \(-0.478837\pi\)
0.0664369 + 0.997791i \(0.478837\pi\)
\(48\) 0 0
\(49\) −5.24399 −0.749141
\(50\) 0 0
\(51\) 0.696356 0.0975094
\(52\) 0 0
\(53\) 3.32429 0.456627 0.228313 0.973588i \(-0.426679\pi\)
0.228313 + 0.973588i \(0.426679\pi\)
\(54\) 0 0
\(55\) −6.42720 −0.866644
\(56\) 0 0
\(57\) 3.30364 0.437578
\(58\) 0 0
\(59\) −2.04859 −0.266704 −0.133352 0.991069i \(-0.542574\pi\)
−0.133352 + 0.991069i \(0.542574\pi\)
\(60\) 0 0
\(61\) 10.0769 1.29022 0.645108 0.764091i \(-0.276812\pi\)
0.645108 + 0.764091i \(0.276812\pi\)
\(62\) 0 0
\(63\) −10.4873 −1.32127
\(64\) 0 0
\(65\) −3.13453 −0.388790
\(66\) 0 0
\(67\) 11.7584 1.43652 0.718260 0.695775i \(-0.244939\pi\)
0.718260 + 0.695775i \(0.244939\pi\)
\(68\) 0 0
\(69\) 26.8134 3.22795
\(70\) 0 0
\(71\) 11.9944 1.42347 0.711737 0.702446i \(-0.247909\pi\)
0.711737 + 0.702446i \(0.247909\pi\)
\(72\) 0 0
\(73\) 13.0038 1.52198 0.760989 0.648764i \(-0.224714\pi\)
0.760989 + 0.648764i \(0.224714\pi\)
\(74\) 0 0
\(75\) 5.01347 0.578906
\(76\) 0 0
\(77\) −3.33613 −0.380187
\(78\) 0 0
\(79\) −12.0761 −1.35866 −0.679332 0.733831i \(-0.737730\pi\)
−0.679332 + 0.733831i \(0.737730\pi\)
\(80\) 0 0
\(81\) 29.8902 3.32113
\(82\) 0 0
\(83\) −4.50788 −0.494804 −0.247402 0.968913i \(-0.579577\pi\)
−0.247402 + 0.968913i \(0.579577\pi\)
\(84\) 0 0
\(85\) −0.538122 −0.0583675
\(86\) 0 0
\(87\) −19.7379 −2.11612
\(88\) 0 0
\(89\) −6.64553 −0.704425 −0.352213 0.935920i \(-0.614571\pi\)
−0.352213 + 0.935920i \(0.614571\pi\)
\(90\) 0 0
\(91\) −1.62702 −0.170558
\(92\) 0 0
\(93\) −19.8746 −2.06090
\(94\) 0 0
\(95\) −2.55295 −0.261927
\(96\) 0 0
\(97\) 9.92753 1.00799 0.503994 0.863707i \(-0.331863\pi\)
0.503994 + 0.863707i \(0.331863\pi\)
\(98\) 0 0
\(99\) 19.9241 2.00245
\(100\) 0 0
\(101\) −1.26920 −0.126290 −0.0631450 0.998004i \(-0.520113\pi\)
−0.0631450 + 0.998004i \(0.520113\pi\)
\(102\) 0 0
\(103\) 14.4500 1.42380 0.711901 0.702280i \(-0.247834\pi\)
0.711901 + 0.702280i \(0.247834\pi\)
\(104\) 0 0
\(105\) 11.1763 1.09070
\(106\) 0 0
\(107\) −10.3868 −1.00413 −0.502066 0.864829i \(-0.667427\pi\)
−0.502066 + 0.864829i \(0.667427\pi\)
\(108\) 0 0
\(109\) 15.3639 1.47160 0.735799 0.677200i \(-0.236807\pi\)
0.735799 + 0.677200i \(0.236807\pi\)
\(110\) 0 0
\(111\) 37.2072 3.53155
\(112\) 0 0
\(113\) 16.2509 1.52876 0.764379 0.644768i \(-0.223046\pi\)
0.764379 + 0.644768i \(0.223046\pi\)
\(114\) 0 0
\(115\) −20.7205 −1.93220
\(116\) 0 0
\(117\) 9.71693 0.898331
\(118\) 0 0
\(119\) −0.279320 −0.0256052
\(120\) 0 0
\(121\) −4.66190 −0.423809
\(122\) 0 0
\(123\) 3.29330 0.296947
\(124\) 0 0
\(125\) 8.89050 0.795191
\(126\) 0 0
\(127\) 6.56693 0.582721 0.291360 0.956613i \(-0.405892\pi\)
0.291360 + 0.956613i \(0.405892\pi\)
\(128\) 0 0
\(129\) −25.8933 −2.27978
\(130\) 0 0
\(131\) −10.0235 −0.875759 −0.437880 0.899034i \(-0.644270\pi\)
−0.437880 + 0.899034i \(0.644270\pi\)
\(132\) 0 0
\(133\) −1.32515 −0.114905
\(134\) 0 0
\(135\) −41.4454 −3.56705
\(136\) 0 0
\(137\) −7.01005 −0.598909 −0.299455 0.954111i \(-0.596805\pi\)
−0.299455 + 0.954111i \(0.596805\pi\)
\(138\) 0 0
\(139\) −3.13111 −0.265577 −0.132789 0.991144i \(-0.542393\pi\)
−0.132789 + 0.991144i \(0.542393\pi\)
\(140\) 0 0
\(141\) 3.00941 0.253438
\(142\) 0 0
\(143\) 3.09107 0.258489
\(144\) 0 0
\(145\) 15.2528 1.26668
\(146\) 0 0
\(147\) −17.3243 −1.42888
\(148\) 0 0
\(149\) −7.47186 −0.612119 −0.306059 0.952012i \(-0.599011\pi\)
−0.306059 + 0.952012i \(0.599011\pi\)
\(150\) 0 0
\(151\) −18.1373 −1.47599 −0.737995 0.674806i \(-0.764227\pi\)
−0.737995 + 0.674806i \(0.764227\pi\)
\(152\) 0 0
\(153\) 1.66816 0.134863
\(154\) 0 0
\(155\) 15.3585 1.23362
\(156\) 0 0
\(157\) −6.69383 −0.534225 −0.267113 0.963665i \(-0.586070\pi\)
−0.267113 + 0.963665i \(0.586070\pi\)
\(158\) 0 0
\(159\) 10.9823 0.870952
