Properties

Label 240.9.c.f.209.4
Level $240$
Weight $9$
Character 240.209
Analytic conductor $97.771$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [240,9,Mod(209,240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("240.209"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(240, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 240 = 2^{4} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 240.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,2528] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(97.7708664147\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 209.4
Character \(\chi\) \(=\) 240.209
Dual form 240.9.c.f.209.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-77.3427 + 24.0647i) q^{3} +(-566.843 - 263.275i) q^{5} -3447.79i q^{7} +(5402.78 - 3722.46i) q^{9} +15416.5i q^{11} +9932.71i q^{13} +(50176.8 + 6721.46i) q^{15} -42942.6 q^{17} -44941.3 q^{19} +(82970.2 + 266661. i) q^{21} -296163. q^{23} +(251997. + 298471. i) q^{25} +(-328285. + 417922. i) q^{27} +628329. i q^{29} -1.30083e6 q^{31} +(-370993. - 1.19235e6i) q^{33} +(-907717. + 1.95436e6i) q^{35} -1.56452e6i q^{37} +(-239028. - 768223. i) q^{39} -980599. i q^{41} -5.90146e6i q^{43} +(-4.04256e6 + 687637. i) q^{45} -6.68264e6 q^{47} -6.12246e6 q^{49} +(3.32130e6 - 1.03340e6i) q^{51} +8.16675e6 q^{53} +(4.05877e6 - 8.73872e6i) q^{55} +(3.47588e6 - 1.08150e6i) q^{57} +2.30526e7i q^{59} +6.16910e6 q^{61} +(-1.28343e7 - 1.86276e7i) q^{63} +(2.61504e6 - 5.63029e6i) q^{65} +3.43783e7i q^{67} +(2.29061e7 - 7.12710e6i) q^{69} +4.22081e6i q^{71} +1.17191e7i q^{73} +(-2.66728e7 - 1.70203e7i) q^{75} +5.31528e7 q^{77} -2.04927e7 q^{79} +(1.53333e7 - 4.02233e7i) q^{81} -7.73251e7 q^{83} +(2.43417e7 + 1.13057e7i) q^{85} +(-1.51206e7 - 4.85966e7i) q^{87} +6.91345e7i q^{89} +3.42459e7 q^{91} +(1.00610e8 - 3.13042e7i) q^{93} +(2.54747e7 + 1.18319e7i) q^{95} +7.42781e7i q^{97} +(5.73872e7 + 8.32917e7i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 2528 q^{9} - 132352 q^{15} + 116176 q^{21} + 56976 q^{25} - 1395648 q^{31} - 6888832 q^{39} - 4287056 q^{45} - 30813552 q^{49} + 22815168 q^{51} + 6062784 q^{55} + 14031936 q^{61} + 2522608 q^{69}+ \cdots + 21719360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/240\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(97\) \(161\) \(181\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −77.3427 + 24.0647i −0.954848 + 0.297096i
\(4\) 0 0
\(5\) −566.843 263.275i −0.906949 0.421240i
\(6\) 0 0
\(7\) 3447.79i 1.43598i −0.696053 0.717991i \(-0.745062\pi\)
0.696053 0.717991i \(-0.254938\pi\)
\(8\) 0 0
\(9\) 5402.78 3722.46i 0.823468 0.567362i
\(10\) 0 0
\(11\) 15416.5i 1.05297i 0.850186 + 0.526483i \(0.176490\pi\)
−0.850186 + 0.526483i \(0.823510\pi\)
\(12\) 0 0
\(13\) 9932.71i 0.347772i 0.984766 + 0.173886i \(0.0556324\pi\)
−0.984766 + 0.173886i \(0.944368\pi\)
\(14\) 0 0
\(15\) 50176.8 + 6721.46i 0.991147 + 0.132770i
\(16\) 0 0
\(17\) −42942.6 −0.514153 −0.257077 0.966391i \(-0.582759\pi\)
−0.257077 + 0.966391i \(0.582759\pi\)
\(18\) 0 0
\(19\) −44941.3 −0.344851 −0.172425 0.985023i \(-0.555160\pi\)
−0.172425 + 0.985023i \(0.555160\pi\)
\(20\) 0 0
\(21\) 82970.2 + 266661.i 0.426624 + 1.37114i
\(22\) 0 0
\(23\) −296163. −1.05833 −0.529164 0.848520i \(-0.677494\pi\)
−0.529164 + 0.848520i \(0.677494\pi\)
\(24\) 0 0
\(25\) 251997. + 298471.i 0.645113 + 0.764087i
\(26\) 0 0
\(27\) −328285. + 417922.i −0.617726 + 0.786393i
\(28\) 0 0
\(29\) 628329.i 0.888372i 0.895934 + 0.444186i \(0.146507\pi\)
−0.895934 + 0.444186i \(0.853493\pi\)
\(30\) 0 0
\(31\) −1.30083e6 −1.40856 −0.704279 0.709923i \(-0.748730\pi\)
−0.704279 + 0.709923i \(0.748730\pi\)
\(32\) 0 0
\(33\) −370993. 1.19235e6i −0.312832 1.00542i
\(34\) 0 0
\(35\) −907717. + 1.95436e6i −0.604893 + 1.30236i
\(36\) 0 0
\(37\) 1.56452e6i 0.834784i −0.908727 0.417392i \(-0.862944\pi\)
0.908727 0.417392i \(-0.137056\pi\)
\(38\) 0 0
\(39\) −239028. 768223.i −0.103322 0.332069i
\(40\) 0 0
\(41\) 980599.i 0.347021i −0.984832 0.173511i \(-0.944489\pi\)
0.984832 0.173511i \(-0.0555111\pi\)
\(42\) 0 0
\(43\) 5.90146e6i 1.72618i −0.505052 0.863089i \(-0.668527\pi\)
0.505052 0.863089i \(-0.331473\pi\)
\(44\) 0 0
\(45\) −4.04256e6 + 687637.i −0.985840 + 0.167691i
\(46\) 0 0
\(47\) −6.68264e6 −1.36948 −0.684741 0.728786i \(-0.740085\pi\)
−0.684741 + 0.728786i \(0.740085\pi\)
\(48\) 0 0
\(49\) −6.12246e6 −1.06204
\(50\) 0 0
\(51\) 3.32130e6 1.03340e6i 0.490938 0.152753i
\(52\) 0 0
\(53\) 8.16675e6 1.03501 0.517507 0.855679i \(-0.326860\pi\)
0.517507 + 0.855679i \(0.326860\pi\)
\(54\) 0 0
\(55\) 4.05877e6 8.73872e6i 0.443551 0.954986i
\(56\) 0 0
\(57\) 3.47588e6 1.08150e6i 0.329280 0.102454i
\(58\) 0 0
\(59\) 2.30526e7i 1.90244i 0.308509 + 0.951221i \(0.400170\pi\)
−0.308509 + 0.951221i \(0.599830\pi\)
\(60\) 0 0
\(61\) 6.16910e6 0.445556 0.222778 0.974869i \(-0.428487\pi\)
0.222778 + 0.974869i \(0.428487\pi\)
\(62\) 0 0
\(63\) −1.28343e7 1.86276e7i −0.814721 1.18249i
\(64\) 0 0
\(65\) 2.61504e6 5.63029e6i 0.146496 0.315411i
\(66\) 0 0
\(67\) 3.43783e7i 1.70602i 0.521893 + 0.853011i \(0.325226\pi\)
−0.521893 + 0.853011i \(0.674774\pi\)
\(68\) 0 0
