Properties

Label 2-242-1.1-c5-0-41
Degree $2$
Conductor $242$
Sign $-1$
Analytic cond. $38.8128$
Root an. cond. $6.22999$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 4·3-s + 16·4-s − 9·5-s + 16·6-s − 32·7-s + 64·8-s − 227·9-s − 36·10-s + 64·12-s + 145·13-s − 128·14-s − 36·15-s + 256·16-s − 603·17-s − 908·18-s − 1.44e3·19-s − 144·20-s − 128·21-s − 60·23-s + 256·24-s − 3.04e3·25-s + 580·26-s − 1.88e3·27-s − 512·28-s − 4.40e3·29-s − 144·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.256·3-s + 1/2·4-s − 0.160·5-s + 0.181·6-s − 0.246·7-s + 0.353·8-s − 0.934·9-s − 0.113·10-s + 0.128·12-s + 0.237·13-s − 0.174·14-s − 0.0413·15-s + 1/4·16-s − 0.506·17-s − 0.660·18-s − 0.920·19-s − 0.0804·20-s − 0.0633·21-s − 0.0236·23-s + 0.0907·24-s − 0.974·25-s + 0.168·26-s − 0.496·27-s − 0.123·28-s − 0.973·29-s − 0.0292·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 242 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(242\)    =    \(2 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(38.8128\)
Root analytic conductor: \(6.22999\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 242,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
11 \( 1 \)
good3 \( 1 - 4 T + p^{5} T^{2} \)
5 \( 1 + 9 T + p^{5} T^{2} \)
7 \( 1 + 32 T + p^{5} T^{2} \)
13 \( 1 - 145 T + p^{5} T^{2} \)
17 \( 1 + 603 T + p^{5} T^{2} \)
19 \( 1 + 1448 T + p^{5} T^{2} \)
23 \( 1 + 60 T + p^{5} T^{2} \)
29 \( 1 + 4407 T + p^{5} T^{2} \)
31 \( 1 + 2104 T + p^{5} T^{2} \)
37 \( 1 - 13055 T + p^{5} T^{2} \)
41 \( 1 + 1215 T + p^{5} T^{2} \)
43 \( 1 + 6476 T + p^{5} T^{2} \)
47 \( 1 + 24300 T + p^{5} T^{2} \)
53 \( 1 - 12363 T + p^{5} T^{2} \)
59 \( 1 - 32340 T + p^{5} T^{2} \)
61 \( 1 + 42782 T + p^{5} T^{2} \)
67 \( 1 - 56288 T + p^{5} T^{2} \)
71 \( 1 + 54084 T + p^{5} T^{2} \)
73 \( 1 + 16394 T + p^{5} T^{2} \)
79 \( 1 + 76700 T + p^{5} T^{2} \)
83 \( 1 + 71928 T + p^{5} T^{2} \)
89 \( 1 - 97539 T + p^{5} T^{2} \)
97 \( 1 - 93467 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.11997587993662993266444567918, −9.844735952686107402632223905412, −8.716995582570508607463395468855, −7.77724218109066697105712605791, −6.50096596863013815461932658732, −5.64135206842661680981282161994, −4.30837534390478344924934362080, −3.22945546412563708943395523096, −2.02024935682968467477326012861, 0, 2.02024935682968467477326012861, 3.22945546412563708943395523096, 4.30837534390478344924934362080, 5.64135206842661680981282161994, 6.50096596863013815461932658732, 7.77724218109066697105712605791, 8.716995582570508607463395468855, 9.844735952686107402632223905412, 11.11997587993662993266444567918

Graph of the $Z$-function along the critical line