\(160\) 0 0
\(161\) −10.7553 −0.847635
\(162\) 0 0
\(163\) 15.6424 1.22521 0.612604 0.790390i \(-0.290122\pi\)
0.612604 + 0.790390i \(0.290122\pi\)
\(164\) 0 0
\(165\) −21.2332 −1.65300
\(166\) 0 0
\(167\) 4.23338 0.327588 0.163794 0.986495i \(-0.447627\pi\)
0.163794 + 0.986495i \(0.447627\pi\)
\(168\) 0 0
\(169\) −11.4925 −0.884038
\(170\) 0 0
\(171\) 7.91406 0.605203
\(172\) 0 0
\(173\) −4.25476 −0.323483 −0.161742 0.986833i \(-0.551711\pi\)
−0.161742 + 0.986833i \(0.551711\pi\)
\(174\) 0 0
\(175\) −2.01099 −0.152016
\(176\) 0 0
\(177\) −6.76781 −0.508700
\(178\) 0 0
\(179\) 20.3171 1.51857 0.759286 0.650757i \(-0.225548\pi\)
0.759286 + 0.650757i \(0.225548\pi\)
\(180\) 0 0
\(181\) −16.6430 −1.23706 −0.618532 0.785760i \(-0.712272\pi\)
−0.618532 + 0.785760i \(0.712272\pi\)
\(182\) 0 0
\(183\) 33.2905 2.46091
\(184\) 0 0
\(185\) −28.7525 −2.11393
\(186\) 0 0
\(187\) 0.530662 0.0388058
\(188\) 0 0
\(189\) −21.5128 −1.56483
\(190\) 0 0
\(191\) −15.9246 −1.15226 −0.576132 0.817357i \(-0.695439\pi\)
−0.576132 + 0.817357i \(0.695439\pi\)
\(192\) 0 0
\(193\) −25.8762 −1.86261 −0.931304 0.364242i \(-0.881328\pi\)
−0.931304 + 0.364242i \(0.881328\pi\)
\(194\) 0 0
\(195\) −10.3554 −0.741563
\(196\) 0 0
\(197\) 18.2850 1.30275 0.651376 0.758755i \(-0.274192\pi\)
0.651376 + 0.758755i \(0.274192\pi\)
\(198\) 0 0
\(199\) 10.0808 0.714606 0.357303 0.933989i \(-0.383696\pi\)
0.357303 + 0.933989i \(0.383696\pi\)
\(200\) 0 0
\(201\) 38.8456 2.73996
\(202\) 0 0
\(203\) 7.91719 0.555678
\(204\) 0 0
\(205\) −2.54496 −0.177748
\(206\) 0 0
\(207\) 64.2330 4.46450
\(208\) 0 0
\(209\) 2.51756 0.174143
\(210\) 0 0
\(211\) 15.8127 1.08859 0.544297 0.838893i \(-0.316796\pi\)
0.544297 + 0.838893i \(0.316796\pi\)
\(212\) 0 0
\(213\) 39.6252 2.71508
\(214\) 0 0
\(215\) 20.0095 1.36464
\(216\) 0 0
\(217\) 7.97204 0.541178
\(218\) 0 0
\(219\) 42.9599 2.90296
\(220\) 0 0
\(221\) 0.258802 0.0174089
\(222\) 0 0
\(223\) 4.15828 0.278459 0.139229 0.990260i \(-0.455537\pi\)
0.139229 + 0.990260i \(0.455537\pi\)
\(224\) 0 0
\(225\) 12.0101 0.800670
\(226\) 0 0
\(227\) 16.7714 1.11315 0.556577 0.830796i \(-0.312114\pi\)
0.556577 + 0.830796i \(0.312114\pi\)
\(228\) 0 0
\(229\) 1.32899 0.0878220 0.0439110 0.999035i \(-0.486018\pi\)
0.0439110 + 0.999035i \(0.486018\pi\)
\(230\) 0 0
\(231\) −11.0214 −0.725154
\(232\) 0 0
\(233\) 15.4631 1.01302 0.506510 0.862234i \(-0.330935\pi\)
0.506510 + 0.862234i \(0.330935\pi\)
\(234\) 0 0
\(235\) −2.32558 −0.151704
\(236\) 0 0
\(237\) −39.8950 −2.59146
\(238\) 0 0
\(239\) 15.4564 0.999794 0.499897 0.866085i \(-0.333371\pi\)
0.499897 + 0.866085i \(0.333371\pi\)
\(240\) 0 0
\(241\) −14.0126 −0.902632 −0.451316 0.892364i \(-0.649045\pi\)
−0.451316 + 0.892364i \(0.649045\pi\)
\(242\) 0 0
\(243\) 50.0436 3.21030
\(244\) 0 0
\(245\) 13.3877 0.855306
\(246\) 0 0
\(247\) 1.22781 0.0781234
\(248\) 0 0
\(249\) −14.8924 −0.943769
\(250\) 0 0
\(251\) 4.36102 0.275265 0.137632 0.990483i \(-0.456051\pi\)
0.137632 + 0.990483i \(0.456051\pi\)
\(252\) 0 0
\(253\) 20.4333 1.28463
\(254\) 0 0
\(255\) −1.77776 −0.111328
\(256\) 0 0
\(257\) 21.4237 1.33637 0.668186 0.743994i \(-0.267071\pi\)
0.668186 + 0.743994i \(0.267071\pi\)
\(258\) 0 0
\(259\) −14.9244 −0.927357
\(260\) 0 0
\(261\) −47.2832 −2.92676
\(262\) 0 0
\(263\) −5.37369 −0.331356 −0.165678 0.986180i \(-0.552981\pi\)
−0.165678 + 0.986180i \(0.552981\pi\)
\(264\) 0 0
\(265\) −8.48676 −0.521338
\(266\) 0 0
\(267\) −21.9545 −1.34359
\(268\) 0 0
\(269\) −10.0684 −0.613879 −0.306940 0.951729i \(-0.599305\pi\)
−0.306940 + 0.951729i \(0.599305\pi\)
\(270\) 0 0
\(271\) −27.6347 −1.67869 −0.839344 0.543601i \(-0.817060\pi\)
−0.839344 + 0.543601i \(0.817060\pi\)
\(272\) 0 0
\(273\) −5.37510 −0.325316
\(274\) 0 0
\(275\) 3.82054 0.230387
\(276\) 0 0