\(69\) 2.29061e7 7.12710e6i 1.01054 0.314424i
\(70\) 0 0
\(71\) 4.22081e6i 0.166097i 0.996545 + 0.0830486i \(0.0264657\pi\)
−0.996545 + 0.0830486i \(0.973534\pi\)
\(72\) 0 0
\(73\) 1.17191e7i 0.412671i 0.978481 + 0.206336i \(0.0661538\pi\)
−0.978481 + 0.206336i \(0.933846\pi\)
\(74\) 0 0
\(75\) −2.66728e7 1.70203e7i −0.842992 0.537926i
\(76\) 0 0
\(77\) 5.31528e7 1.51204
\(78\) 0 0
\(79\) −2.04927e7 −0.526128 −0.263064 0.964778i \(-0.584733\pi\)
−0.263064 + 0.964778i \(0.584733\pi\)
\(80\) 0 0
\(81\) 1.53333e7 4.02233e7i 0.356200 0.934410i
\(82\) 0 0
\(83\) −7.73251e7 −1.62933 −0.814664 0.579934i \(-0.803078\pi\)
−0.814664 + 0.579934i \(0.803078\pi\)
\(84\) 0 0
\(85\) 2.43417e7 + 1.13057e7i 0.466311 + 0.216582i
\(86\) 0 0
\(87\) −1.51206e7 4.85966e7i −0.263932 0.848260i
\(88\) 0 0
\(89\) 6.91345e7i 1.10188i 0.834545 + 0.550940i \(0.185731\pi\)
−0.834545 + 0.550940i \(0.814269\pi\)
\(90\) 0 0
\(91\) 3.42459e7 0.499394
\(92\) 0 0
\(93\) 1.00610e8 3.13042e7i 1.34496 0.418477i
\(94\) 0 0
\(95\) 2.54747e7 + 1.18319e7i 0.312762 + 0.145265i
\(96\) 0 0
\(97\) 7.42781e7i 0.839023i 0.907750 + 0.419512i \(0.137799\pi\)
−0.907750 + 0.419512i \(0.862201\pi\)
\(98\) 0 0
\(99\) 5.73872e7 + 8.32917e7i 0.597413 + 0.867084i
\(100\) 0 0
\(101\) 2.76466e7i 0.265678i −0.991138 0.132839i \(-0.957591\pi\)
0.991138 0.132839i \(-0.0424093\pi\)
\(102\) 0 0
\(103\) 1.48827e8i 1.32231i −0.750249 0.661155i \(-0.770066\pi\)
0.750249 0.661155i \(-0.229934\pi\)
\(104\) 0 0
\(105\) 2.31742e7 1.72999e8i 0.190655 1.42327i
\(106\) 0 0
\(107\) 1.31415e8 1.00256 0.501279 0.865285i \(-0.332863\pi\)
0.501279 + 0.865285i \(0.332863\pi\)
\(108\) 0 0
\(109\) 5.88925e7 0.417209 0.208605 0.978000i \(-0.433108\pi\)
0.208605 + 0.978000i \(0.433108\pi\)
\(110\) 0 0
\(111\) 3.76497e7 + 1.21004e8i 0.248011 + 0.797091i
\(112\) 0 0
\(113\) 1.82872e8 1.12159 0.560794 0.827955i \(-0.310496\pi\)
0.560794 + 0.827955i \(0.310496\pi\)
\(114\) 0 0
\(115\) 1.67878e8 + 7.79725e7i 0.959849 + 0.445810i
\(116\) 0 0
\(117\) 3.69742e7 + 5.36642e7i 0.197313 + 0.286379i
\(118\) 0 0
\(119\) 1.48057e8i 0.738315i
\(120\) 0 0
\(121\) −2.33087e7 −0.108737
\(122\) 0 0
\(123\) 2.35979e7 + 7.58421e7i 0.103098 + 0.331352i
\(124\) 0 0
\(125\) −6.42630e7 2.35531e8i −0.263221 0.964736i
\(126\) 0 0
\(127\) 2.39601e7i 0.0921028i −0.998939 0.0460514i \(-0.985336\pi\)
0.998939 0.0460514i \(-0.0146638\pi\)
\(128\) 0 0
\(129\) 1.42017e8 + 4.56434e8i 0.512840 + 1.64824i
\(130\) 0 0
\(131\) 4.48777e8i 1.52386i −0.647658 0.761931i \(-0.724252\pi\)
0.647658 0.761931i \(-0.275748\pi\)
\(132\) 0 0
\(133\) 1.54948e8i 0.495199i
\(134\) 0 0
\(135\) 2.96114e8 1.50467e8i 0.891507 0.453008i
\(136\) 0 0
\(137\) −4.50461e8 −1.27872 −0.639359 0.768909i \(-0.720800\pi\)
−0.639359 + 0.768909i \(0.720800\pi\)
\(138\) 0 0
\(139\) 5.30018e8 1.41981 0.709907 0.704296i \(-0.248737\pi\)
0.709907 + 0.704296i \(0.248737\pi\)
\(140\) 0 0
\(141\) 5.16853e8 1.60816e8i 1.30765 0.406867i
\(142\) 0 0
\(143\) −1.53127e8 −0.366192
\(144\) 0 0
\(145\) 1.65423e8 3.56164e8i 0.374218 0.805709i
\(146\) 0 0
\(147\) 4.73527e8 1.47335e8i 1.01409 0.315528i
\(148\) 0 0
\(149\) 1.05440e8i 0.213924i −0.994263 0.106962i \(-0.965888\pi\)
0.994263 0.106962i \(-0.0341123\pi\)
\(150\) 0 0
\(151\) 5.07757e8 0.976670 0.488335 0.872656i \(-0.337604\pi\)
0.488335 + 0.872656i \(0.337604\pi\)
\(152\) 0 0
\(153\) −2.32009e8 + 1.59852e8i −0.423389 + 0.291711i
\(154\) 0 0
\(155\) 7.37369e8 + 3.42477e8i 1.27749 + 0.593341i
\(156\) 0 0
\(157\) 1.07574e9i 1.77055i −0.465063 0.885277i \(-0.653968\pi\)
0.465063 0.885277i \(-0.346032\pi\)
\(158\) 0 0
\(159\) −6.31638e8 + 1.96531e8i −0.988280 + 0.307498i
\(160\) 0 0
\(161\) 1.02111e9i 1.51974i
\(162\) 0 0
\(163\) 4.12493e8i 0.584341i −0.956366 0.292171i \(-0.905623\pi\)
0.956366 0.292171i \(-0.0943775\pi\)
\(164\) 0 0
\(165\) −1.03621e8 + 7.73549e8i −0.139802 + 1.04364i
\(166\) 0 0
\(167\) −1.67072e8 −0.214802 −0.107401 0.994216i \(-0.534253\pi\)
−0.107401 + 0.994216i \(0.534253\pi\)
\(168\) 0 0
\(169\) 7.17072e8 0.879055
\(170\) 0 0
\(171\) −2.42808e8 + 1.67292e8i −0.283974 + 0.195655i
\(172\) 0 0
\(173\) −2.69293e8 −0.300636 −0.150318 0.988638i \(-0.548030\pi\)
−0.150318 + 0.988638i \(0.548030\pi\)
\(174\) 0 0
\(175\) 1.02907e9 8.68834e8i 1.09721 0.926371i
\(176\) 0 0
\(177\) −5.54755e8 1.78295e9i −0.565207 1.81654i
\(178\) 0 0
\(179\) 2.01580e8i 0.196352i −0.995169 0.0981759i \(-0.968699\pi\)
0.995169 0.0981759i \(-0.0313008\pi\)
\(180\) 0 0
\(181\) −7.82915e8 −0.729458 −0.364729 0.931114i \(-0.618838\pi\)
−0.364729 + 0.931114i \(0.618838\pi\)
\(182\) 0 0
\(183\) −4.77135e8 + 1.48458e8i −0.425438 + 0.132373i
\(184\) 0 0
\(185\) −4.11899e8 + 8.86837e8i −0.351644 + 0.757106i
\(186\) 0 0
\(187\) 6.62023e8i 0.541386i
\(188\) 0 0
\(189\) 1.44091e9 + 1.13186e9i 1.12925 + 0.887043i
\(190\) 0 0
\(191\) 6.84462e7i 0.0514299i 0.999669 + 0.0257150i \(0.00818623\pi\)
−0.999669 + 0.0257150i \(0.991814\pi\)
\(192\) 0 0
\(193\) 4.40198e8i 0.317263i −0.987338 0.158631i \(-0.949292\pi\)
0.987338 0.158631i \(-0.0507081\pi\)
\(194\) 0 0
\(195\) −6.67624e7 + 4.98392e8i −0.0461735 + 0.344693i
\(196\) 0 0
