Properties

Label 2-7e4-1.1-c1-0-72
Degree $2$
Conductor $2401$
Sign $-1$
Analytic cond. $19.1720$
Root an. cond. $4.37859$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.206·2-s − 0.197·3-s − 1.95·4-s − 3.82·5-s − 0.0407·6-s − 0.817·8-s − 2.96·9-s − 0.789·10-s + 3.34·11-s + 0.386·12-s + 4.04·13-s + 0.754·15-s + 3.74·16-s + 3.36·17-s − 0.611·18-s + 5.85·19-s + 7.48·20-s + 0.691·22-s − 6.71·23-s + 0.161·24-s + 9.62·25-s + 0.834·26-s + 1.17·27-s − 2.74·29-s + 0.155·30-s − 3.52·31-s + 2.40·32-s + ⋯
L(s)  = 1  + 0.145·2-s − 0.113·3-s − 0.978·4-s − 1.71·5-s − 0.0166·6-s − 0.288·8-s − 0.987·9-s − 0.249·10-s + 1.00·11-s + 0.111·12-s + 1.12·13-s + 0.194·15-s + 0.936·16-s + 0.815·17-s − 0.144·18-s + 1.34·19-s + 1.67·20-s + 0.147·22-s − 1.40·23-s + 0.0329·24-s + 1.92·25-s + 0.163·26-s + 0.226·27-s − 0.510·29-s + 0.0284·30-s − 0.632·31-s + 0.425·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2401\)    =    \(7^{4}\)
Sign: $-1$
Analytic conductor: \(19.1720\)
Root analytic conductor: \(4.37859\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2401,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
good2 \( 1 - 0.206T + 2T^{2} \)
3 \( 1 + 0.197T + 3T^{2} \)
5 \( 1 + 3.82T + 5T^{2} \)
11 \( 1 - 3.34T + 11T^{2} \)
13 \( 1 - 4.04T + 13T^{2} \)
17 \( 1 - 3.36T + 17T^{2} \)
19 \( 1 - 5.85T + 19T^{2} \)
23 \( 1 + 6.71T + 23T^{2} \)
29 \( 1 + 2.74T + 29T^{2} \)
31 \( 1 + 3.52T + 31T^{2} \)
37 \( 1 + 3.70T + 37T^{2} \)
41 \( 1 - 6.36T + 41T^{2} \)
43 \( 1 + 6.70T + 43T^{2} \)
47 \( 1 + 1.40T + 47T^{2} \)
53 \( 1 + 5.85T + 53T^{2} \)
59 \( 1 + 4.73T + 59T^{2} \)
61 \( 1 + 0.0753T + 61T^{2} \)
67 \( 1 - 12.8T + 67T^{2} \)
71 \( 1 + 2.45T + 71T^{2} \)
73 \( 1 - 6.88T + 73T^{2} \)
79 \( 1 + 10.4T + 79T^{2} \)
83 \( 1 + 13.8T + 83T^{2} \)
89 \( 1 + 11.6T + 89T^{2} \)
97 \( 1 - 1.71T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.416978661026768842330411438801, −8.050801139562024765516999100207, −7.21664884132490164541104842015, −6.07185278331993914328275672375, −5.40063773839622447074471438149, −4.37929309921839761279337865840, −3.58833626308404023303682920981, −3.34322977504945314639306590132, −1.16932152602294166283564644163, 0, 1.16932152602294166283564644163, 3.34322977504945314639306590132, 3.58833626308404023303682920981, 4.37929309921839761279337865840, 5.40063773839622447074471438149, 6.07185278331993914328275672375, 7.21664884132490164541104842015, 8.050801139562024765516999100207, 8.416978661026768842330411438801

Graph of the $Z$-function along the critical line