\(277\) 9.52596 0.572360 0.286180 0.958176i \(-0.407615\pi\)
0.286180 + 0.958176i \(0.407615\pi\)
\(278\) 0 0
\(279\) −47.6108 −2.85038
\(280\) 0 0
\(281\) −27.6168 −1.64748 −0.823739 0.566969i \(-0.808116\pi\)
−0.823739 + 0.566969i \(0.808116\pi\)
\(282\) 0 0
\(283\) 17.0192 1.01168 0.505842 0.862626i \(-0.331182\pi\)
0.505842 + 0.862626i \(0.331182\pi\)
\(284\) 0 0
\(285\) −8.43404 −0.499589
\(286\) 0 0
\(287\) −1.32100 −0.0779760
\(288\) 0 0
\(289\) −16.9556 −0.997386
\(290\) 0 0
\(291\) 32.7970 1.92260
\(292\) 0 0
\(293\) 13.8952 0.811767 0.405884 0.913925i \(-0.366964\pi\)
0.405884 + 0.913925i \(0.366964\pi\)
\(294\) 0 0
\(295\) 5.22995 0.304499
\(296\) 0 0
\(297\) 40.8708 2.37157
\(298\) 0 0
\(299\) 9.96525 0.576305
\(300\) 0 0
\(301\) 10.3862 0.598652
\(302\) 0 0
\(303\) −4.19298 −0.240880
\(304\) 0 0
\(305\) −25.7259 −1.47306
\(306\) 0 0
\(307\) −8.57307 −0.489291 −0.244645 0.969613i \(-0.578672\pi\)
−0.244645 + 0.969613i \(0.578672\pi\)
\(308\) 0 0
\(309\) 47.7377 2.71570
\(310\) 0 0
\(311\) −18.7442 −1.06288 −0.531442 0.847094i \(-0.678350\pi\)
−0.531442 + 0.847094i \(0.678350\pi\)
\(312\) 0 0
\(313\) −0.267307 −0.0151091 −0.00755454 0.999971i \(-0.502405\pi\)
−0.00755454 + 0.999971i \(0.502405\pi\)
\(314\) 0 0
\(315\) 26.7735 1.50852
\(316\) 0 0
\(317\) 24.3865 1.36968 0.684841 0.728693i \(-0.259872\pi\)
0.684841 + 0.728693i \(0.259872\pi\)
\(318\) 0 0
\(319\) −15.0414 −0.842155
\(320\) 0 0
\(321\) −34.3144 −1.91524
\(322\) 0 0
\(323\) 0.210784 0.0117284
\(324\) 0 0
\(325\) 1.86327 0.103355
\(326\) 0 0
\(327\) 50.7570 2.80687
\(328\) 0 0
\(329\) −1.20712 −0.0665509
\(330\) 0 0
\(331\) 15.8978 0.873824 0.436912 0.899504i \(-0.356072\pi\)
0.436912 + 0.899504i \(0.356072\pi\)
\(332\) 0 0
\(333\) 89.1319 4.88440
\(334\) 0 0
\(335\) −30.0187 −1.64009
\(336\) 0 0
\(337\) −23.4174 −1.27563 −0.637814 0.770190i \(-0.720161\pi\)
−0.637814 + 0.770190i \(0.720161\pi\)
\(338\) 0 0
\(339\) 53.6872 2.91589
\(340\) 0 0
\(341\) −15.1456 −0.820179
\(342\) 0 0
\(343\) 16.2251 0.876071
\(344\) 0 0
\(345\) −68.4533 −3.68540
\(346\) 0 0
\(347\) −0.166224 −0.00892336 −0.00446168 0.999990i \(-0.501420\pi\)
−0.00446168 + 0.999990i \(0.501420\pi\)
\(348\) 0 0
\(349\) 3.92636 0.210173 0.105087 0.994463i \(-0.466488\pi\)
0.105087 + 0.994463i \(0.466488\pi\)
\(350\) 0 0
\(351\) 19.9326 1.06392
\(352\) 0 0
\(353\) 9.45111 0.503032 0.251516 0.967853i \(-0.419071\pi\)
0.251516 + 0.967853i \(0.419071\pi\)
\(354\) 0 0
\(355\) −30.6211 −1.62520
\(356\) 0 0
\(357\) −0.922773 −0.0488383
\(358\) 0 0
\(359\) −7.81041 −0.412218 −0.206109 0.978529i \(-0.566080\pi\)
−0.206109 + 0.978529i \(0.566080\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) −15.4013 −0.808356
\(364\) 0 0
\(365\) −33.1980 −1.73766
\(366\) 0 0
\(367\) −34.3412 −1.79260 −0.896298 0.443452i \(-0.853754\pi\)
−0.896298 + 0.443452i \(0.853754\pi\)
\(368\) 0 0
\(369\) 7.88929 0.410700
\(370\) 0 0
\(371\) −4.40517 −0.228705
\(372\) 0 0
\(373\) −33.9919 −1.76004 −0.880018 0.474941i \(-0.842469\pi\)
−0.880018 + 0.474941i \(0.842469\pi\)
\(374\) 0 0
\(375\) 29.3711 1.51671
\(376\) 0 0
\(377\) −7.33563 −0.377804
\(378\) 0 0
\(379\) −4.11882 −0.211570 −0.105785 0.994389i \(-0.533735\pi\)
−0.105785 + 0.994389i \(0.533735\pi\)
\(380\) 0 0
\(381\) 21.6948 1.11146
\(382\) 0 0
\(383\) −17.5442 −0.896467 −0.448233 0.893917i \(-0.647947\pi\)
−0.448233 + 0.893917i \(0.647947\pi\)
\(384\) 0 0
\(385\) 8.51698 0.434065
\(386\) 0 0
\(387\) −62.0289 −3.15310
\(388\) 0 0
\(389\) −2.23423 −0.113280 −0.0566399 0.998395i \(-0.518039\pi\)
−0.0566399 + 0.998395i \(0.518039\pi\)
\(390\) 0 0
\(391\) 1.71079 0.0865184
\(392\) 0 0
\(393\) −33.1142 −1.67039
\(394\) 0 0
\(395\) 30.8296 1.55121
\(396\) 0 0
\(397\) −15.4349 −0.774655 −0.387327 0.921942i \(-0.626602\pi\)