\(197\) −4.69489e7 −0.0311717 −0.0155859 0.999879i \(-0.504961\pi\)
−0.0155859 + 0.999879i \(0.504961\pi\)
\(198\) 0 0
\(199\) 2.11868e9 1.35099 0.675496 0.737364i \(-0.263930\pi\)
0.675496 + 0.737364i \(0.263930\pi\)
\(200\) 0 0
\(201\) −8.27304e8 2.65891e9i −0.506852 1.62899i
\(202\) 0 0
\(203\) 2.16635e9 1.27569
\(204\) 0 0
\(205\) −2.58167e8 + 5.55846e8i −0.146179 + 0.314731i
\(206\) 0 0
\(207\) −1.60010e9 + 1.10246e9i −0.871499 + 0.600455i
\(208\) 0 0
\(209\) 6.92837e8i 0.363116i
\(210\) 0 0
\(211\) 1.61141e9 0.812973 0.406487 0.913657i \(-0.366754\pi\)
0.406487 + 0.913657i \(0.366754\pi\)
\(212\) 0 0
\(213\) −1.01573e8 3.26449e8i −0.0493468 0.158598i
\(214\) 0 0
\(215\) −1.55371e9 + 3.34520e9i −0.727135 + 1.56556i
\(216\) 0 0
\(217\) 4.48500e9i 2.02266i
\(218\) 0 0
\(219\) −2.82018e8 9.06389e8i −0.122603 0.394038i
\(220\) 0 0
\(221\) 4.26537e8i 0.178808i
\(222\) 0 0
\(223\) 2.77932e9i 1.12388i −0.827179 0.561938i \(-0.810056\pi\)
0.827179 0.561938i \(-0.189944\pi\)
\(224\) 0 0
\(225\) 2.47253e9 + 6.74523e8i 0.964744 + 0.263188i
\(226\) 0 0
\(227\) 1.01869e9 0.383653 0.191826 0.981429i \(-0.438559\pi\)
0.191826 + 0.981429i \(0.438559\pi\)
\(228\) 0 0
\(229\) 2.24205e9 0.815274 0.407637 0.913144i \(-0.366353\pi\)
0.407637 + 0.913144i \(0.366353\pi\)
\(230\) 0 0
\(231\) −4.11098e9 + 1.27911e9i −1.44377 + 0.449220i
\(232\) 0 0
\(233\) 3.96042e9 1.34375 0.671874 0.740666i \(-0.265490\pi\)
0.671874 + 0.740666i \(0.265490\pi\)
\(234\) 0 0
\(235\) 3.78801e9 + 1.75937e9i 1.24205 + 0.576881i
\(236\) 0 0
\(237\) 1.58496e9 4.93153e8i 0.502373 0.156310i
\(238\) 0 0
\(239\) 3.52028e9i 1.07891i −0.842014 0.539456i \(-0.818630\pi\)
0.842014 0.539456i \(-0.181370\pi\)
\(240\) 0 0
\(241\) −4.28842e9 −1.27125 −0.635623 0.772000i \(-0.719257\pi\)
−0.635623 + 0.772000i \(0.719257\pi\)
\(242\) 0 0
\(243\) −2.17952e8 + 3.47997e9i −0.0625081 + 0.998044i
\(244\) 0 0
\(245\) 3.47047e9 + 1.61189e9i 0.963218 + 0.447375i
\(246\) 0 0
\(247\) 4.46389e8i 0.119929i
\(248\) 0 0
\(249\) 5.98053e9 1.86081e9i 1.55576 0.484066i
\(250\) 0 0
\(251\) 2.95568e9i 0.744667i −0.928099 0.372334i \(-0.878558\pi\)
0.928099 0.372334i \(-0.121442\pi\)
\(252\) 0 0
\(253\) 4.56580e9i 1.11438i
\(254\) 0 0
\(255\) −2.15472e9 2.88637e8i −0.509602 0.0682639i
\(256\) 0 0
\(257\) 7.23312e9 1.65803 0.829016 0.559225i \(-0.188901\pi\)
0.829016 + 0.559225i \(0.188901\pi\)
\(258\) 0 0
\(259\) −5.39413e9 −1.19873
\(260\) 0 0
\(261\) 2.33893e9 + 3.39472e9i 0.504029 + 0.731547i
\(262\) 0 0
\(263\) 3.25922e8 0.0681225 0.0340613 0.999420i \(-0.489156\pi\)
0.0340613 + 0.999420i \(0.489156\pi\)
\(264\) 0 0
\(265\) −4.62927e9 2.15010e9i −0.938704 0.435989i
\(266\) 0 0
\(267\) −1.66370e9 5.34704e9i −0.327364 1.05213i
\(268\) 0 0
\(269\) 6.24979e9i 1.19359i −0.802393 0.596796i \(-0.796440\pi\)
0.802393 0.596796i \(-0.203560\pi\)
\(270\) 0 0
\(271\) −3.64533e9 −0.675865 −0.337933 0.941170i \(-0.609728\pi\)
−0.337933 + 0.941170i \(0.609728\pi\)
\(272\) 0 0
\(273\) −2.64867e9 + 8.24119e8i −0.476845 + 0.148368i
\(274\) 0 0
\(275\) −4.60138e9 + 3.88491e9i −0.804557 + 0.679282i
\(276\) 0 0
\(277\) 1.07672e10i 1.82888i 0.404722 + 0.914440i \(0.367368\pi\)
−0.404722 + 0.914440i \(0.632632\pi\)
\(278\) 0 0
\(279\) −7.02811e9 + 4.84230e9i −1.15990 + 0.799163i
\(280\) 0 0
\(281\) 8.83503e9i 1.41704i −0.705690 0.708521i \(-0.749363\pi\)
0.705690 0.708521i \(-0.250637\pi\)
\(282\) 0 0
\(283\) 6.24269e9i 0.973253i 0.873610 + 0.486627i \(0.161773\pi\)
−0.873610 + 0.486627i \(0.838227\pi\)
\(284\) 0 0
\(285\) −2.25501e9 3.02071e8i −0.341798 0.0457857i
\(286\) 0 0
\(287\) −3.38090e9 −0.498316
\(288\) 0 0
\(289\) −5.13169e9 −0.735646
\(290\) 0 0
\(291\) −1.78748e9 5.74487e9i −0.249270 0.801139i
\(292\) 0 0
\(293\) −7.75635e9 −1.05242 −0.526208 0.850356i \(-0.676387\pi\)
−0.526208 + 0.850356i \(0.676387\pi\)
\(294\) 0 0
\(295\) 6.06917e9 1.30672e10i 0.801385 1.72542i
\(296\) 0 0
\(297\) −6.44288e9 5.06100e9i −0.828045 0.650444i
\(298\) 0 0
\(299\) 2.94171e9i 0.368057i
\(300\) 0 0
\(301\) −2.03470e10 −2.47876
\(302\) 0 0
\(303\) 6.65307e8 + 2.13826e9i 0.0789318 + 0.253682i
\(304\) 0 0
\(305\) −3.49691e9 1.62417e9i −0.404097 0.187686i
\(306\) 0 0
\(307\) 1.05673e10i 1.18963i 0.803862 + 0.594816i \(0.202775\pi\)
−0.803862 + 0.594816i \(0.797225\pi\)
\(308\) 0 0
\(309\) 3.58149e9 + 1.15107e10i 0.392853 + 1.26261i
\(310\) 0 0
\(311\) 6.69370e9i 0.715525i 0.933813 + 0.357762i \(0.116460\pi\)
−0.933813 + 0.357762i \(0.883540\pi\)
\(312\) 0 0
\(313\) 1.62994e10i 1.69822i 0.528212 + 0.849112i \(0.322863\pi\)
−0.528212 + 0.849112i \(0.677137\pi\)
\(314\) 0 0
\(315\) 2.37083e9 + 1.39379e10i 0.240801 + 1.41565i
\(316\) 0 0
\(317\) −4.93374e9 −0.488584 −0.244292 0.969702i \(-0.578556\pi\)
−0.244292 + 0.969702i \(0.578556\pi\)
\(318\) 0 0
\(319\) −9.68662e9 −0.935426
\(320\) 0 0
\(321\) −1.01640e10 + 3.16247e9i −0.957291 + 0.297856i
\(322\) 0 0
\(323\) 1.92990e9 0.177306
\(324\) 0 0
\(325\) −2.96463e9 + 2.50302e9i −0.265728 + 0.224352i
\(326\) 0 0
\(327\) −4.55490e9 + 1.41723e9i −0.398371 + 0.123951i
\(328\) 0 0
\(329\) 2.30403e10i 1.96655i
\(330\) 0 0
\(331\) −4.23300e9 −0.352644 −0.176322 0.984333i \(-0.556420\pi\)
−0.176322 + 0.984333i \(0.556420\pi\)
