Properties

Label 2401.2.a.g
Level $2401$
Weight $2$
Character orbit 2401.a
Self dual yes
Analytic conductor $19.172$
Analytic rank $1$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2401,2,Mod(1,2401)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2401, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2401.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2401 = 7^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2401.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.1720815253\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 26x^{16} + 249x^{14} - 1126x^{12} + 2746x^{10} - 3811x^{8} + 2997x^{6} - 1246x^{4} + 224x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{17}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} - \beta_1 q^{3} + (\beta_{8} + \beta_{7} + 1) q^{4} + ( - \beta_{14} - \beta_{11} + \cdots + \beta_1) q^{5} + (\beta_{15} + \beta_{11} + \beta_{6}) q^{6} + (\beta_{17} - \beta_{12} - \beta_{7} - 1) q^{8}+ \cdots + (2 \beta_{17} - 2 \beta_{12} + \cdots + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 8 q^{4} - 6 q^{8} - 2 q^{9} - 28 q^{11} - 34 q^{15} - 12 q^{16} + 2 q^{18} - 20 q^{22} - 42 q^{23} + 34 q^{25} - 6 q^{29} - 46 q^{30} - 12 q^{32} - 10 q^{36} - 70 q^{39} - 48 q^{43} - 94 q^{44} - 40 q^{46}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{18} - 26x^{16} + 249x^{14} - 1126x^{12} + 2746x^{10} - 3811x^{8} + 2997x^{6} - 1246x^{4} + 224x^{2} - 7 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 127 \nu^{16} - 4338 \nu^{14} + 57288 \nu^{12} - 368009 \nu^{10} + 1204612 \nu^{8} - 1998993 \nu^{6} + \cdots - 367 ) / 4243 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 411 \nu^{17} + 10063 \nu^{15} - 87106 \nu^{13} + 330832 \nu^{11} - 621324 \nu^{9} + \cdots + 46825 \nu ) / 4243 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 794 \nu^{16} - 19203 \nu^{14} + 163085 \nu^{12} - 604015 \nu^{10} + 1140236 \nu^{8} - 1198265 \nu^{6} + \cdots + 7862 ) / 4243 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 667 \nu^{17} + 19108 \nu^{15} - 207629 \nu^{13} + 1084606 \nu^{11} - 2914210 \nu^{9} + \cdots + 12986 \nu ) / 4243 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 1660 \nu^{17} - 38961 \nu^{15} + 311140 \nu^{13} - 994403 \nu^{11} + 1308498 \nu^{9} + \cdots - 12548 \nu ) / 4243 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 1660 \nu^{16} - 38961 \nu^{14} + 311140 \nu^{12} - 994403 \nu^{10} + 1308498 \nu^{8} - 406368 \nu^{6} + \cdots - 16791 ) / 4243 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 1916 \nu^{16} + 48006 \nu^{14} - 431663 \nu^{12} + 1748177 \nu^{10} - 3601384 \nu^{8} + \cdots - 21291 ) / 4243 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 3682 \nu^{16} - 89552 \nu^{14} + 765227 \nu^{12} - 2830805 \nu^{10} + 5104225 \nu^{8} - 4574943 \nu^{6} + \cdots + 12379 ) / 4243 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 3661 \nu^{16} + 92042 \nu^{14} - 832195 \nu^{12} + 3399621 \nu^{10} - 7072542 \nu^{8} + \cdots - 16382 ) / 4243 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( \nu^{17} - 25\nu^{15} + 224\nu^{13} - 902\nu^{11} + 1844\nu^{9} - 1967\nu^{7} + 1030\nu^{5} - 216\nu^{3} + 8\nu \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 5037 \nu^{16} - 125278 \nu^{14} + 1113517 \nu^{12} - 4431201 \nu^{10} + 8964328 \nu^{8} + \cdots + 41806 ) / 4243 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 5321 \nu^{17} - 131003 \nu^{15} + 1143335 \nu^{13} - 4394024 \nu^{11} + 8381040 \nu^{9} + \cdots - 409 \nu ) / 4243 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 5753 \nu^{17} + 138576 \nu^{15} - 1163473 \nu^{13} + 4156040 \nu^{11} - 7034047 \nu^{9} + \cdots + 55480 \nu ) / 4243 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 6697 \nu^{17} + 164239 \nu^{15} - 1424657 \nu^{13} + 5425604 \nu^{11} - 10272826 \nu^{9} + \cdots - 29258 \nu ) / 4243 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 9960 \nu^{17} + 250738 \nu^{15} - 2274168 \nu^{13} + 9365061 \nu^{11} - 19858678 \nu^{9} + \cdots - 153834 \nu ) / 4243 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( 12031 \nu^{16} - 299762 \nu^{14} + 2672414 \nu^{12} - 10690296 \nu^{10} + 21788500 \nu^{8} + \cdots + 90218 ) / 4243 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{12} + 2\beta_{9} - \beta_{7} - \beta_{4} + \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{15} - 2\beta_{14} - \beta_{13} + \beta_{11} - 2\beta_{6} + \beta_{3} + 8\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -8\beta_{12} + \beta_{10} + 20\beta_{9} + 2\beta_{8} - 11\beta_{7} - 11\beta_{4} + 9\beta_{2} + 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 10\beta_{15} - 20\beta_{14} - 10\beta_{13} + 11\beta_{11} - 22\beta_{6} + 2\beta_{5} + 9\beta_{3} + 71\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - \beta_{17} - 69 \beta_{12} + 9 \beta_{10} + 184 \beta_{9} + 23 \beta_{8} - 103 \beta_{7} - 101 \beta_{4} + \cdots + 101 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{16} + 89 \beta_{15} - 184 \beta_{14} - 90 \beta_{13} + 101 \beta_{11} - 213 \beta_{6} + \cdots + 645 \beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 22 \beta_{17} - 606 \beta_{12} + 69 \beta_{10} + 1675 \beta_{9} + 215 \beta_{8} - 941 \beta_{7} + \cdots + 910 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 22 \beta_{16} + 774 \beta_{15} - 1675 \beta_{14} - 804 \beta_{13} + 903 \beta_{11} - 2010 \beta_{6} + \cdots + 5889 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 330 \beta_{17} - 5333 \beta_{12} + 496 \beta_{10} + 15224 \beta_{9} + 1917 \beta_{8} - 8554 \beta_{7} + \cdots + 8306 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 330 \beta_{16} + 6680 \beta_{15} - 15224 \beta_{14} - 7189 \beta_{13} + 8040 \beta_{11} + \cdots + 53835 \beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 4219 \beta_{17} - 46901 \beta_{12} + 3300 \beta_{10} + 138350 \beta_{9} + 16877 \beta_{8} + \cdots + 76018 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 4219 \beta_{16} + 57402 \beta_{15} - 138350 \beta_{14} - 64324 \beta_{13} + 71525 \beta_{11} + \cdots + 492340 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 49558 \beta_{17} - 412035 \beta_{12} + 18985 \beta_{10} + 1257414 \beta_{9} + 147961 \beta_{8} + \cdots + 696207 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 49558 \beta_{16} + 491404 \beta_{15} - 1257414 \beta_{14} - 575649 \beta_{13} + 636033 \beta_{11} + \cdots + 4503594 \beta_1 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 552953 \beta_{17} - 3615651 \beta_{12} + 72254 \beta_{10} + 11430058 \beta_{9} + 1294432 \beta_{8} + \cdots + 6377846 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 552953 \beta_{16} + 4190135 \beta_{15} - 11430058 \beta_{14} - 5151497 \beta_{13} + \cdots + 41202849 \beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.707302
−0.707302
2.99719
−2.99719
0.803517
−0.803517
1.30216
−1.30216
0.197302
−0.197302
1.50169
−1.50169
3.03764
−3.03764
1.12259
−1.12259
1.18059
−1.18059
−2.44614 −0.707302 3.98362 −4.16494 1.73016 0 −4.85223 −2.49972 10.1880
1.2 −2.44614 0.707302 3.98362 4.16494 −1.73016 0 −4.85223 −2.49972 −10.1880
1.3 −1.67667 −2.99719 0.811236 2.10413 5.02531 0 1.99317 5.98316 −3.52794
1.4 −1.67667 2.99719 0.811236 −2.10413 −5.02531 0 1.99317 5.98316 3.52794
1.5 −1.57500 −0.803517 0.480628 −2.40115 1.26554 0 2.39301 −2.35436 3.78181