−0.387327 + 0.921942i \(0.626602\pi\)
\(398\) 0 0
\(399\) −4.37781 −0.219164
\(400\) 0 0
\(401\) −22.3503 −1.11612 −0.558061 0.829800i \(-0.688454\pi\)
−0.558061 + 0.829800i \(0.688454\pi\)
\(402\) 0 0
\(403\) −7.38645 −0.367945
\(404\) 0 0
\(405\) −76.3082 −3.79178
\(406\) 0 0
\(407\) 28.3539 1.40545
\(408\) 0 0
\(409\) −8.58617 −0.424559 −0.212279 0.977209i \(-0.568089\pi\)
−0.212279 + 0.977209i \(0.568089\pi\)
\(410\) 0 0
\(411\) −23.1587 −1.14234
\(412\) 0 0
\(413\) 2.71468 0.133581
\(414\) 0 0
\(415\) 11.5084 0.564925
\(416\) 0 0
\(417\) −10.3441 −0.506551
\(418\) 0 0
\(419\) 21.9670 1.07316 0.536579 0.843850i \(-0.319716\pi\)
0.536579 + 0.843850i \(0.319716\pi\)
\(420\) 0 0
\(421\) −22.3942 −1.09143 −0.545713 0.837972i \(-0.683741\pi\)
−0.545713 + 0.837972i \(0.683741\pi\)
\(422\) 0 0
\(423\) 7.20922 0.350524
\(424\) 0 0
\(425\) 0.319878 0.0155163
\(426\) 0 0
\(427\) −13.3534 −0.646215
\(428\) 0 0
\(429\) 10.2118 0.493031
\(430\) 0 0
\(431\) 7.39422 0.356167 0.178084 0.984015i \(-0.443010\pi\)
0.178084 + 0.984015i \(0.443010\pi\)
\(432\) 0 0
\(433\) −30.0766 −1.44539 −0.722694 0.691168i \(-0.757097\pi\)
−0.722694 + 0.691168i \(0.757097\pi\)
\(434\) 0 0
\(435\) 50.3899 2.41601
\(436\) 0 0
\(437\) 8.11631 0.388256
\(438\) 0 0
\(439\) −16.3397 −0.779850 −0.389925 0.920847i \(-0.627499\pi\)
−0.389925 + 0.920847i \(0.627499\pi\)
\(440\) 0 0
\(441\) −41.5013 −1.97625
\(442\) 0 0
\(443\) 4.07589 0.193651 0.0968256 0.995301i \(-0.469131\pi\)
0.0968256 + 0.995301i \(0.469131\pi\)
\(444\) 0 0
\(445\) 16.9657 0.804252
\(446\) 0 0
\(447\) −24.6844 −1.16753
\(448\) 0 0
\(449\) 4.21892 0.199103 0.0995517 0.995032i \(-0.468259\pi\)
0.0995517 + 0.995032i \(0.468259\pi\)
\(450\) 0 0
\(451\) 2.50968 0.118176
\(452\) 0 0
\(453\) −59.9191 −2.81525
\(454\) 0 0
\(455\) 4.15370 0.194729
\(456\) 0 0
\(457\) −28.8382 −1.34899 −0.674496 0.738278i \(-0.735639\pi\)
−0.674496 + 0.738278i \(0.735639\pi\)
\(458\) 0 0
\(459\) 3.42194 0.159722
\(460\) 0 0
\(461\) −31.0261 −1.44503 −0.722514 0.691356i \(-0.757014\pi\)
−0.722514 + 0.691356i \(0.757014\pi\)
\(462\) 0 0
\(463\) −12.5849 −0.584870 −0.292435 0.956285i \(-0.594465\pi\)
−0.292435 + 0.956285i \(0.594465\pi\)
\(464\) 0 0
\(465\) 50.7390 2.35296
\(466\) 0 0
\(467\) −27.8849 −1.29036 −0.645179 0.764032i \(-0.723217\pi\)
−0.645179 + 0.764032i \(0.723217\pi\)
\(468\) 0 0
\(469\) −15.5816 −0.719492
\(470\) 0 0
\(471\) −22.1140 −1.01896
\(472\) 0 0
\(473\) −19.7321 −0.907284
\(474\) 0 0
\(475\) 1.51756 0.0696304
\(476\) 0 0
\(477\) 26.3087 1.20459
\(478\) 0 0
\(479\) 11.7138 0.535217 0.267608 0.963528i \(-0.413767\pi\)
0.267608 + 0.963528i \(0.413767\pi\)
\(480\) 0 0
\(481\) 13.8281 0.630508
\(482\) 0 0
\(483\) −35.5316 −1.61675
\(484\) 0 0
\(485\) −25.3445 −1.15083
\(486\) 0 0
\(487\) −8.07492 −0.365909 −0.182955 0.983121i \(-0.558566\pi\)
−0.182955 + 0.983121i \(0.558566\pi\)
\(488\) 0 0
\(489\) 51.6769 2.33691
\(490\) 0 0
\(491\) −15.0953 −0.681240 −0.340620 0.940201i \(-0.610637\pi\)
−0.340620 + 0.940201i \(0.610637\pi\)
\(492\) 0 0
\(493\) −1.25935 −0.0567182
\(494\) 0 0
\(495\) −50.8653 −2.28622
\(496\) 0 0
\(497\) −15.8943 −0.712958
\(498\) 0 0
\(499\) 31.2381 1.39841 0.699205 0.714922i \(-0.253538\pi\)
0.699205 + 0.714922i \(0.253538\pi\)
\(500\) 0 0
\(501\) 13.9856 0.624829
\(502\) 0 0
\(503\) 21.7755 0.970920 0.485460 0.874259i \(-0.338652\pi\)
0.485460 + 0.874259i \(0.338652\pi\)
\(504\) 0 0
\(505\) 3.24020 0.144187
\(506\) 0 0
\(507\) −37.9671 −1.68618
\(508\) 0 0
\(509\) −4.88080 −0.216338 −0.108169 0.994133i \(-0.534499\pi\)
−0.108169 + 0.994133i \(0.534499\pi\)
\(510\) 0 0
\(511\) −17.2319 −0.762295
\(512\) 0 0
\(513\) 16.2343 0.716762
\(514\) 0 0
\(515\) −36.8902 −1.62558
\(516\) 0 0
\(517\) 2.29334 0.100861
\(518\) 0 0
