Newspace parameters
Level: | \( N \) | \(=\) | \( 243 = 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 243.e (of order \(9\), degree \(6\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.94036476912\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{9})\) |
Coefficient field: | 12.0.1952986685049.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} - 258 x^{3} + 108 x^{2} - 27 x + 3 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{4}]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | no (minimal twist has level 27) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} - 258 x^{3} + 108 x^{2} - 27 x + 3 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu^{10} - 5 \nu^{9} + 22 \nu^{8} - 58 \nu^{7} + 127 \nu^{6} - 199 \nu^{5} + 249 \nu^{4} - 224 \nu^{3} + 145 \nu^{2} - 58 \nu + 9 \)
|
\(\beta_{2}\) | \(=\) |
\( 3 \nu^{11} - 16 \nu^{10} + 71 \nu^{9} - 197 \nu^{8} + 445 \nu^{7} - 747 \nu^{6} + 1006 \nu^{5} - 1030 \nu^{4} + 803 \nu^{3} - 445 \nu^{2} + 155 \nu - 25 \)
|
\(\beta_{3}\) | \(=\) |
\( - 6 \nu^{11} + 32 \nu^{10} - 140 \nu^{9} + 384 \nu^{8} - 849 \nu^{7} + 1390 \nu^{6} - 1805 \nu^{5} + 1762 \nu^{4} - 1285 \nu^{3} + 649 \nu^{2} - 195 \nu + 25 \)
|
\(\beta_{4}\) | \(=\) |
\( - 9 \nu^{11} + 49 \nu^{10} - 216 \nu^{9} + 601 \nu^{8} - 1344 \nu^{7} + 2232 \nu^{6} - 2942 \nu^{5} + 2918 \nu^{4} - 2170 \nu^{3} + 1118 \nu^{2} - 348 \nu + 49 \)
|
\(\beta_{5}\) | \(=\) |
\( 9 \nu^{11} - 50 \nu^{10} + 221 \nu^{9} - 623 \nu^{8} + 1402 \nu^{7} - 2360 \nu^{6} + 3144 \nu^{5} - 3178 \nu^{4} + 2411 \nu^{3} - 1286 \nu^{2} + 421 \nu - 62 \)
|
\(\beta_{6}\) | \(=\) |
\( 11 \nu^{11} - 60 \nu^{10} + 265 \nu^{9} - 739 \nu^{8} + 1657 \nu^{7} - 2761 \nu^{6} + 3653 \nu^{5} - 3643 \nu^{4} + 2724 \nu^{3} - 1417 \nu^{2} + 442 \nu - 61 \)
|
\(\beta_{7}\) | \(=\) |
\( - 16 \nu^{11} + 87 \nu^{10} - 383 \nu^{9} + 1064 \nu^{8} - 2375 \nu^{7} + 3936 \nu^{6} - 5176 \nu^{5} + 5122 \nu^{4} - 3802 \nu^{3} + 1958 \nu^{2} - 610 \nu + 85 \)
|
\(\beta_{8}\) | \(=\) |
\( - 16 \nu^{11} + 89 \nu^{10} - 393 \nu^{9} + 1108 \nu^{8} - 2491 \nu^{7} + 4191 \nu^{6} - 5577 \nu^{5} + 5631 \nu^{4} - 4267 \nu^{3} + 2272 \nu^{2} - 742 \nu + 110 \)
|
\(\beta_{9}\) | \(=\) |
\( 36 \nu^{11} - 198 \nu^{10} + 873 \nu^{9} - 2443 \nu^{8} + 5472 \nu^{7} - 9134 \nu^{6} + 12076 \nu^{5} - 12058 \nu^{4} + 9024 \nu^{3} - 4708 \nu^{2} + 1486 \nu - 209 \)
|
\(\beta_{10}\) | \(=\) |
\( - 36 \nu^{11} + 198 \nu^{10} - 873 \nu^{9} + 2444 \nu^{8} - 5476 \nu^{7} + 9150 \nu^{6} - 12110 \nu^{5} + 12120 \nu^{4} - 9096 \nu^{3} + 4772 \nu^{2} - 1519 \nu + 217 \)
|
\(\beta_{11}\) | \(=\) |