\(332\) 0 0
\(333\) −5.82386e9 8.45275e9i −0.473625 0.687418i
\(334\) 0 0
\(335\) 9.05094e9 1.94871e10i 0.718645 1.54728i
\(336\) 0 0
\(337\) 1.06509e10i 0.825781i −0.910781 0.412891i \(-0.864519\pi\)
0.910781 0.412891i \(-0.135481\pi\)
\(338\) 0 0
\(339\) −1.41438e10 + 4.40077e9i −1.07095 + 0.333219i
\(340\) 0 0
\(341\) 2.00543e10i 1.48316i
\(342\) 0 0
\(343\) 1.23313e9i 0.0890908i
\(344\) 0 0
\(345\) −1.48605e10 1.99065e9i −1.04896 0.140514i
\(346\) 0 0
\(347\) 1.74013e10 1.20023 0.600113 0.799915i \(-0.295122\pi\)
0.600113 + 0.799915i \(0.295122\pi\)
\(348\) 0 0
\(349\) 2.62504e10 1.76943 0.884716 0.466130i \(-0.154352\pi\)
0.884716 + 0.466130i \(0.154352\pi\)
\(350\) 0 0
\(351\) −4.15110e9 3.26076e9i −0.273486 0.214828i
\(352\) 0 0
\(353\) 1.98518e9 0.127850 0.0639250 0.997955i \(-0.479638\pi\)
0.0639250 + 0.997955i \(0.479638\pi\)
\(354\) 0 0
\(355\) 1.11123e9 2.39254e9i 0.0699668 0.150642i
\(356\) 0 0
\(357\) −3.56296e9 1.14511e10i −0.219350 0.704978i
\(358\) 0 0
\(359\) 1.57071e10i 0.945625i −0.881163 0.472812i \(-0.843239\pi\)
0.881163 0.472812i \(-0.156761\pi\)
\(360\) 0 0
\(361\) −1.49638e10 −0.881078
\(362\) 0 0
\(363\) 1.80276e9 5.60918e8i 0.103827 0.0323052i
\(364\) 0 0
\(365\) 3.08536e9 6.64291e9i 0.173834 0.374272i
\(366\) 0 0
\(367\) 2.67965e10i 1.47711i 0.674193 + 0.738555i \(0.264492\pi\)
−0.674193 + 0.738555i \(0.735508\pi\)
\(368\) 0 0
\(369\) −3.65024e9 5.29796e9i −0.196887 0.285761i
\(370\) 0 0
\(371\) 2.81573e10i 1.48626i
\(372\) 0 0
\(373\) 6.95289e9i 0.359195i −0.983740 0.179597i \(-0.942520\pi\)
0.983740 0.179597i \(-0.0574795\pi\)
\(374\) 0 0
\(375\) 1.06383e10 + 1.66701e10i 0.537955 + 0.842974i
\(376\) 0 0
\(377\) −6.24101e9 −0.308951
\(378\) 0 0
\(379\) −3.74354e10 −1.81437 −0.907185 0.420733i \(-0.861773\pi\)
−0.907185 + 0.420733i \(0.861773\pi\)
\(380\) 0 0
\(381\) 5.76593e8 + 1.85313e9i 0.0273633 + 0.0879442i
\(382\) 0 0
\(383\) 3.68328e10 1.71175 0.855875 0.517183i \(-0.173019\pi\)
0.855875 + 0.517183i \(0.173019\pi\)
\(384\) 0 0
\(385\) −3.01293e10 1.39938e10i −1.37134 0.636932i
\(386\) 0 0
\(387\) −2.19680e10 3.18842e10i −0.979368 1.42145i
\(388\) 0 0
\(389\) 2.34598e10i 1.02453i 0.858827 + 0.512266i \(0.171194\pi\)
−0.858827 + 0.512266i \(0.828806\pi\)
\(390\) 0 0
\(391\) 1.27180e10 0.544143
\(392\) 0 0
\(393\) 1.07997e10 + 3.47096e10i 0.452733 + 1.45506i
\(394\) 0 0
\(395\) 1.16162e10 + 5.39523e9i 0.477172 + 0.221626i
\(396\) 0 0
\(397\) 3.58814e9i 0.144446i 0.997388 + 0.0722232i \(0.0230094\pi\)
−0.997388 + 0.0722232i \(0.976991\pi\)
\(398\) 0 0
\(399\) −3.72879e9 1.19841e10i −0.147122 0.472840i
\(400\) 0 0
\(401\) 4.80248e9i 0.185733i −0.995679 0.0928664i \(-0.970397\pi\)
0.995679 0.0928664i \(-0.0296029\pi\)
\(402\) 0 0
\(403\) 1.29208e10i 0.489857i
\(404\) 0 0
\(405\) −1.92813e10 + 1.87634e10i −0.716666 + 0.697416i
\(406\) 0 0
\(407\) 2.41194e10 0.878999
\(408\) 0 0
\(409\) 2.02788e10 0.724685 0.362342 0.932045i \(-0.381977\pi\)
0.362342 + 0.932045i \(0.381977\pi\)
\(410\) 0 0
\(411\) 3.48398e10 1.08402e10i 1.22098 0.379901i
\(412\) 0 0
\(413\) 7.94805e10 2.73187
\(414\) 0 0
\(415\) 4.38312e10 + 2.03578e10i 1.47772 + 0.686338i
\(416\) 0 0
\(417\) −4.09930e10 + 1.27547e10i −1.35571 + 0.421820i
\(418\) 0 0
\(419\) 3.60381e10i 1.16925i 0.811305 + 0.584623i \(0.198758\pi\)
−0.811305 + 0.584623i \(0.801242\pi\)
\(420\) 0 0
\(421\) 4.90406e10 1.56109 0.780544 0.625101i \(-0.214942\pi\)
0.780544 + 0.625101i \(0.214942\pi\)
\(422\) 0 0
\(423\) −3.61048e10 + 2.48759e10i −1.12773 + 0.776993i
\(424\) 0 0
\(425\) −1.08214e10 1.28171e10i −0.331687 0.392858i
\(426\) 0 0
\(427\) 2.12698e10i 0.639811i
\(428\) 0 0
\(429\) 1.18433e10 3.68497e9i 0.349658 0.108794i
\(430\) 0 0
\(431\) 5.36301e10i 1.55417i 0.629394 + 0.777087i \(0.283303\pi\)
−0.629394 + 0.777087i \(0.716697\pi\)
\(432\) 0 0
\(433\) 1.36877e10i 0.389385i −0.980864 0.194692i \(-0.937629\pi\)
0.980864 0.194692i \(-0.0623708\pi\)
\(434\) 0 0
\(435\) −4.22329e9 + 3.15275e10i −0.117949 + 0.880508i
\(436\) 0 0
\(437\) 1.33100e10 0.364965
\(438\) 0 0
\(439\) −3.05371e10 −0.822186 −0.411093 0.911593i \(-0.634853\pi\)
−0.411093 + 0.911593i \(0.634853\pi\)
\(440\) 0 0
\(441\) −3.30783e10 + 2.27906e10i −0.874558 + 0.602562i
\(442\) 0 0
\(443\) −1.20943e10 −0.314026 −0.157013 0.987597i \(-0.550186\pi\)
−0.157013 + 0.987597i \(0.550186\pi\)
\(444\) 0 0
\(445\) 1.82014e10 3.91884e10i 0.464156 0.999350i
\(446\) 0 0
\(447\) 2.53738e9 + 8.15499e9i 0.0635558 + 0.204265i
\(448\) 0 0
\(449\) 5.17706e10i 1.27379i −0.770950 0.636895i \(-0.780218\pi\)
0.770950 0.636895i \(-0.219782\pi\)
\(450\) 0 0
\(451\) 1.51174e10 0.365401
\(452\) 0 0
\(453\) −3.92713e10 + 1.22190e10i −0.932571 + 0.290164i
\(454\) 0 0
\(455\) −1.94121e10 9.01610e9i −0.452925 0.210365i
\(456\) 0 0
\(457\) 3.74702e10i 0.859056i 0.903054 + 0.429528i \(0.141320\pi\)
−0.903054 + 0.429528i \(0.858680\pi\)
\(458\) 0 0
\(459\) 1.40974e10 1.79466e10i 0.317606 0.404327i
\(460\) 0 0
\(461\) 3.52628e10i 0.780752i 0.920655 + 0.390376i \(0.127655\pi\)
−0.920655 + 0.390376i \(0.872345\pi\)
\(462\) 0 0
\(463\) 2.30500e10i 0.501588i −0.968040 0.250794i \(-0.919308\pi\)
0.968040 0.250794i \(-0.0806917\pi\)
