Properties

Label 242.6
Level 242
Weight 6
Dimension 2975
Nonzero newspaces 4
Sturm bound 21780
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 242 = 2 \cdot 11^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(21780\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(242))\).

Total New Old
Modular forms 9235 2975 6260
Cusp forms 8915 2975 5940
Eisenstein series 320 0 320

Trace form

\( 2975 q - 40 q^{6} + 1180 q^{7} - 2200 q^{9} - 2000 q^{10} - 890 q^{11} - 320 q^{12} + 2020 q^{13} + 4400 q^{14} + 12980 q^{15} + 1600 q^{17} - 9640 q^{18} - 4470 q^{19} - 17640 q^{21} - 35400 q^{23} - 640 q^{24}+ \cdots - 265450 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(242))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
242.6.a \(\chi_{242}(1, \cdot)\) 242.6.a.a 1 1
242.6.a.b 1
242.6.a.c 1
242.6.a.d 1
242.6.a.e 1
242.6.a.f 2
242.6.a.g 2
242.6.a.h 2
242.6.a.i 3
242.6.a.j 3
242.6.a.k 4
242.6.a.l 4
242.6.a.m 4
242.6.a.n 4
242.6.a.o 6
242.6.a.p 6
242.6.c \(\chi_{242}(3, \cdot)\) n/a 180 4
242.6.e \(\chi_{242}(23, \cdot)\) n/a 550 10
242.6.g \(\chi_{242}(5, \cdot)\) n/a 2200 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(242))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(242)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 2}\)