\( - 42 \nu^{11} + 231 \nu^{10} - 1019 \nu^{9} + 2853 \nu^{8} - 6396 \nu^{7} + 10689 \nu^{6} - 14157 \nu^{5} + 14172 \nu^{4} - 10648 \nu^{3} + 5589 \nu^{2} - 1785 \nu + 257 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{11} - \beta_{10} + \beta_{9} + \beta_{8} + \beta_{7} - 2 \beta_{6} + \beta_{5} - 2 \beta_{4} + \beta_{3} + \beta_{2} + \beta _1 + 3 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{11} - \beta_{10} + \beta_{9} + 4 \beta_{8} - 2 \beta_{7} - 2 \beta_{6} + 4 \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} - 2 \beta _1 - 6 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( - 5 \beta_{11} + 5 \beta_{10} - 5 \beta_{9} + \beta_{8} - 8 \beta_{7} + 7 \beta_{6} + 4 \beta_{5} + 10 \beta_{4} - 5 \beta_{3} - 5 \beta_{2} - 8 \beta _1 - 18 ) / 3 \)
|
\(\nu^{4}\) | \(=\) |
\( ( - 11 \beta_{11} + 17 \beta_{10} - 5 \beta_{9} - 20 \beta_{8} + 4 \beta_{7} + 16 \beta_{6} - 14 \beta_{5} + 4 \beta_{4} - 14 \beta_{3} - 8 \beta_{2} + \beta _1 + 6 ) / 3 \)
|
\(\nu^{5}\) | \(=\) |
\( ( 19 \beta_{11} - \beta_{10} + 31 \beta_{9} - 32 \beta_{8} + 43 \beta_{7} - 20 \beta_{6} - 41 \beta_{5} - 44 \beta_{4} + 10 \beta_{3} + 25 \beta_{2} + 40 \beta _1 + 87 ) / 3 \)
|
\(\nu^{6}\) | \(=\) |
\( ( 85 \beta_{11} - 97 \beta_{10} + 55 \beta_{9} + 64 \beta_{8} + 10 \beta_{7} - 101 \beta_{6} + 19 \beta_{5} - 62 \beta_{4} + 91 \beta_{3} + 70 \beta_{2} + 31 \beta _1 + 60 ) / 3 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 20 \beta_{11} - 118 \beta_{10} - 134 \beta_{9} + 244 \beta_{8} - 218 \beta_{7} + \beta_{6} + 232 \beta_{5} + 157 \beta_{4} + 52 \beta_{3} - 74 \beta_{2} - 179 \beta _1 - 357 ) / 3 \)
|
\(\nu^{8}\) | \(=\) |
\( ( - 503 \beta_{11} + 386 \beta_{10} - 440 \beta_{9} - 47 \beta_{8} - 233 \beta_{7} + 514 \beta_{6} + 163 \beta_{5} + 466 \beta_{4} - 431 \beta_{3} - 461 \beta_{2} - 329 \beta _1 - 639 ) / 3 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 425 \beta_{11} + 1076 \beta_{10} + 319 \beta_{9} - 1313 \beta_{8} + 955 \beta_{7} + 502 \beta_{6} - 1013 \beta_{5} - 332 \beta_{4} - 743 \beta_{3} - 59 \beta_{2} + 631 \beta _1 + 1164 ) / 3 \)
|
\(\nu^{10}\) | \(=\) |
\( ( 2299 \beta_{11} - 862 \beta_{10} + 2725 \beta_{9} - 1193 \beta_{8} + 2104 \beta_{7} - 2135 \beta_{6} - 1907 \beta_{5} - 2705 \beta_{4} + 1495 \beta_{3} + 2425 \beta_{2} + 2344 \beta _1 + 4356 ) / 3 \)
|
\(\nu^{11}\) | \(=\) |
\( ( 4708 \beta_{11} - 6628 \beta_{10} + 985 \beta_{9} + 5506 \beta_{8} - 3107 \beta_{7} - 4679 \beta_{6} + 3238 \beta_{5} - 992 \beta_{4} + 5476 \beta_{3} + 2770 \beta_{2} - 1043 \beta _1 - 1698 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/243\mathbb{Z}\right)^\times\).