\(464\) 0 0
\(465\) −6.52717e10 8.74350e9i −1.39609 0.187014i
\(466\) 0 0
\(467\) −4.90788e10 −1.03187 −0.515936 0.856627i \(-0.672556\pi\)
−0.515936 + 0.856627i \(0.672556\pi\)
\(468\) 0 0
\(469\) 1.18529e11 2.44982
\(470\) 0 0
\(471\) 2.58874e10 + 8.32007e10i 0.526024 + 1.69061i
\(472\) 0 0
\(473\) 9.09796e10 1.81761
\(474\) 0 0
\(475\) −1.13251e10 1.34137e10i −0.222468 0.263496i
\(476\) 0 0
\(477\) 4.41231e10 3.04004e10i 0.852301 0.587227i
\(478\) 0 0
\(479\) 5.85055e10i 1.11136i −0.831396 0.555680i \(-0.812458\pi\)
0.831396 0.555680i \(-0.187542\pi\)
\(480\) 0 0
\(481\) 1.55399e10 0.290314
\(482\) 0 0
\(483\) −2.45727e10 7.89753e10i −0.451508 1.45112i
\(484\) 0 0
\(485\) 1.95556e10 4.21040e10i 0.353430 0.760951i
\(486\) 0 0
\(487\) 6.11680e10i 1.08745i −0.839264 0.543724i \(-0.817014\pi\)
0.839264 0.543724i \(-0.182986\pi\)
\(488\) 0 0
\(489\) 9.92654e9 + 3.19033e10i 0.173605 + 0.557957i
\(490\) 0 0
\(491\) 2.88854e10i 0.496996i −0.968632 0.248498i \(-0.920063\pi\)
0.968632 0.248498i \(-0.0799370\pi\)
\(492\) 0 0
\(493\) 2.69821e10i 0.456760i
\(494\) 0 0
\(495\) −1.06009e10 6.23220e10i −0.176573 1.03806i
\(496\) 0 0
\(497\) 1.45525e10 0.238513
\(498\) 0 0
\(499\) −5.78459e10 −0.932976 −0.466488 0.884527i \(-0.654481\pi\)
−0.466488 + 0.884527i \(0.654481\pi\)
\(500\) 0 0
\(501\) 1.29218e10 4.02054e9i 0.205103 0.0638166i
\(502\) 0 0
\(503\) 5.04066e10 0.787437 0.393719 0.919231i \(-0.371188\pi\)
0.393719 + 0.919231i \(0.371188\pi\)
\(504\) 0 0
\(505\) −7.27865e9 + 1.56713e10i −0.111914 + 0.240956i
\(506\) 0 0
\(507\) −5.54603e10 + 1.72562e10i −0.839363 + 0.261163i
\(508\) 0 0
\(509\) 2.55244e10i 0.380263i 0.981759 + 0.190132i \(0.0608915\pi\)
−0.981759 + 0.190132i \(0.939108\pi\)
\(510\) 0 0
\(511\) 4.04051e10 0.592588
\(512\) 0 0
\(513\) 1.47536e10 1.87820e10i 0.213023 0.271188i
\(514\) 0 0
\(515\) −3.91825e10 + 8.43617e10i −0.557010 + 1.19927i
\(516\) 0 0
\(517\) 1.03023e11i 1.44202i
\(518\) 0 0
\(519\) 2.08279e10 6.48048e9i 0.287062 0.0893177i
\(520\) 0 0
\(521\) 5.87171e10i 0.796919i −0.917186 0.398459i \(-0.869545\pi\)
0.917186 0.398459i \(-0.130455\pi\)
\(522\) 0 0
\(523\) 6.38671e10i 0.853632i 0.904338 + 0.426816i \(0.140365\pi\)
−0.904338 + 0.426816i \(0.859635\pi\)
\(524\) 0 0
\(525\) −5.86825e10 + 9.19622e10i −0.772452 + 1.21052i
\(526\) 0 0
\(527\) 5.58612e10 0.724215
\(528\) 0 0
\(529\) 9.40179e9 0.120057
\(530\) 0 0
\(531\) 8.58124e10 + 1.24548e11i 1.07937 + 1.56660i
\(532\) 0 0
\(533\) 9.74001e9 0.120684
\(534\) 0 0
\(535\) −7.44917e10 3.45983e10i −0.909270 0.422318i
\(536\) 0 0
\(537\) 4.85097e9 + 1.55907e10i 0.0583353 + 0.187486i
\(538\) 0 0
\(539\) 9.43867e10i 1.11829i
\(540\) 0 0
\(541\) 1.45524e11 1.69881 0.849406 0.527740i \(-0.176960\pi\)
0.849406 + 0.527740i \(0.176960\pi\)
\(542\) 0 0
\(543\) 6.05527e10 1.88406e10i 0.696521 0.216719i
\(544\) 0 0
\(545\) −3.33828e10 1.55049e10i −0.378387 0.175745i
\(546\) 0 0
\(547\) 1.45585e11i 1.62617i 0.582144 + 0.813086i \(0.302214\pi\)
−0.582144 + 0.813086i \(0.697786\pi\)
\(548\) 0 0
\(549\) 3.33303e10 2.29643e10i 0.366902 0.252792i
\(550\) 0 0
\(551\) 2.82379e10i 0.306356i
\(552\) 0 0
\(553\) 7.06547e10i 0.755511i
\(554\) 0 0
\(555\) 1.05159e10 7.85026e10i 0.110834 0.827393i
\(556\) 0 0
\(557\) −2.62613e9 −0.0272833 −0.0136416 0.999907i \(-0.504342\pi\)
−0.0136416 + 0.999907i \(0.504342\pi\)
\(558\) 0 0
\(559\) 5.86175e10 0.600316
\(560\) 0 0
\(561\) 1.59314e10 + 5.12027e10i 0.160843 + 0.516941i
\(562\) 0 0
\(563\) 1.79138e11 1.78301 0.891503 0.453014i \(-0.149651\pi\)
0.891503 + 0.453014i \(0.149651\pi\)
\(564\) 0 0
\(565\) −1.03660e11 4.81457e10i −1.01722 0.472458i
\(566\) 0 0
\(567\) −1.38681e11 5.28659e10i −1.34179 0.511497i
\(568\) 0 0
\(569\) 1.25005e11i 1.19256i −0.802777 0.596279i \(-0.796645\pi\)
0.802777 0.596279i \(-0.203355\pi\)
\(570\) 0 0
\(571\) 1.33638e11 1.25714 0.628571 0.777752i \(-0.283640\pi\)
0.628571 + 0.777752i \(0.283640\pi\)
\(572\) 0 0
\(573\) −1.64714e9 5.29381e9i −0.0152796 0.0491078i
\(574\) 0 0
\(575\) −7.46324e10 8.83963e10i −0.682741 0.808654i
\(576\) 0 0
\(577\) 8.41141e9i 0.0758867i 0.999280 + 0.0379433i \(0.0120806\pi\)
−0.999280 + 0.0379433i \(0.987919\pi\)
\(578\) 0 0
\(579\) 1.05933e10 + 3.40461e10i 0.0942573 + 0.302937i
\(580\) 0 0
\(581\) 2.66601e11i 2.33968i
\(582\) 0 0
\(583\) 1.25903e11i 1.08983i
\(584\) 0 0
\(585\) −6.83010e9 4.01536e10i −0.0583181 0.342847i
\(586\) 0 0
\(587\) 1.54462e11 1.30098 0.650488 0.759516i \(-0.274564\pi\)
0.650488 + 0.759516i \(0.274564\pi\)
\(588\) 0 0
\(589\) 5.84612e10 0.485743
\(590\) 0 0
\(591\) 3.63116e9 1.12981e9i 0.0297642 0.00926098i
\(592\) 0 0
\(593\) −6.76963e10 −0.547452 −0.273726 0.961808i \(-0.588256\pi\)
−0.273726 + 0.961808i \(0.588256\pi\)
\(594\) 0 0
\(595\) 3.89798e10 8.39252e10i 0.311008 0.669614i
\(596\) 0 0
\(597\) −1.63864e11 + 5.09855e10i −1.28999 + 0.401374i
\(598\) 0 0
\(599\) 1.20194e11i 0.933635i 0.884354 + 0.466818i \(0.154600\pi\)
−0.884354 + 0.466818i \(0.845400\pi\)
\(600\) 0 0
\(601\) −1.53372e11 −1.17557 −0.587783 0.809019i \(-0.699999\pi\)
−0.587783 + 0.809019i \(0.699999\pi\)
\(602\) 0 0
\(603\) 1.27972e11 + 1.85738e11i 0.967933 + 1.40486i
