Properties

Label 243.2.e
Level $243$
Weight $2$
Character orbit 243.e
Rep. character $\chi_{243}(28,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $48$
Newform subspaces $4$
Sturm bound $54$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 243 = 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 243.e (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 4 \)
Sturm bound: \(54\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(243, [\chi])\).

Total New Old
Modular forms 216 96 120
Cusp forms 108 48 60
Eisenstein series 108 48 60

Trace form

\( 48 q + 12 q^{4} + 12 q^{7} + O(q^{10}) \) \( 48 q + 12 q^{4} + 12 q^{7} - 12 q^{10} + 12 q^{13} - 12 q^{19} - 6 q^{22} - 6 q^{25} - 48 q^{28} - 6 q^{31} - 18 q^{34} - 12 q^{37} - 42 q^{40} - 6 q^{43} - 12 q^{46} - 24 q^{49} - 18 q^{52} - 48 q^{55} - 42 q^{58} - 24 q^{61} + 48 q^{64} + 30 q^{67} + 30 q^{70} + 24 q^{73} + 96 q^{76} + 84 q^{79} - 48 q^{82} + 54 q^{85} + 60 q^{88} + 24 q^{91} + 30 q^{94} - 6 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(243, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
243.2.e.a 243.e 27.e $12$ $1.940$ 12.0.\(\cdots\).1 None 27.2.e.a \(-3\) \(0\) \(-6\) \(3\) $\mathrm{SU}(2)[C_{9}]$ \(q+(-\beta _{2}-\beta _{8}-\beta _{11})q^{2}+(-1-\beta _{1}+\cdots)q^{4}+\cdots\)
243.2.e.b 243.e 27.e $12$ $1.940$ 12.0.\(\cdots\).1 None 27.2.e.a \(-3\) \(0\) \(3\) \(3\) $\mathrm{SU}(2)[C_{9}]$ \(q+(-\beta _{4}+\beta _{8}-\beta _{9})q^{2}+(-1-\beta _{1}+\cdots)q^{4}+\cdots\)
243.2.e.c 243.e 27.e $12$ $1.940$ 12.0.\(\cdots\).1 None 27.2.e.a \(3\) \(0\) \(-3\) \(3\) $\mathrm{SU}(2)[C_{9}]$ \(q+(1-\beta _{5}-\beta _{8}+\beta _{9}-\beta _{11})q^{2}+(\beta _{1}+\cdots)q^{4}+\cdots\)
243.2.e.d 243.e 27.e $12$ $1.940$ 12.0.\(\cdots\).1 None 27.2.e.a \(3\) \(0\) \(6\) \(3\) $\mathrm{SU}(2)[C_{9}]$ \(q+(\beta _{2}+\beta _{8}+\beta _{11})q^{2}+(-1-\beta _{1}+\beta _{4}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(243, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(243, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 2}\)