1.6 −1.57500 0.803517 0.480628 2.40115 −1.26554 0 2.39301 −2.35436 −3.78181
1.7 −0.364381 −1.30216 −1.86723 0.254380 0.474483 0 1.40914 −1.30438 −0.0926912
1.8 −0.364381 1.30216 −1.86723 −0.254380 −0.474483 0 1.40914 −1.30438 0.0926912
1.9 0.206475 −0.197302 −1.95737 −3.82458 −0.0407379 0 −0.817096 −2.96107 −0.789679
1.10 0.206475 0.197302 −1.95737 3.82458 0.0407379 0 −0.817096 −2.96107 0.789679
1.11 0.351716 −1.50169 −1.87630 1.06999 −0.528170 0 −1.36336 −0.744913 0.376334
1.12 0.351716 1.50169 −1.87630 −1.06999 0.528170 0 −1.36336 −0.744913 −0.376334
1.13 1.36853 −3.03764 −0.127136 3.15896 −4.15710 0 −2.91104 6.22729 4.32313
1.14 1.36853 3.03764 −0.127136 −3.15896 4.15710 0 −2.91104 6.22729 −4.32313
1.15 2.04106 −1.12259 2.16591 2.04996 −2.29127 0 0.338625 −1.73979 4.18408
1.16 2.04106 1.12259 2.16591 −2.04996 2.29127 0 0.338625 −1.73979 −4.18408
1.17 2.09443 −1.18059 2.38663 2.10761 −2.47265 0 0.809772 −1.60622 4.41423
1.18 2.09443 1.18059 2.38663 −2.10761 2.47265 0 0.809772 −1.60622 −4.41423
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.18
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2401.2.a.g 18
7.b odd 2 1 inner 2401.2.a.g 18
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2401.2.a.g 18 1.a even 1 1 trivial
2401.2.a.g 18 7.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2401))\):

\( T_{2}^{9} - 11T_{2}^{7} + T_{2}^{6} + 38T_{2}^{5} - 5T_{2}^{4} - 43T_{2}^{3} + 8T_{2}^{2} + 5T_{2} - 1 \) Copy content Toggle raw display
\( T_{3}^{18} - 26 T_{3}^{16} + 249 T_{3}^{14} - 1126 T_{3}^{12} + 2746 T_{3}^{10} - 3811 T_{3}^{8} + \cdots - 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{9} - 11 T^{7} + T^{6} + \cdots - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{18} - 26 T^{16} + \cdots - 7 \) Copy content Toggle raw display
$5$ \( T^{18} - 62 T^{16} + \cdots - 89383 \) Copy content Toggle raw display
$7$ \( T^{18} \) Copy content Toggle raw display
$11$ \( (T^{9} + 14 T^{8} + \cdots - 379)^{2} \) Copy content Toggle raw display
$13$ \( T^{18} - 112 T^{16} + \cdots - 49268863 \) Copy content Toggle raw display
$17$ \( T^{18} + \cdots - 189935767 \) Copy content Toggle raw display
$19$ \( T^{18} + \cdots - 2228608543 \) Copy content Toggle raw display
$23$ \( (T^{9} + 21 T^{8} + \cdots - 591347)^{2} \) Copy content Toggle raw display
$29$ \( (T^{9} + 3 T^{8} + \cdots + 237341)^{2} \) Copy content Toggle raw display
$31$ \( T^{18} + \cdots - 377437543 \) Copy content Toggle raw display
$37$ \( (T^{9} - 123 T^{7} + \cdots + 1049)^{2} \) Copy content Toggle raw display
$41$ \( T^{18} - 497 T^{16} + \cdots - 2362927 \) Copy content Toggle raw display
$43$ \( (T^{9} + 24 T^{8} + \cdots - 11519033)^{2} \) Copy content Toggle raw display
$47$ \( T^{18} + \cdots - 3684665050087 \) Copy content Toggle raw display
$53$ \( (T^{9} + 35 T^{8} + \cdots + 3141473)^{2} \) Copy content Toggle raw display
$59$ \( T^{18} + \cdots - 601997676343 \) Copy content Toggle raw display
$61$ \( T^{18} + \cdots - 758069346223 \) Copy content Toggle raw display
$67$ \( (T^{9} + 7 T^{8} + \cdots + 2367637)^{2} \) Copy content Toggle raw display
$71$ \( (T^{9} + 52 T^{8} + \cdots - 4904089)^{2} \) Copy content Toggle raw display
$73$ \( T^{18} - 404 T^{16} + \cdots - 19452223 \) Copy content Toggle raw display
$79$ \( (T^{9} + 14 T^{8} + \cdots - 17179)^{2} \) Copy content Toggle raw display
$83$ \( T^{18} + \cdots - 13\!\cdots\!47 \) Copy content Toggle raw display
$89$ \( T^{18} + \cdots - 602817497012983 \) Copy content Toggle raw display
$97$ \( T^{18} + \cdots - 159139638348943 \) Copy content Toggle raw display
show more
show less