Properties

Label 242.6.a.e
Level $242$
Weight $6$
Character orbit 242.a
Self dual yes
Analytic conductor $38.813$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [242,6,Mod(1,242)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("242.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(242, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 242.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.8128843947\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 4 q^{2} + 4 q^{3} + 16 q^{4} - 9 q^{5} + 16 q^{6} - 32 q^{7} + 64 q^{8} - 227 q^{9} - 36 q^{10} + 64 q^{12} + 145 q^{13} - 128 q^{14} - 36 q^{15} + 256 q^{16} - 603 q^{17} - 908 q^{18} - 1448 q^{19}+ \cdots - 63132 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
4.00000 4.00000 16.0000 −9.00000 16.0000 −32.0000 64.0000 −227.000 −36.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 242.6.a.e yes 1
11.b odd 2 1 242.6.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
242.6.a.b 1 11.b odd 2 1
242.6.a.e yes 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(242))\):

\( T_{3} - 4 \) Copy content Toggle raw display
\( T_{7} + 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 4 \) Copy content Toggle raw display
$3$ \( T - 4 \) Copy content Toggle raw display
$5$ \( T + 9 \) Copy content Toggle raw display
$7$ \( T + 32 \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T - 145 \) Copy content Toggle raw display
$17$ \( T + 603 \) Copy content Toggle raw display
$19$ \( T + 1448 \) Copy content Toggle raw display
$23$ \( T + 60 \) Copy content Toggle raw display
$29$ \( T + 4407 \) Copy content Toggle raw display
$31$ \( T + 2104 \) Copy content Toggle raw display
$37$ \( T - 13055 \) Copy content Toggle raw display
$41$ \( T + 1215 \) Copy content Toggle raw display
$43$ \( T + 6476 \) Copy content Toggle raw display
$47$ \( T + 24300 \) Copy content Toggle raw display
$53$ \( T - 12363 \) Copy content Toggle raw display
$59$ \( T - 32340 \) Copy content Toggle raw display
$61$ \( T + 42782 \) Copy content Toggle raw display
$67$ \( T - 56288 \) Copy content Toggle raw display
$71$ \( T + 54084 \) Copy content Toggle raw display
$73$ \( T + 16394 \) Copy content Toggle raw display
$79$ \( T + 76700 \) Copy content Toggle raw display
$83$ \( T + 71928 \) Copy content Toggle raw display
$89$ \( T - 97539 \) Copy content Toggle raw display
$97$ \( T - 93467 \) Copy content Toggle raw display
show more
show less