\(519\) −14.0562 −0.616998
\(520\) 0 0
\(521\) −10.8112 −0.473645 −0.236823 0.971553i \(-0.576106\pi\)
−0.236823 + 0.971553i \(0.576106\pi\)
\(522\) 0 0
\(523\) −21.1722 −0.925798 −0.462899 0.886411i \(-0.653191\pi\)
−0.462899 + 0.886411i \(0.653191\pi\)
\(524\) 0 0
\(525\) −6.64358 −0.289950
\(526\) 0 0
\(527\) −1.26807 −0.0552382
\(528\) 0 0
\(529\) 42.8745 1.86411
\(530\) 0 0
\(531\) −16.2127 −0.703570
\(532\) 0 0
\(533\) 1.22396 0.0530157
\(534\) 0 0
\(535\) 26.5170 1.14643
\(536\) 0 0
\(537\) 67.1205 2.89646
\(538\) 0 0
\(539\) −13.2021 −0.568653
\(540\) 0 0
\(541\) −15.1179 −0.649969 −0.324984 0.945719i \(-0.605359\pi\)
−0.324984 + 0.945719i \(0.605359\pi\)
\(542\) 0 0
\(543\) −54.9825 −2.35952
\(544\) 0 0
\(545\) −39.2234 −1.68014
\(546\) 0 0
\(547\) 5.51960 0.236001 0.118001 0.993014i \(-0.462352\pi\)
0.118001 + 0.993014i \(0.462352\pi\)
\(548\) 0 0
\(549\) 79.7493 3.40362
\(550\) 0 0
\(551\) −5.97458 −0.254526
\(552\) 0 0
\(553\) 16.0025 0.680497
\(554\) 0 0
\(555\) −94.9881 −4.03202
\(556\) 0 0
\(557\) 18.9708 0.803820 0.401910 0.915679i \(-0.368346\pi\)
0.401910 + 0.915679i \(0.368346\pi\)
\(558\) 0 0
\(559\) −9.62330 −0.407022
\(560\) 0 0
\(561\) 1.75312 0.0740167
\(562\) 0 0
\(563\) 15.5505 0.655374 0.327687 0.944786i \(-0.393731\pi\)
0.327687 + 0.944786i \(0.393731\pi\)
\(564\) 0 0
\(565\) −41.4878 −1.74540
\(566\) 0 0
\(567\) −39.6088 −1.66341
\(568\) 0 0
\(569\) 3.32025 0.139192 0.0695960 0.997575i \(-0.477829\pi\)
0.0695960 + 0.997575i \(0.477829\pi\)
\(570\) 0 0
\(571\) 8.41420 0.352123 0.176062 0.984379i \(-0.443664\pi\)
0.176062 + 0.984379i \(0.443664\pi\)
\(572\) 0 0
\(573\) −52.6092 −2.19778
\(574\) 0 0
\(575\) 12.3170 0.513653
\(576\) 0 0
\(577\) 5.94857 0.247642 0.123821 0.992305i \(-0.460485\pi\)
0.123821 + 0.992305i \(0.460485\pi\)
\(578\) 0 0
\(579\) −85.4857 −3.55266
\(580\) 0 0
\(581\) 5.97359 0.247826
\(582\) 0 0
\(583\) 8.36911 0.346613
\(584\) 0 0
\(585\) −24.8068 −1.02564
\(586\) 0 0
\(587\) 27.1449 1.12039 0.560196 0.828360i \(-0.310726\pi\)
0.560196 + 0.828360i \(0.310726\pi\)
\(588\) 0 0
\(589\) −6.01598 −0.247884
\(590\) 0 0
\(591\) 60.4071 2.48482
\(592\) 0 0
\(593\) −24.3801 −1.00117 −0.500585 0.865687i \(-0.666882\pi\)
−0.500585 + 0.865687i \(0.666882\pi\)
\(594\) 0 0
\(595\) 0.713090 0.0292338
\(596\) 0 0
\(597\) 33.3032 1.36301
\(598\) 0 0
\(599\) 18.7108 0.764502 0.382251 0.924059i \(-0.375149\pi\)
0.382251 + 0.924059i \(0.375149\pi\)
\(600\) 0 0
\(601\) −44.2967 −1.80690 −0.903451 0.428692i \(-0.858975\pi\)
−0.903451 + 0.428692i \(0.858975\pi\)
\(602\) 0 0
\(603\) 93.0568 3.78957
\(604\) 0 0
\(605\) 11.9016 0.483869
\(606\) 0 0
\(607\) −30.5153 −1.23858 −0.619290 0.785163i \(-0.712579\pi\)
−0.619290 + 0.785163i \(0.712579\pi\)
\(608\) 0 0
\(609\) 26.1556 1.05988
\(610\) 0 0
\(611\) 1.11845 0.0452478
\(612\) 0 0
\(613\) −21.3377 −0.861822 −0.430911 0.902395i \(-0.641808\pi\)
−0.430911 + 0.902395i \(0.641808\pi\)
\(614\) 0 0
\(615\) −8.40764 −0.339029
\(616\) 0 0
\(617\) 23.5271 0.947163 0.473582 0.880750i \(-0.342961\pi\)
0.473582 + 0.880750i \(0.342961\pi\)
\(618\) 0 0
\(619\) 18.0716 0.726357 0.363179 0.931720i \(-0.381692\pi\)
0.363179 + 0.931720i \(0.381692\pi\)
\(620\) 0 0
\(621\) 131.763 5.28745
\(622\) 0 0
\(623\) 8.80630 0.352817
\(624\) 0 0
\(625\) −30.2848 −1.21139
\(626\) 0 0
\(627\) 8.31712 0.332154
\(628\) 0 0
\(629\) 2.37395 0.0946557
\(630\) 0 0
\(631\) −13.2280 −0.526600 −0.263300 0.964714i \(-0.584811\pi\)
−0.263300 + 0.964714i \(0.584811\pi\)
\(632\) 0 0
\(633\) 52.2397 2.07634
\(634\) 0 0
\(635\) −16.7650 −0.665301
\(636\) 0 0
\(637\) −6.43860 −0.255107
\(638\) 0 0
\(639\) 94.9245 3.75515
\(640\) 0 0
\(641\) −30.1208 −1.18970 −0.594851 0.803836i \(-0.702789\pi\)
−0.594851 + 0.803836i \(0.702789\pi\)
\(642\) 0 0
