Properties

Label 2-7e4-1.1-c1-0-57
Degree $2$
Conductor $2401$
Sign $-1$
Analytic cond. $19.1720$
Root an. cond. $4.37859$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.57·2-s − 0.803·3-s + 0.480·4-s − 2.40·5-s + 1.26·6-s + 2.39·8-s − 2.35·9-s + 3.78·10-s − 2.78·11-s − 0.386·12-s + 2.64·13-s + 1.92·15-s − 4.73·16-s − 4.93·17-s + 3.70·18-s + 3.29·19-s − 1.15·20-s + 4.39·22-s + 6.57·23-s − 1.92·24-s + 0.765·25-s − 4.16·26-s + 4.30·27-s + 4.39·29-s − 3.03·30-s + 8.44·31-s + 2.66·32-s + ⋯
L(s)  = 1  − 1.11·2-s − 0.463·3-s + 0.240·4-s − 1.07·5-s + 0.516·6-s + 0.846·8-s − 0.784·9-s + 1.19·10-s − 0.840·11-s − 0.111·12-s + 0.732·13-s + 0.498·15-s − 1.18·16-s − 1.19·17-s + 0.874·18-s + 0.754·19-s − 0.258·20-s + 0.936·22-s + 1.37·23-s − 0.392·24-s + 0.153·25-s − 0.815·26-s + 0.827·27-s + 0.815·29-s − 0.554·30-s + 1.51·31-s + 0.470·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2401\)    =    \(7^{4}\)
Sign: $-1$
Analytic conductor: \(19.1720\)
Root analytic conductor: \(4.37859\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2401,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 + 1.57T + 2T^{2} \)
3 \( 1 + 0.803T + 3T^{2} \)
5 \( 1 + 2.40T + 5T^{2} \)
11 \( 1 + 2.78T + 11T^{2} \)
13 \( 1 - 2.64T + 13T^{2} \)
17 \( 1 + 4.93T + 17T^{2} \)
19 \( 1 - 3.29T + 19T^{2} \)
23 \( 1 - 6.57T + 23T^{2} \)
29 \( 1 - 4.39T + 29T^{2} \)
31 \( 1 - 8.44T + 31T^{2} \)
37 \( 1 + 10.2T + 37T^{2} \)
41 \( 1 + 9.67T + 41T^{2} \)
43 \( 1 - 2.33T + 43T^{2} \)
47 \( 1 - 10.3T + 47T^{2} \)
53 \( 1 + 9.96T + 53T^{2} \)
59 \( 1 - 11.0T + 59T^{2} \)
61 \( 1 - 7.28T + 61T^{2} \)
67 \( 1 - 4.55T + 67T^{2} \)
71 \( 1 + 1.44T + 71T^{2} \)
73 \( 1 - 6.71T + 73T^{2} \)
79 \( 1 - 5.77T + 79T^{2} \)
83 \( 1 + 3.96T + 83T^{2} \)
89 \( 1 + 9.81T + 89T^{2} \)
97 \( 1 + 4.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.447419734167772802719717154045, −8.176441921257370297851082069457, −7.16063763358208409355987378640, −6.58873450891650284283017144373, −5.30195056208135455661678447029, −4.71704298733197349999698910148, −3.62975033850634045605060025180, −2.57054025380865118539027737092, −0.986440893895717128684204469697, 0, 0.986440893895717128684204469697, 2.57054025380865118539027737092, 3.62975033850634045605060025180, 4.71704298733197349999698910148, 5.30195056208135455661678447029, 6.58873450891650284283017144373, 7.16063763358208409355987378640, 8.176441921257370297851082069457, 8.447419734167772802719717154045

Graph of the $Z$-function along the critical line