\(604\) 0 0
\(605\) 1.32124e10 + 6.13660e9i 0.0986188 + 0.0458043i
\(606\) 0 0
\(607\) 1.46632e11i 1.08013i −0.841625 0.540063i \(-0.818401\pi\)
0.841625 0.540063i \(-0.181599\pi\)
\(608\) 0 0
\(609\) −1.67551e11 + 5.21326e10i −1.21809 + 0.379001i
\(610\) 0 0
\(611\) 6.63768e10i 0.476268i
\(612\) 0 0
\(613\) 3.83397e10i 0.271523i −0.990742 0.135762i \(-0.956652\pi\)
0.990742 0.135762i \(-0.0433481\pi\)
\(614\) 0 0
\(615\) 6.59106e9 4.92033e10i 0.0460739 0.343949i
\(616\) 0 0
\(617\) −2.31520e10 −0.159753 −0.0798763 0.996805i \(-0.525453\pi\)
−0.0798763 + 0.996805i \(0.525453\pi\)
\(618\) 0 0
\(619\) −1.13065e11 −0.770129 −0.385065 0.922890i \(-0.625821\pi\)
−0.385065 + 0.922890i \(0.625821\pi\)
\(620\) 0 0
\(621\) 9.72260e10 1.23773e11i 0.653757 0.832262i
\(622\) 0 0
\(623\) 2.38361e11 1.58228
\(624\) 0 0
\(625\) −2.55825e10 + 1.50428e11i −0.167657 + 0.985845i
\(626\) 0 0
\(627\) 1.66729e10 + 5.35858e10i 0.107880 + 0.346721i
\(628\) 0 0
\(629\) 6.71845e10i 0.429207i
\(630\) 0 0
\(631\) −2.17611e11 −1.37266 −0.686332 0.727288i \(-0.740780\pi\)
−0.686332 + 0.727288i \(0.740780\pi\)
\(632\) 0 0
\(633\) −1.24631e11 + 3.87782e10i −0.776266 + 0.241531i
\(634\) 0 0
\(635\) −6.30809e9 + 1.35816e10i −0.0387974 + 0.0835326i
\(636\) 0 0
\(637\) 6.08126e10i 0.369348i
\(638\) 0 0
\(639\) 1.57118e10 + 2.28041e10i 0.0942373 + 0.136776i
\(640\) 0 0
\(641\) 1.22597e11i 0.726184i −0.931753 0.363092i \(-0.881721\pi\)
0.931753 0.363092i \(-0.118279\pi\)
\(642\) 0 0
\(643\) 1.86916e10i 0.109346i 0.998504 + 0.0546729i \(0.0174116\pi\)
−0.998504 + 0.0546729i \(0.982588\pi\)
\(644\) 0 0
\(645\) 3.96664e10 2.96116e11i 0.229184 1.71090i
\(646\) 0 0
\(647\) −4.19998e10 −0.239679 −0.119840 0.992793i \(-0.538238\pi\)
−0.119840 + 0.992793i \(0.538238\pi\)
\(648\) 0 0
\(649\) −3.55389e11 −2.00321
\(650\) 0 0
\(651\) −1.07930e11 3.46882e11i −0.600924 1.93134i
\(652\) 0 0
\(653\) 2.89608e11 1.59279 0.796394 0.604778i \(-0.206738\pi\)
0.796394 + 0.604778i \(0.206738\pi\)
\(654\) 0 0
\(655\) −1.18152e11 + 2.54386e11i −0.641912 + 1.38206i
\(656\) 0 0
\(657\) 4.36240e10 + 6.33159e10i 0.234134 + 0.339822i
\(658\) 0 0
\(659\) 1.18895e11i 0.630408i −0.949024 0.315204i \(-0.897927\pi\)
0.949024 0.315204i \(-0.102073\pi\)
\(660\) 0 0
\(661\) 1.86560e11 0.977265 0.488632 0.872490i \(-0.337496\pi\)
0.488632 + 0.872490i \(0.337496\pi\)
\(662\) 0 0
\(663\) 1.02645e10 + 3.29895e10i 0.0531231 + 0.170735i
\(664\) 0 0
\(665\) 4.07940e10 8.78314e10i 0.208598 0.449121i
\(666\) 0 0
\(667\) 1.86088e11i 0.940189i
\(668\) 0 0
\(669\) 6.68836e10 + 2.14960e11i 0.333899 + 1.07313i
\(670\) 0 0
\(671\) 9.51058e10i 0.469156i
\(672\) 0 0
\(673\) 3.70883e10i 0.180791i 0.995906 + 0.0903954i \(0.0288131\pi\)
−0.995906 + 0.0903954i \(0.971187\pi\)
\(674\) 0 0
\(675\) −2.07465e11 + 7.33151e9i −0.999376 + 0.0353165i
\(676\) 0 0
\(677\) −1.75040e11 −0.833265 −0.416632 0.909075i \(-0.636790\pi\)
−0.416632 + 0.909075i \(0.636790\pi\)
\(678\) 0 0
\(679\) 2.56095e11 1.20482
\(680\) 0 0
\(681\) −7.87881e10 + 2.45145e10i −0.366330 + 0.113981i
\(682\) 0 0
\(683\) 1.12903e11 0.518827 0.259413 0.965766i \(-0.416471\pi\)
0.259413 + 0.965766i \(0.416471\pi\)
\(684\) 0 0
\(685\) 2.55341e11 + 1.18595e11i 1.15973 + 0.538647i
\(686\) 0 0
\(687\) −1.73406e11 + 5.39544e10i −0.778463 + 0.242214i
\(688\) 0 0
\(689\) 8.11180e10i 0.359949i
\(690\) 0 0
\(691\) −2.95392e9 −0.0129565 −0.00647824 0.999979i \(-0.502062\pi\)
−0.00647824 + 0.999979i \(0.502062\pi\)
\(692\) 0 0
\(693\) 2.87172e11 1.97859e11i 1.24512 0.857874i
\(694\) 0 0
\(695\) −3.00437e11 1.39541e11i −1.28770 0.598083i
\(696\) 0 0
\(697\) 4.21095e10i 0.178422i
\(698\) 0 0
\(699\) −3.06309e11 + 9.53065e10i −1.28307 + 0.399221i
\(700\) 0 0
\(701\) 1.57652e11i 0.652871i −0.945220 0.326435i \(-0.894152\pi\)
0.945220 0.326435i \(-0.105848\pi\)
\(702\) 0 0
\(703\) 7.03115e10i 0.287876i
\(704\) 0 0
\(705\) −3.35314e11 4.49171e10i −1.35736 0.181826i
\(706\) 0 0
\(707\) −9.53195e10 −0.381509
\(708\) 0 0
\(709\) −3.19657e11 −1.26502 −0.632512 0.774551i \(-0.717976\pi\)
−0.632512 + 0.774551i \(0.717976\pi\)
\(710\) 0 0
\(711\) −1.10718e11 + 7.62835e10i −0.433250 + 0.298505i
\(712\) 0 0
\(713\) 3.85259e11 1.49072
\(714\) 0 0
\(715\) 8.67992e10 + 4.03146e10i 0.332117 + 0.154255i
\(716\) 0 0
\(717\) 8.47147e10 + 2.72268e11i 0.320540 + 1.03020i
\(718\) 0 0
\(719\) 1.87728e11i 0.702447i 0.936292 + 0.351223i \(0.114234\pi\)
−0.936292 + 0.351223i \(0.885766\pi\)
\(720\) 0 0
\(721\) −5.13125e11 −1.89881
\(722\) 0 0
\(723\) 3.31678e11 1.03200e11i 1.21385 0.377682i
\(724\) 0 0
\(725\) −1.87538e11 + 1.58337e11i −0.678794 + 0.573101i
\(726\) 0 0
\(727\) 5.60776e10i 0.200748i −0.994950 0.100374i \(-0.967996\pi\)
0.994950 0.100374i \(-0.0320040\pi\)
\(728\) 0 0
\(729\) −6.68875e10 2.74395e11i −0.236829 0.971551i
\(730\) 0 0
\(731\) 2.53424e11i 0.887520i
\(732\) 0 0
\(733\) 5.18007e11i 1.79440i 0.441623 + 0.897200i \(0.354403\pi\)
−0.441623 + 0.897200i \(0.645597\pi\)
\(734\) 0 0
\(735\) −3.07205e11 4.11519e10i −1.05264 0.141007i
\(736\) 0 0
\(737\) −5.29992e11 −1.79638
\(738\) 0 0
\(739\) 3.21137e11 1.07674 0.538372 0.842707i \(-0.319040\pi\)
0.538372 + 0.842707i \(0.319040\pi\)