\(643\) −24.7964 −0.977876 −0.488938 0.872319i \(-0.662616\pi\)
−0.488938 + 0.872319i \(0.662616\pi\)
\(644\) 0 0
\(645\) 66.1044 2.60286
\(646\) 0 0
\(647\) −22.8386 −0.897880 −0.448940 0.893562i \(-0.648198\pi\)
−0.448940 + 0.893562i \(0.648198\pi\)
\(648\) 0 0
\(649\) −5.15744 −0.202447
\(650\) 0 0
\(651\) 26.3368 1.03222
\(652\) 0 0
\(653\) −32.4823 −1.27113 −0.635565 0.772048i \(-0.719233\pi\)
−0.635565 + 0.772048i \(0.719233\pi\)
\(654\) 0 0
\(655\) 25.5896 0.999867
\(656\) 0 0
\(657\) 102.913 4.01501
\(658\) 0 0
\(659\) 17.2055 0.670229 0.335115 0.942177i \(-0.391225\pi\)
0.335115 + 0.942177i \(0.391225\pi\)
\(660\) 0 0
\(661\) −13.0942 −0.509305 −0.254653 0.967033i \(-0.581961\pi\)
−0.254653 + 0.967033i \(0.581961\pi\)
\(662\) 0 0
\(663\) 0.854990 0.0332051
\(664\) 0 0
\(665\) 3.38303 0.131188
\(666\) 0 0
\(667\) −48.4916 −1.87760
\(668\) 0 0
\(669\) 13.7375 0.531121
\(670\) 0 0
\(671\) 25.3692 0.979368
\(672\) 0 0
\(673\) −11.3396 −0.437110 −0.218555 0.975825i \(-0.570134\pi\)
−0.218555 + 0.975825i \(0.570134\pi\)
\(674\) 0 0
\(675\) 24.6365 0.948260
\(676\) 0 0
\(677\) 43.2663 1.66286 0.831429 0.555631i \(-0.187523\pi\)
0.831429 + 0.555631i \(0.187523\pi\)
\(678\) 0 0
\(679\) −13.1554 −0.504859
\(680\) 0 0
\(681\) 55.4066 2.12319
\(682\) 0 0
\(683\) −7.63100 −0.291992 −0.145996 0.989285i \(-0.546639\pi\)
−0.145996 + 0.989285i \(0.546639\pi\)
\(684\) 0 0
\(685\) 17.8963 0.683783
\(686\) 0 0
\(687\) 4.39051 0.167508
\(688\) 0 0
\(689\) 4.08159 0.155496
\(690\) 0 0
\(691\) −20.2177 −0.769117 −0.384558 0.923101i \(-0.625646\pi\)
−0.384558 + 0.923101i \(0.625646\pi\)
\(692\) 0 0
\(693\) −26.4023 −1.00294
\(694\) 0 0
\(695\) 7.99356 0.303213
\(696\) 0 0
\(697\) 0.210124 0.00795903
\(698\) 0 0
\(699\) 51.0845 1.93219
\(700\) 0 0
\(701\) −13.3108 −0.502743 −0.251372 0.967891i \(-0.580882\pi\)
−0.251372 + 0.967891i \(0.580882\pi\)
\(702\) 0 0
\(703\) 11.2625 0.424772
\(704\) 0 0
\(705\) −7.68288 −0.289354
\(706\) 0 0
\(707\) 1.68187 0.0632533
\(708\) 0 0
\(709\) −23.7864 −0.893319 −0.446659 0.894704i \(-0.647386\pi\)
−0.446659 + 0.894704i \(0.647386\pi\)
\(710\) 0 0
\(711\) −95.5707 −3.58418
\(712\) 0 0
\(713\) −48.8275 −1.82861
\(714\) 0 0
\(715\) −7.89136 −0.295120
\(716\) 0 0
\(717\) 51.0626 1.90697
\(718\) 0 0
\(719\) −8.77476 −0.327243 −0.163622 0.986523i \(-0.552318\pi\)
−0.163622 + 0.986523i \(0.552318\pi\)
\(720\) 0 0
\(721\) −19.1484 −0.713123
\(722\) 0 0
\(723\) −46.2927 −1.72164
\(724\) 0 0
\(725\) −9.06678 −0.336732
\(726\) 0 0
\(727\) −41.1826 −1.52738 −0.763689 0.645584i \(-0.776614\pi\)
−0.763689 + 0.645584i \(0.776614\pi\)
\(728\) 0 0
\(729\) 75.6557 2.80206
\(730\) 0 0
\(731\) −1.65209 −0.0611046
\(732\) 0 0
\(733\) 48.2810 1.78330 0.891649 0.452727i \(-0.149549\pi\)
0.891649 + 0.452727i \(0.149549\pi\)
\(734\) 0 0
\(735\) 44.2280 1.63138
\(736\) 0 0
\(737\) 29.6025 1.09042
\(738\) 0 0
\(739\) 24.7479 0.910366 0.455183 0.890398i \(-0.349574\pi\)
0.455183 + 0.890398i \(0.349574\pi\)
\(740\) 0 0
\(741\) 4.05623 0.149009
\(742\) 0 0
\(743\) 40.1141 1.47164 0.735822 0.677175i \(-0.236796\pi\)
0.735822 + 0.677175i \(0.236796\pi\)
\(744\) 0 0
\(745\) 19.0753 0.698865
\(746\) 0 0
\(747\) −35.6756 −1.30530
\(748\) 0 0
\(749\) 13.7640 0.502927
\(750\) 0 0
\(751\) 31.9595 1.16622 0.583110 0.812393i \(-0.301836\pi\)
0.583110 + 0.812393i \(0.301836\pi\)
\(752\) 0 0
\(753\) 14.4072 0.525029
\(754\) 0 0
\(755\) 46.3036 1.68516
\(756\) 0 0
\(757\) −25.7492 −0.935870 −0.467935 0.883763i \(-0.655002\pi\)
−0.467935 + 0.883763i \(0.655002\pi\)
\(758\) 0 0
\(759\) 67.5043 2.45025
\(760\) 0 0
\(761\) 21.4825 0.778740 0.389370 0.921082i \(-0.372693\pi\)
0.389370 + 0.921082i \(0.372693\pi\)
\(762\) 0 0
\(763\) −20.3594 −0.737061
\(764\) 0 0
\(765\) −4.25873 −0.153975
\(766\) 0 0