\(n\) | \(2\) |
\(\chi(n)\) | \(\beta_{8} - \beta_{9}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28.1 |
|
0.0721450 | + | 0.409154i | 0 | 1.71718 | − | 0.625003i | −1.69693 | − | 1.42389i | 0 | 1.24005 | + | 0.451340i | 0.795075 | + | 1.37711i | 0 | 0.460168 | − | 0.797034i | ||||||||||||||||||||||||||||||||||||||||||
28.2 | 0.367548 | + | 2.08447i | 0 | −2.33052 | + | 0.848241i | 2.05537 | + | 1.72466i | 0 | −0.913694 | − | 0.332557i | −0.508086 | − | 0.880031i | 0 | −2.83955 | + | 4.91825i | |||||||||||||||||||||||||||||||||||||||||||
55.1 | −2.25679 | + | 0.821403i | 0 | 2.88629 | − | 2.42189i | −0.0161638 | − | 0.0916693i | 0 | −0.444200 | − | 0.372728i | −2.12277 | + | 3.67675i | 0 | 0.111776 | + | 0.193601i | |||||||||||||||||||||||||||||||||||||||||||
55.2 | 0.990741 | − | 0.360600i | 0 | −0.680553 | + | 0.571052i | 0.303153 | + | 1.71926i | 0 | 1.88389 | + | 1.58077i | −1.52266 | + | 2.63732i | 0 | 0.920313 | + | 1.59403i | |||||||||||||||||||||||||||||||||||||||||||
109.1 | −1.28765 | + | 1.08047i | 0 | 0.143341 | − | 0.812925i | −1.06142 | + | 0.386327i | 0 | −0.678777 | − | 3.84954i | −0.987144 | − | 1.70978i | 0 | 0.949332 | − | 1.64429i | |||||||||||||||||||||||||||||||||||||||||||
109.2 | 0.614005 | − | 0.515212i | 0 | −0.235737 | + | 1.33693i | −2.58401 | + | 0.940501i | 0 | 0.412733 | + | 2.34072i | 1.34559 | + | 2.33062i | 0 | −1.10204 | + | 1.90878i | |||||||||||||||||||||||||||||||||||||||||||
136.1 | −1.28765 | − | 1.08047i | 0 | 0.143341 | + | 0.812925i | −1.06142 | − | 0.386327i | 0 | −0.678777 | + | 3.84954i | −0.987144 | + | 1.70978i | 0 | 0.949332 | + | 1.64429i | |||||||||||||||||||||||||||||||||||||||||||
136.2 | 0.614005 | + | 0.515212i | 0 | −0.235737 | − | 1.33693i | −2.58401 | − | 0.940501i | 0 | 0.412733 | − | 2.34072i | 1.34559 | − | 2.33062i | 0 | −1.10204 | − | 1.90878i | |||||||||||||||||||||||||||||||||||||||||||
190.1 | −2.25679 | − | 0.821403i | 0 | 2.88629 | + | 2.42189i | −0.0161638 | + | 0.0916693i | 0 | −0.444200 | + | 0.372728i | −2.12277 | − | 3.67675i | 0 | 0.111776 | − | 0.193601i | |||||||||||||||||||||||||||||||||||||||||||
190.2 | 0.990741 | + | 0.360600i | 0 | −0.680553 | − | 0.571052i | 0.303153 | − | 1.71926i | 0 | 1.88389 | − | 1.58077i | −1.52266 | − | 2.63732i | 0 | 0.920313 | − | 1.59403i | |||||||||||||||||||||||||||||||||||||||||||
217.1 | 0.0721450 | − | 0.409154i | 0 | 1.71718 | + | 0.625003i | −1.69693 | + | 1.42389i | 0 | 1.24005 | − | 0.451340i | 0.795075 | − | 1.37711i | 0 | 0.460168 | + | 0.797034i | |||||||||||||||||||||||||||||||||||||||||||
217.2 | 0.367548 | − | 2.08447i | 0 | −2.33052 | − | 0.848241i | 2.05537 | − | 1.72466i | 0 | −0.913694 | + | 0.332557i | −0.508086 | + | 0.880031i | 0 | −2.83955 | − | 4.91825i | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 243.2.e.a | 12 | |
3.b | odd | 2 | 1 | 243.2.e.d | 12 | ||
9.c | even | 3 | 1 | 81.2.e.a | 12 | ||
9.c | even | 3 | 1 | 243.2.e.b | 12 | ||
9.d | odd | 6 | 1 | 27.2.e.a | ✓ | 12 | |
9.d | odd | 6 | 1 | 243.2.e.c | 12 | ||
27.e | even | 9 | 1 | 81.2.e.a | 12 | ||
27.e | even | 9 | 1 | inner | 243.2.e.a | 12 | |
27.e | even | 9 | 1 | 243.2.e.b | 12 | ||
27.e | even | 9 | 1 | 729.2.a.d | 6 | ||
27.e | even | 9 | 2 | 729.2.c.b | 12 | ||
