Properties

Label 2401.2
Level 2401
Weight 2
Dimension 223956
Nonzero newspaces 8
Sturm bound 941192
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2401 = 7^{4} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Sturm bound: \(941192\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2401))\).

Total New Old
Modular forms 237650 227628 10022
Cusp forms 232947 223956 8991
Eisenstein series 4703 3672 1031

Trace form

\( 223956 q - 756 q^{2} - 756 q^{3} - 756 q^{4} - 756 q^{5} - 756 q^{6} - 882 q^{7} - 1404 q^{8} - 756 q^{9} - 756 q^{10} - 756 q^{11} - 756 q^{12} - 756 q^{13} - 882 q^{14} - 1404 q^{15} - 756 q^{16} - 756 q^{17}+ \cdots - 2223 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2401))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2401.2.a \(\chi_{2401}(1, \cdot)\) 2401.2.a.a 3 1
2401.2.a.b 3
2401.2.a.c 6
2401.2.a.d 6
2401.2.a.e 9
2401.2.a.f 9
2401.2.a.g 18
2401.2.a.h 24
2401.2.a.i 24
2401.2.a.j 48
2401.2.c \(\chi_{2401}(1047, \cdot)\) n/a 300 2
2401.2.e \(\chi_{2401}(344, \cdot)\) n/a 918 6
2401.2.g \(\chi_{2401}(18, \cdot)\) n/a 1836 12
2401.2.i \(\chi_{2401}(50, \cdot)\) n/a 6678 42
2401.2.k \(\chi_{2401}(30, \cdot)\) n/a 13272 84
2401.2.m \(\chi_{2401}(8, \cdot)\) n/a 66738 294
2401.2.o \(\chi_{2401}(2, \cdot)\) n/a 134064 588

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2401))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2401)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(343))\)\(^{\oplus 2}\)