Defining parameters
Level: | \( N \) | \(=\) | \( 243 = 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 243.e (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(54\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(243, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 216 | 96 | 120 |
Cusp forms | 108 | 48 | 60 |
Eisenstein series | 108 | 48 | 60 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(243, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
243.2.e.a | $12$ | $1.940$ | 12.0.\(\cdots\).1 | None | \(-3\) | \(0\) | \(-6\) | \(3\) | \(q+(-\beta _{2}-\beta _{8}-\beta _{11})q^{2}+(-1-\beta _{1}+\cdots)q^{4}+\cdots\) |
243.2.e.b | $12$ | $1.940$ | 12.0.\(\cdots\).1 | None | \(-3\) | \(0\) | \(3\) | \(3\) | \(q+(-\beta _{4}+\beta _{8}-\beta _{9})q^{2}+(-1-\beta _{1}+\cdots)q^{4}+\cdots\) |
243.2.e.c | $12$ | $1.940$ | 12.0.\(\cdots\).1 | None | \(3\) | \(0\) | \(-3\) | \(3\) | \(q+(1-\beta _{5}-\beta _{8}+\beta _{9}-\beta _{11})q^{2}+(\beta _{1}+\cdots)q^{4}+\cdots\) |
243.2.e.d | $12$ | $1.940$ | 12.0.\(\cdots\).1 | None | \(3\) | \(0\) | \(6\) | \(3\) | \(q+(\beta _{2}+\beta _{8}+\beta _{11})q^{2}+(-1-\beta _{1}+\beta _{4}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(243, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(243, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)