27.f | odd | 18 | 1 | 27.2.e.a | ✓ | 12 | |
27.f | odd | 18 | 1 | 243.2.e.c | 12 | ||
27.f | odd | 18 | 1 | 243.2.e.d | 12 | ||
27.f | odd | 18 | 1 | 729.2.a.a | 6 | ||
27.f | odd | 18 | 2 | 729.2.c.e | 12 | ||
36.h | even | 6 | 1 | 432.2.u.c | 12 | ||
45.h | odd | 6 | 1 | 675.2.l.c | 12 | ||
45.l | even | 12 | 2 | 675.2.u.b | 24 | ||
108.l | even | 18 | 1 | 432.2.u.c | 12 | ||
135.n | odd | 18 | 1 | 675.2.l.c | 12 | ||
135.q | even | 36 | 2 | 675.2.u.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.2.e.a | ✓ | 12 | 9.d | odd | 6 | 1 | |
27.2.e.a | ✓ | 12 | 27.f | odd | 18 | 1 | |
81.2.e.a | 12 | 9.c | even | 3 | 1 | ||
81.2.e.a | 12 | 27.e | even | 9 | 1 | ||
243.2.e.a | 12 | 1.a | even | 1 | 1 | trivial | |
243.2.e.a | 12 | 27.e | even | 9 | 1 | inner | |
243.2.e.b | 12 | 9.c | even | 3 | 1 | ||
243.2.e.b | 12 | 27.e | even | 9 | 1 | ||
243.2.e.c | 12 | 9.d | odd | 6 | 1 | ||
243.2.e.c | 12 | 27.f | odd | 18 | 1 | ||
243.2.e.d | 12 | 3.b | odd | 2 | 1 | ||
243.2.e.d | 12 | 27.f | odd | 18 | 1 | ||
432.2.u.c | 12 | 36.h | even | 6 | 1 | ||
432.2.u.c | 12 | 108.l | even | 18 | 1 | ||
675.2.l.c | 12 | 45.h | odd | 6 | 1 | ||
675.2.l.c | 12 | 135.n | odd | 18 | 1 | ||
675.2.u.b | 24 | 45.l | even | 12 | 2 | ||
675.2.u.b | 24 | 135.q | even | 36 | 2 | ||
729.2.a.a | 6 | 27.f | odd | 18 | 1 | ||
729.2.a.d | 6 | 27.e | even | 9 | 1 | ||
729.2.c.b | 12 | 27.e | even | 9 | 2 | ||
729.2.c.e | 12 | 27.f | odd | 18 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 3 T_{2}^{11} + 3 T_{2}^{10} + 6 T_{2}^{9} + 9 T_{2}^{8} - 27 T_{2}^{7} - 21 T_{2}^{6} + 36 T_{2}^{5} + 63 T_{2}^{4} - 117 T_{2}^{3} + 81 T_{2}^{2} - 27 T_{2} + 9 \)
acting on \(S_{2}^{\mathrm{new}}(243, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 3 T^{11} + 3 T^{10} + 6 T^{9} + \cdots + 9 \)
$3$
\( T^{12} \)
$5$
\( T^{12} + 6 T^{11} + 12 T^{10} + 12 T^{9} + \cdots + 9 \)
$7$
\( T^{12} - 3 T^{11} + 21 T^{10} - 65 T^{9} + \cdots + 289 \)
$11$
\( T^{12} - 6 T^{11} + 21 T^{10} + 6 T^{9} + \cdots + 9 \)
$13$
\( T^{12} - 3 T^{11} - 24 T^{10} + 79 T^{9} + \cdots + 1 \)
$17$
\( T^{12} + 9 T^{11} + 72 T^{10} + 189 T^{9} + \cdots + 729 \)
$19$
\( T^{12} + 3 T^{11} + 39 T^{10} - 14 T^{9} + \cdots + 361 \)
$23$
\( T^{12} - 12 T^{11} + 138 T^{10} + \cdots + 106929 \)
$29$
\( T^{12} - 24 T^{11} + 327 T^{10} + \cdots + 45369 \)
$31$
\( T^{12} - 12 T^{11} + 12 T^{10} + \cdots + 26569 \)
$37$
\( T^{12} + 3 T^{11} + 66 T^{10} + \cdots + 24334489 \)
$41$
\( T^{12} + 6 T^{11} - 6 T^{10} + \cdots + 11229201 \)
$43$
\( T^{12} + 15 T^{11} + 138 T^{10} + \cdots + 3308761 \)
$47$
\( T^{12} + 12 T^{11} + 147 T^{10} + \cdots + 42732369 \)
$53$
\( (T^{6} - 9 T^{5} - 108 T^{4} + 513 T^{3} + \cdots - 12393)^{2} \)
$59$
\( T^{12} - 3 T^{11} - 15 T^{10} + \cdots + 176384961 \)
$61$
\( T^{12} + 33 T^{11} + \cdots + 273670849 \)
$67$
\( T^{12} + 6 T^{11} - 6 T^{10} + \cdots + 8288641 \)
$71$
\( T^{12} + 27 T^{11} + 504 T^{10} + \cdots + 729 \)
$73$
\( T^{12} - 6 T^{11} + 210 T^{10} + \cdots + 185761 \)
$79$
\( T^{12} - 21 T^{11} + 255 T^{10} + \cdots + 3508129 \)
$83$
\( T^{12} - 6 T^{11} + \cdots + 6951057129 \)
$89$
\( T^{12} + 9 T^{11} + \cdots + 1062042921 \)
$97$
\( T^{12} - 39 T^{11} + 624 T^{10} + \cdots + 66765241 \)
show more
show less