\(740\) 0 0
\(741\) 1.07422e10 + 3.45249e10i 0.0356305 + 0.114514i
\(742\) 0 0
\(743\) −2.77749e11 −0.911374 −0.455687 0.890140i \(-0.650606\pi\)
−0.455687 + 0.890140i \(0.650606\pi\)
\(744\) 0 0
\(745\) −2.77596e10 + 5.97678e10i −0.0901133 + 0.194018i
\(746\) 0 0
\(747\) −4.17770e11 + 2.87840e11i −1.34170 + 0.924419i
\(748\) 0 0
\(749\) 4.53092e11i 1.43966i
\(750\) 0 0
\(751\) −6.78103e10 −0.213175 −0.106587 0.994303i \(-0.533992\pi\)
−0.106587 + 0.994303i \(0.533992\pi\)
\(752\) 0 0
\(753\) 7.11276e10 + 2.28600e11i 0.221237 + 0.711044i
\(754\) 0 0
\(755\) −2.87818e11 1.33680e11i −0.885790 0.411413i
\(756\) 0 0
\(757\) 5.07778e11i 1.54629i −0.634231 0.773144i \(-0.718683\pi\)
0.634231 0.773144i \(-0.281317\pi\)
\(758\) 0 0
\(759\) 1.09875e11 + 3.53131e11i 0.331078 + 1.06407i
\(760\) 0 0
\(761\) 3.45584e11i 1.03042i −0.857064 0.515210i \(-0.827714\pi\)
0.857064 0.515210i \(-0.172286\pi\)
\(762\) 0 0
\(763\) 2.03049e11i 0.599104i
\(764\) 0 0
\(765\) 1.73598e11 2.95289e10i 0.506873 0.0862187i
\(766\) 0 0
\(767\) −2.28975e11 −0.661616
\(768\) 0 0
\(769\) −6.28668e11 −1.79769 −0.898847 0.438262i \(-0.855594\pi\)
−0.898847 + 0.438262i \(0.855594\pi\)
\(770\) 0 0
\(771\) −5.59428e11 + 1.74063e11i −1.58317 + 0.492594i
\(772\) 0 0
\(773\) 5.04406e11 1.41274 0.706370 0.707843i \(-0.250331\pi\)
0.706370 + 0.707843i \(0.250331\pi\)
\(774\) 0 0
\(775\) −3.27807e11 3.88262e11i −0.908680 1.07626i
\(776\) 0 0
\(777\) 4.17197e11 1.29808e11i 1.14461 0.356138i
\(778\) 0 0
\(779\) 4.40694e10i 0.119671i
\(780\) 0 0
\(781\) −6.50700e10 −0.174895
\(782\) 0 0
\(783\) −2.62592e11 2.06271e11i −0.698610 0.548771i
\(784\) 0 0
\(785\) −2.83216e11 + 6.09777e11i −0.745829 + 1.60580i
\(786\) 0 0
\(787\) 2.30047e11i 0.599676i −0.953990 0.299838i \(-0.903067\pi\)
0.953990 0.299838i \(-0.0969327\pi\)
\(788\) 0 0
\(789\) −2.52077e10 + 7.84323e9i −0.0650466 + 0.0202389i
\(790\) 0 0
\(791\) 6.30504e11i 1.61058i
\(792\) 0 0
\(793\) 6.12759e10i 0.154952i
\(794\) 0 0
\(795\) 4.09782e11 + 5.48925e10i 1.02585 + 0.137418i
\(796\) 0 0
\(797\) −8.94310e10 −0.221643 −0.110822 0.993840i \(-0.535348\pi\)
−0.110822 + 0.993840i \(0.535348\pi\)
\(798\) 0 0
\(799\) 2.86970e11 0.704124
\(800\) 0 0
\(801\) 2.57351e11 + 3.73518e11i 0.625165 + 0.907364i
\(802\) 0 0
\(803\) −1.80668e11 −0.434529
\(804\) 0 0
\(805\) 2.68833e11 5.78809e11i 0.640175 1.37833i
\(806\) 0 0
\(807\) 1.50400e11 + 4.83375e11i 0.354611 + 1.13970i
\(808\) 0 0
\(809\) 3.49693e11i 0.816381i 0.912897 + 0.408191i \(0.133840\pi\)
−0.912897 + 0.408191i \(0.866160\pi\)
\(810\) 0 0
\(811\) −3.68966e11 −0.852911 −0.426455 0.904509i \(-0.640238\pi\)
−0.426455 + 0.904509i \(0.640238\pi\)
\(812\) 0 0
\(813\) 2.81940e11 8.77240e10i 0.645348 0.200797i
\(814\) 0 0
\(815\) −1.08599e11 + 2.33819e11i −0.246148 + 0.529968i
\(816\) 0 0
\(817\) 2.65219e11i 0.595274i
\(818\) 0 0
\(819\) 1.85023e11 1.27479e11i 0.411235 0.283337i
\(820\) 0 0
\(821\) 7.26326e10i 0.159867i −0.996800 0.0799335i \(-0.974529\pi\)
0.996800 0.0799335i \(-0.0254708\pi\)
\(822\) 0 0
\(823\) 1.53874e11i 0.335402i 0.985838 + 0.167701i \(0.0536343\pi\)
−0.985838 + 0.167701i \(0.946366\pi\)
\(824\) 0 0
\(825\) 2.62393e11 4.11200e11i 0.566418 0.887642i
\(826\) 0 0
\(827\) −1.95841e10 −0.0418679 −0.0209339 0.999781i \(-0.506664\pi\)
−0.0209339 + 0.999781i \(0.506664\pi\)
\(828\) 0 0
\(829\) 4.33352e11 0.917536 0.458768 0.888556i \(-0.348291\pi\)
0.458768 + 0.888556i \(0.348291\pi\)
\(830\) 0 0
\(831\) −2.59111e11 8.32767e11i −0.543352 1.74630i
\(832\) 0 0
\(833\) 2.62914e11 0.546052
\(834\) 0 0
\(835\) 9.47036e10 + 4.39859e10i 0.194814 + 0.0904830i
\(836\) 0 0
\(837\) 4.27044e11 5.43646e11i 0.870103 1.10768i
\(838\) 0 0
\(839\) 1.88670e11i 0.380764i 0.981710 + 0.190382i \(0.0609726\pi\)
−0.981710 + 0.190382i \(0.939027\pi\)
\(840\) 0 0
\(841\) 1.05449e11 0.210794
\(842\) 0 0
\(843\) 2.12613e11 + 6.83325e11i 0.420997 + 1.35306i
\(844\) 0 0
\(845\) −4.06467e11 1.88787e11i −0.797258 0.370293i
\(846\) 0 0
\(847\) 8.03636e10i 0.156144i
\(848\) 0 0
\(849\) −1.50229e11 4.82826e11i −0.289149 0.929309i
\(850\) 0 0
\(851\) 4.63353e11i 0.883474i
\(852\) 0 0
\(853\) 1.04742e12i 1.97845i 0.146418 + 0.989223i \(0.453226\pi\)
−0.146418 + 0.989223i \(0.546774\pi\)
\(854\) 0 0
\(855\) 1.81678e11 3.09033e10i 0.339968 0.0578283i
\(856\) 0 0
\(857\) −3.08722e11 −0.572328 −0.286164 0.958181i \(-0.592380\pi\)
−0.286164 + 0.958181i \(0.592380\pi\)
\(858\) 0 0
\(859\) 7.88671e11 1.44852 0.724258 0.689529i \(-0.242182\pi\)
0.724258 + 0.689529i \(0.242182\pi\)
\(860\) 0 0
\(861\) 2.61488e11 8.13605e10i 0.475816 0.148047i
\(862\) 0 0
\(863\) 9.07738e11 1.63650 0.818252 0.574859i \(-0.194943\pi\)
0.818252 + 0.574859i \(0.194943\pi\)
\(864\) 0 0
\(865\) 1.52647e11 + 7.08983e10i 0.272662 + 0.126640i
\(866\) 0 0
\(867\) 3.96899e11 1.23493e11i 0.702430 0.218557i
\(868\) 0 0
\(869\) 3.15926e11i 0.553995i
\(870\) 0 0
\(871\) −3.41469e11 −0.593307
\(872\) 0 0
\(873\) 2.76498e11 + 4.01308e11i 0.476030 + 0.690909i
\(874\) 0 0
\(875\) −8.12062e11 + 2.21565e11i −1.38534 + 0.377980i
\(876\) 0 0
\(877\) 4.01949e11i 0.679473i 0.940521 + 0.339736i \(0.110338\pi\)
−0.940521 + 0.339736i \(0.889662\pi\)