\(767\) −2.51527 −0.0908211
\(768\) 0 0
\(769\) 13.9749 0.503949 0.251975 0.967734i \(-0.418920\pi\)
0.251975 + 0.967734i \(0.418920\pi\)
\(770\) 0 0
\(771\) 70.7762 2.54894
\(772\) 0 0
\(773\) −15.8238 −0.569143 −0.284572 0.958655i \(-0.591851\pi\)
−0.284572 + 0.958655i \(0.591851\pi\)
\(774\) 0 0
\(775\) −9.12960 −0.327945
\(776\) 0 0
\(777\) −49.3049 −1.76880
\(778\) 0 0
\(779\) 0.996870 0.0357166
\(780\) 0 0
\(781\) 30.1966 1.08052
\(782\) 0 0
\(783\) −96.9933 −3.46626
\(784\) 0 0
\(785\) 17.0890 0.609933
\(786\) 0 0
\(787\) −24.5418 −0.874820 −0.437410 0.899262i \(-0.644104\pi\)
−0.437410 + 0.899262i \(0.644104\pi\)
\(788\) 0 0
\(789\) −17.7528 −0.632015
\(790\) 0 0
\(791\) −21.5348 −0.765690
\(792\) 0 0
\(793\) 12.3725 0.439360
\(794\) 0 0
\(795\) −28.0372 −0.994378
\(796\) 0 0
\(797\) −48.3819 −1.71377 −0.856887 0.515505i \(-0.827604\pi\)
−0.856887 + 0.515505i \(0.827604\pi\)
\(798\) 0 0
\(799\) 0.192011 0.00679287
\(800\) 0 0
\(801\) −52.5932 −1.85829
\(802\) 0 0
\(803\) 32.7378 1.15529
\(804\) 0 0
\(805\) 27.4577 0.967758
\(806\) 0 0
\(807\) −33.2623 −1.17089
\(808\) 0 0
\(809\) 13.1294 0.461604 0.230802 0.973001i \(-0.425865\pi\)
0.230802 + 0.973001i \(0.425865\pi\)
\(810\) 0 0
\(811\) −3.76569 −0.132231 −0.0661157 0.997812i \(-0.521061\pi\)
−0.0661157 + 0.997812i \(0.521061\pi\)
\(812\) 0 0
\(813\) −91.2951 −3.20186
\(814\) 0 0
\(815\) −39.9343 −1.39884
\(816\) 0 0
\(817\) −7.83781 −0.274210
\(818\) 0 0
\(819\) −12.8763 −0.449936
\(820\) 0 0
\(821\) −40.5291 −1.41447 −0.707237 0.706977i \(-0.750059\pi\)
−0.707237 + 0.706977i \(0.750059\pi\)
\(822\) 0 0
\(823\) −13.7979 −0.480964 −0.240482 0.970654i \(-0.577305\pi\)
−0.240482 + 0.970654i \(0.577305\pi\)
\(824\) 0 0
\(825\) 12.6217 0.439432
\(826\) 0 0
\(827\) 47.3483 1.64646 0.823230 0.567708i \(-0.192170\pi\)
0.823230 + 0.567708i \(0.192170\pi\)
\(828\) 0 0
\(829\) −2.49303 −0.0865865 −0.0432933 0.999062i \(-0.513785\pi\)
−0.0432933 + 0.999062i \(0.513785\pi\)
\(830\) 0 0
\(831\) 31.4704 1.09170
\(832\) 0 0
\(833\) −1.10535 −0.0382981
\(834\) 0 0
\(835\) −10.8076 −0.374012
\(836\) 0 0
\(837\) −97.6652 −3.37580
\(838\) 0 0
\(839\) −3.94935 −0.136347 −0.0681733 0.997673i \(-0.521717\pi\)
−0.0681733 + 0.997673i \(0.521717\pi\)
\(840\) 0 0
\(841\) 6.69567 0.230885
\(842\) 0 0
\(843\) −91.2360 −3.14233
\(844\) 0 0
\(845\) 29.3398 1.00932
\(846\) 0 0
\(847\) 6.17769 0.212268
\(848\) 0 0
\(849\) 56.2253 1.92965
\(850\) 0 0
\(851\) 91.4097 3.13348
\(852\) 0 0
\(853\) 47.6335 1.63094 0.815470 0.578799i \(-0.196479\pi\)
0.815470 + 0.578799i \(0.196479\pi\)
\(854\) 0 0
\(855\) −20.2042 −0.690969
\(856\) 0 0
\(857\) 50.1888 1.71442 0.857209 0.514969i \(-0.172196\pi\)
0.857209 + 0.514969i \(0.172196\pi\)
\(858\) 0 0
\(859\) 11.0894 0.378366 0.189183 0.981942i \(-0.439416\pi\)
0.189183 + 0.981942i \(0.439416\pi\)
\(860\) 0 0
\(861\) −4.36410 −0.148728
\(862\) 0 0
\(863\) 37.7550 1.28520 0.642598 0.766204i \(-0.277857\pi\)
0.642598 + 0.766204i \(0.277857\pi\)
\(864\) 0 0
\(865\) 10.8622 0.369325
\(866\) 0 0
\(867\) −56.0152 −1.90237
\(868\) 0 0
\(869\) −30.4022 −1.03132
\(870\) 0 0
\(871\) 14.4371 0.489181
\(872\) 0 0
\(873\) 78.5671 2.65909
\(874\) 0 0
\(875\) −11.7812 −0.398277
\(876\) 0 0
\(877\) 43.6274 1.47319 0.736596 0.676333i \(-0.236432\pi\)
0.736596 + 0.676333i \(0.236432\pi\)
\(878\) 0 0
\(879\) 45.9049 1.54833
\(880\) 0 0
\(881\) −15.5145 −0.522698 −0.261349 0.965244i \(-0.584167\pi\)
−0.261349 + 0.965244i \(0.584167\pi\)
\(882\) 0 0
\(883\) 0.166224 0.00559388 0.00279694 0.999996i \(-0.499110\pi\)
0.00279694 + 0.999996i \(0.499110\pi\)
\(884\) 0 0
\(885\) 17.2779 0.580790
\(886\) 0 0
\(887\) −9.04708 −0.303771 −0.151886 0.988398i \(-0.548535\pi\)
−0.151886 + 0.988398i \(0.548535\pi\)
\(888\) 0 0
\(889\) −8.70213 −0.291860
\(890\) 0 0
\(891\) 75.2503 2.52098
\(892\) 0 0
\(893\) 0.910938 0.0304834
\(894\) 0 0
\(895\) −51.8686 −1.73378
\(896\) 0 0
\(897\) 32.9216 1.09922
\(898\) 0 0
\(899\) 35.9430 1.19877
\(900\) 0 0
\(901\) 0.700709 0.0233440
\(902\) 0 0
\(903\) 34.3124 1.14185
\(904\) 0 0
\(905\) 42.4887 1.41237
\(906\) 0 0
\(907\) −16.2748 −0.540395 −0.270198 0.962805i \(-0.587089\pi\)
−0.270198 + 0.962805i \(0.587089\pi\)
\(908\) 0 0
\(909\) −10.0445 −0.333155
\(910\) 0 0
\(911\) 11.6990 0.387604 0.193802 0.981041i \(-0.437918\pi\)
0.193802 + 0.981041i \(0.437918\pi\)
\(912\) 0 0
\(913\) −11.3488 −0.375592
\(914\) 0 0
\(915\) −84.9891 −2.80965
\(916\) 0 0
\(917\) 13.2826 0.438631
\(918\) 0 0
\(919\) −24.0697 −0.793987 −0.396994 0.917821i \(-0.629947\pi\)
−0.396994 + 0.917821i \(0.629947\pi\)
\(920\) 0 0
\(921\) −28.3224 −0.933254
\(922\) 0 0
\(923\) 14.7268 0.484739
\(924\) 0 0
\(925\) 17.0915 0.561964
\(926\) 0 0
\(927\) 114.358 3.75602
\(928\) 0 0
\(929\) 44.5910 1.46298 0.731491 0.681851i \(-0.238825\pi\)
0.731491 + 0.681851i \(0.238825\pi\)
\(930\) 0 0
\(931\) −5.24399 −0.171865
\(932\) 0 0
\(933\) −61.9241 −2.02730
\(934\) 0 0
\(935\) −1.35475 −0.0443052
\(936\) 0 0
\(937\) −46.6674 −1.52456 −0.762278 0.647250i \(-0.775919\pi\)
−0.762278 + 0.647250i \(0.775919\pi\)
\(938\) 0 0
\(939\) −0.883087 −0.0288185
\(940\) 0 0
\(941\) −38.4624 −1.25384 −0.626919 0.779085i \(-0.715684\pi\)
−0.626919 + 0.779085i \(0.715684\pi\)
\(942\) 0 0
\(943\) 8.09090 0.263476
\(944\) 0 0
\(945\) 54.9212 1.78659
\(946\) 0 0
\(947\) −28.6521 −0.931068 −0.465534 0.885030i \(-0.654138\pi\)
−0.465534 + 0.885030i \(0.654138\pi\)
\(948\) 0 0
\(949\) 15.9661 0.518282
\(950\) 0 0
\(951\) 80.5642 2.61247
\(952\) 0 0
\(953\) −55.7585 −1.80619 −0.903097 0.429437i \(-0.858712\pi\)
−0.903097 + 0.429437i \(0.858712\pi\)
\(954\) 0 0
\(955\) 40.6547 1.31556
\(956\) 0 0
\(957\) −49.6913 −1.60629
\(958\) 0 0
\(959\) 9.28934 0.299968
\(960\) 0 0
\(961\) 5.19198 0.167483
\(962\) 0 0
\(963\) −82.2019 −2.64892
\(964\) 0 0
\(965\) 66.0606 2.12657
\(966\) 0 0
\(967\) 1.84686 0.0593909 0.0296954 0.999559i \(-0.490546\pi\)
0.0296954 + 0.999559i \(0.490546\pi\)
\(968\) 0 0
\(969\) 0.696356 0.0223702
\(970\) 0 0
\(971\) 6.95804 0.223294 0.111647 0.993748i \(-0.464387\pi\)
0.111647 + 0.993748i \(0.464387\pi\)
\(972\) 0 0
\(973\) 4.14917 0.133016
\(974\) 0 0
\(975\) 6.15557 0.197136
\(976\) 0 0
\(977\) −2.75699 −0.0882039 −0.0441020 0.999027i \(-0.514043\pi\)
−0.0441020 + 0.999027i \(0.514043\pi\)
\(978\) 0 0
\(979\) −16.7305 −0.534710
\(980\) 0 0
\(981\) 121.591 3.88211
\(982\) 0 0
\(983\) −42.9562 −1.37009 −0.685045 0.728500i \(-0.740218\pi\)
−0.685045 + 0.728500i \(0.740218\pi\)
\(984\) 0 0
\(985\) −46.6807 −1.48737
\(986\) 0 0
\(987\) −3.98791 −0.126937
\(988\) 0 0
\(989\) −63.6141 −2.02281
\(990\) 0 0
\(991\) 45.1884 1.43546 0.717729 0.696323i \(-0.245182\pi\)
0.717729 + 0.696323i \(0.245182\pi\)
\(992\) 0 0
\(993\) 52.5208 1.66670
\(994\) 0 0
\(995\) −25.7357 −0.815876
\(996\) 0 0
\(997\) −33.7095 −1.06759 −0.533795 0.845614i \(-0.679234\pi\)
−0.533795 + 0.845614i \(0.679234\pi\)
\(998\) 0 0
\(999\) 182.838 5.78475
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4864.2.a.bt.1.9 10
4.3 odd 2 4864.2.a.bs.1.1 10
8.3 odd 2 inner 4864.2.a.bt.1.10 10
8.5 even 2 4864.2.a.bs.1.2 10
16.3 odd 4 2432.2.c.j.1217.2 yes 20
16.5 even 4 2432.2.c.j.1217.1 20
16.11 odd 4 2432.2.c.j.1217.19 yes 20
16.13 even 4 2432.2.c.j.1217.20 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2432.2.c.j.1217.1 20 16.5 even 4
2432.2.c.j.1217.2 yes 20 16.3 odd 4
2432.2.c.j.1217.19 yes 20 16.11 odd 4
2432.2.c.j.1217.20 yes 20 16.13 even 4
4864.2.a.bs.1.1 10 4.3 odd 2
4864.2.a.bs.1.2 10 8.5 even 2
4864.2.a.bt.1.9 10 1.1 even 1 trivial
4864.2.a.bt.1.10 10 8.3 odd 2 inner