\(878\) 0 0
\(879\) 5.99897e11 1.86655e11i 1.00490 0.312668i
\(880\) 0 0
\(881\) 1.75145e11i 0.290732i 0.989378 + 0.145366i \(0.0464360\pi\)
−0.989378 + 0.145366i \(0.953564\pi\)
\(882\) 0 0
\(883\) 5.11781e11i 0.841863i 0.907093 + 0.420931i \(0.138297\pi\)
−0.907093 + 0.420931i \(0.861703\pi\)
\(884\) 0 0
\(885\) −1.54947e11 + 1.15671e12i −0.252587 + 1.88560i
\(886\) 0 0
\(887\) 8.96441e11 1.44819 0.724097 0.689698i \(-0.242257\pi\)
0.724097 + 0.689698i \(0.242257\pi\)
\(888\) 0 0
\(889\) −8.26093e10 −0.132258
\(890\) 0 0
\(891\) 6.20101e11 + 2.36385e11i 0.983901 + 0.375067i
\(892\) 0 0
\(893\) 3.00327e11 0.472267
\(894\) 0 0
\(895\) −5.30709e10 + 1.14264e11i −0.0827113 + 0.178081i
\(896\) 0 0
\(897\) 7.07914e10 + 2.27519e11i 0.109348 + 0.351438i
\(898\) 0 0
\(899\) 8.17351e11i 1.25132i
\(900\) 0 0
\(901\) −3.50702e11 −0.532156
\(902\) 0 0
\(903\) 1.57369e12 4.89645e11i 2.36684 0.736428i
\(904\) 0 0
\(905\) 4.43790e11 + 2.06122e11i 0.661581 + 0.307277i
\(906\) 0 0
\(907\) 2.04108e11i 0.301600i −0.988564 0.150800i \(-0.951815\pi\)
0.988564 0.150800i \(-0.0481850\pi\)
\(908\) 0 0
\(909\) −1.02913e11 1.49368e11i −0.150736 0.218777i
\(910\) 0 0
\(911\) 4.48465e11i 0.651112i −0.945523 0.325556i \(-0.894449\pi\)
0.945523 0.325556i \(-0.105551\pi\)
\(912\) 0 0
\(913\) 1.19208e12i 1.71563i
\(914\) 0 0
\(915\) 3.09546e11 + 4.14654e10i 0.441612 + 0.0591563i
\(916\) 0 0
\(917\) −1.54729e12 −2.18824
\(918\) 0 0
\(919\) 1.35717e12 1.90271 0.951357 0.308091i \(-0.0996902\pi\)
0.951357 + 0.308091i \(0.0996902\pi\)
\(920\) 0 0
\(921\) −2.54300e11 8.17306e11i −0.353434 1.13592i
\(922\) 0 0
\(923\) −4.19241e10 −0.0577640
\(924\) 0 0
\(925\) 4.66964e11 3.94255e11i 0.637847 0.538530i
\(926\) 0 0
\(927\) −5.54004e11 8.04080e11i −0.750229 1.08888i
\(928\) 0 0
\(929\) 2.21578e9i 0.00297485i −0.999999 0.00148742i \(-0.999527\pi\)
0.999999 0.00148742i \(-0.000473462\pi\)
\(930\) 0 0
\(931\) 2.75151e11 0.366246
\(932\) 0 0
\(933\) −1.61082e11 5.17709e11i −0.212579 0.683217i
\(934\) 0 0
\(935\) −1.74294e11 + 3.75263e11i −0.228053 + 0.491009i
\(936\) 0 0
\(937\) 4.81469e11i 0.624612i 0.949982 + 0.312306i \(0.101101\pi\)
−0.949982 + 0.312306i \(0.898899\pi\)
\(938\) 0 0
\(939\) −3.92242e11 1.26064e12i −0.504535 1.62155i
\(940\) 0 0
\(941\) 1.10645e12i 1.41115i 0.708634 + 0.705576i \(0.249312\pi\)
−0.708634 + 0.705576i \(0.750688\pi\)
\(942\) 0 0
\(943\) 2.90418e11i 0.367262i
\(944\) 0 0
\(945\) −5.18778e11 1.02094e12i −0.650510 1.28019i
\(946\) 0 0
\(947\) −2.53028e10 −0.0314607 −0.0157304 0.999876i \(-0.505007\pi\)
−0.0157304 + 0.999876i \(0.505007\pi\)
\(948\) 0 0
\(949\) −1.16403e11 −0.143515
\(950\) 0 0
\(951\) 3.81589e11 1.18729e11i 0.466524 0.145156i
\(952\) 0 0
\(953\) 1.38607e11 0.168040 0.0840200 0.996464i \(-0.473224\pi\)
0.0840200 + 0.996464i \(0.473224\pi\)
\(954\) 0 0
\(955\) 1.80202e10 3.87983e10i 0.0216644 0.0466443i
\(956\) 0 0
\(957\) 7.49189e11 2.33106e11i 0.893189 0.277911i
\(958\) 0 0
\(959\) 1.55309e12i 1.83621i
\(960\) 0 0
\(961\) 8.39277e11 0.984037
\(962\) 0 0
\(963\) 7.10006e11 4.89188e11i 0.825576 0.568814i
\(964\) 0 0
\(965\) −1.15893e11 + 2.49523e11i −0.133644 + 0.287741i
\(966\) 0 0
\(967\) 7.99682e11i 0.914559i 0.889323 + 0.457279i \(0.151176\pi\)
−0.889323 + 0.457279i \(0.848824\pi\)
\(968\) 0 0
\(969\) −1.49263e11 + 4.64425e10i −0.169300 + 0.0526769i
\(970\) 0 0
\(971\) 1.34624e12i 1.51442i 0.653174 + 0.757208i \(0.273437\pi\)
−0.653174 + 0.757208i \(0.726563\pi\)
\(972\) 0 0
\(973\) 1.82739e12i 2.03883i
\(974\) 0 0
\(975\) 1.69058e11 2.64933e11i 0.187076 0.293169i
\(976\) 0 0
\(977\) −1.31472e12 −1.44297 −0.721483 0.692432i \(-0.756539\pi\)
−0.721483 + 0.692432i \(0.756539\pi\)
\(978\) 0 0
\(979\) −1.06581e12 −1.16024
\(980\) 0 0
\(981\) 3.18183e11 2.19225e11i 0.343559 0.236709i
\(982\) 0 0
\(983\) 3.43773e11 0.368178 0.184089 0.982910i \(-0.441067\pi\)
0.184089 + 0.982910i \(0.441067\pi\)
\(984\) 0 0
\(985\) 2.66127e10 + 1.23605e10i 0.0282712 + 0.0131308i
\(986\) 0 0
\(987\) −5.54460e11 1.78200e12i −0.584254 1.87776i
\(988\) 0 0
\(989\) 1.74780e12i 1.82686i
\(990\) 0 0
\(991\) 1.03988e11 0.107818 0.0539089 0.998546i \(-0.482832\pi\)
0.0539089 + 0.998546i \(0.482832\pi\)
\(992\) 0 0
\(993\) 3.27391e11 1.01866e11i 0.336721 0.104769i
\(994\) 0 0
\(995\) −1.20096e12 5.57795e11i −1.22528 0.569092i
\(996\) 0 0
\(997\) 8.41259e11i 0.851430i −0.904857 0.425715i \(-0.860023\pi\)
0.904857 0.425715i \(-0.139977\pi\)
\(998\) 0 0
\(999\) 6.53846e11 + 5.13608e11i 0.656468 + 0.515668i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 240.9.c.f.209.4 48
3.2 odd 2 inner 240.9.c.f.209.46 48
4.3 odd 2 120.9.c.a.89.45 yes 48
5.4 even 2 inner 240.9.c.f.209.45 48
12.11 even 2 120.9.c.a.89.3 48
15.14 odd 2 inner 240.9.c.f.209.3 48
20.19 odd 2 120.9.c.a.89.4 yes 48
60.59 even 2 120.9.c.a.89.46 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.9.c.a.89.3 48 12.11 even 2
120.9.c.a.89.4 yes 48 20.19 odd 2
120.9.c.a.89.45 yes 48 4.3 odd 2
120.9.c.a.89.46 yes 48 60.59 even 2
240.9.c.f.209.3 48 15.14 odd 2 inner
240.9.c.f.209.4 48 1.1 even 1 trivial
240.9.c.f.209.45 48 5.4 even 2 inner
240.9.c.f.209.46 48 3.2 odd 2 inner